An Overview of Existing Machine Learning Methods for Gender Classification of Names

Anna Shleiko, Natalia Borysova, Zoia Kochuieva and Karina Melnyk

National Technical University "Kharkiv Polytechnic Institute", Pushkinska str., 79/2, Kharkiv, Ukraine

Abstract

The paper presents an overview of the existing machine learning methods for solving the problem of gender classification of the authors of the written texts by names: substantiates the relevance of the research topic, analyzes the existing methods of solving the task and selects the direction of further research.

Keywords 1

Gender classification, supervised machine learning, methods of classification

1. Introduction

The problem of determining the gender of the authors of the Ukrainian corpora texts is of remarkable importance, since it enables increased functionality and improved performance, when using the corpora utilizing all of its functions. Due to the fact that the considered problem belongs to the area of classification problems, it can be solved using machine learning methods.

2. Machine learning methods for classification

A classification is the process of predicting the class of given data points. Classification requires machine learning algorithms in order to learn how to assign a class label to examples from the problem domain. In other words, during classification, a prediction is made for a class label for a certain example of the input data. A typical classifier uses a set of training data in order to understand how given input variables are related to a certain class [1]. Classification falls into the category of supervised learning, according to machine learning terminology, meaning that the learning occurs where a training set of correctly identified observations is available [2]. The analysis of works [1-3] showed that there are many classification methods for solving the task of determining (Fig. 1).

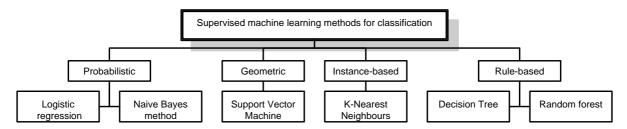


Figure 1: Supervised Machine Learning Methods for Classification

Comparison of the supervised machine learning methods for classification is presented in a more detailed way in Table 1 [1-3].

© 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

© **1**

COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021, Kharkiv, Ukraine EMAIL: shleykoa@gmail.com (A. Shleiko); borysova.n.v@gmail.com (N. Borysova); aliseiko@gmail.com (Z. Kochuieva); karina.v.melnyk@gmail.com (K. Melnyk)

ORCID: 0000-0002-8834-2536 (N. Borysova); 0000-0002-4300-3370 (Z. Kochuieva); 0000-0001-9642-5414 (K. Melnyk)

Table 1Comparison of the Machine Learning Methods for Classification

Method	Advantages	Disadvantages
Logistic	method is designed for this purpose	works only when the predicted variable
regression	(classification), and is most useful for	is binary, assumes all predictors are
	understanding the influence of several independent variables on a single outcome variable	independent of each other and assumes data is free of missing values
Naive Bayes	method requires a small amount of	if we have the combination of features
method	training data to estimate the necessary parameters, it's extremely fast compared to more sophisticated methods	sometimes we can't explain the dependence of the classification result on them
K-Nearest	method is simple to implement, robust	it needs to determine the value of K
Neighbours	to noisy training data, and effective if training data is large	and the computation cost is high as it needs to compute the distance of each instance to all the training samples
Decision	method is simple to understand and	it can create complex trees that do not
Tree	visualize, requires little data	generalize well, and decision trees can
	preparation, and can handle both numerical and categorical data	be unstable because small variations in the data might result in a completely different tree being generated
Random	reduction in over-fitting and random	slow real time prediction, difficult to
forest	forest classifier is more accurate than decision trees in most cases	implement, and complex algorithm
Support	effective in high dimensional spaces	method does not directly provide
Vector	and uses a subset of training points in	probability estimates, these are
Machine	the decision function so it is also memory efficient	calculated using an expensive five-fold cross-validation

As we can see, all the methods have both advantages and disadvantages. This must be taken into account when choosing the appropriate one or more methods.

3. Conclusions

After analyzing various methods of classification, it has been decided to use several supervised machine learning methods to solve the task of determining. This will provide an opportunity to compare the results of their work to choose the most fitting one.

4. References

- [1] A. Sidath, Machine Learning Classifiers, 2018. URL: https://towardsdatascience.com/ machine-learning-classifiers-a5cc4e1b0623
- [2] E. Alpaydin, Introduction to Machine Learning, third, 3rd. ed., MIT Press, Cambridge, MA, 2015.
- [3] R. Garg, 7 Types of Classification Algorithms. URL: https://analyticsindiamag.com/7-types-classification-algorithms/