С.І. Ющук, С.О. Юр'єв, В.І. Бондар, В.Й. Ніколайчук \*, С.Б.Харамбура

Національний університет "Львівська політехніка", кафедра фізики, \*Український державний технічний університет водного господарства і природозбереження

# ОПТИЧНІ ВЛАСТИВОСТІ ФЕРОГРАНАТОВИХ ЕПІТАКСІЙНИХ СТРУКТУР

© Ющук С.І., Юр'єв С.О., Бондар В.І., Ніколайчук В.Й., Харамбура С.Б., 2004

Ющук С.І., Юр'єв С.О., Бондар В.І., Ніколайчук В.Й. \*, Харамбура С.Б.

# ОПТИЧНІ ВЛАСТИВОСТІ ФЕРОГРАНАТОВИХ ЕПІТАКСІЙНИХ СТРУКТУР

© Ющук С.І., Юр'єв С.О., Бондар В.І., Ніколайчук В.Й., Харамбура С.Б., 2004

Досліджено оптичні спектри пропускання епітаксійних структур залізо-ітрієвого та залізо-галій-ітрієвого гранатів. Отримано залежності коефіцієнтів поглинання від довжини світлової хвилі у видимій і близькій інфрачервоній областях. На основі аналізу і обробки інтерференційних картин розраховано показники заломлення ферогранатових плівок і підкладок з галій-гадолінієвого гранату в широкому інтервалі довжин хвиль та товщини плівок.

Досліджено оптичні спектри пропускання епітаксійних структур залізо-ітрієвого та залізо-галій-ітрієвого гранатів. Отримано залежності коефіцієнтів поглинання від довжини світлової хвилі у видимій і близькій інфрачервоній областях. На основі аналізу і обробки інтерференційних картин розраховано показники заломлення ферогранатових плівок і підкладок з галій-гадолінієвого гранату в широкому інтервалі довжин хвиль та товщини плівок.

### Вступ

Удосконалення технології синтезу монокристалів і монокристалічних плівок ферогранатів та дослідження їх оптичних властивостей показали, що серед них є прозорі як в інфрачервоній, так і у видимій областях спектра. Виявилось, що деякі з цих прозорих магнетиків володіють достатньо високими рівнями магнітооптичних ефектів [1], що висунуло ці матеріали в перспективні для створення магнітооптичних мікроелектронних пристроїв [2]. Для успішного використання ферогранатових плівок в оптоелектроніці і оптичних сенсорних пристроях треба контролювати такі їх параметри, як товщини, коефіцієнти заломлення світла, оптичні пропускні і поглинальні здатності в широкому інтервалі довжин хвиль.

## Експеримент

Для вимірювання товщини і показника заломлення ферогранатових плівок найчастіше використовується оптичний інтерференційний метод. Інтерференційна картина утворюється під час вимірювання спектрів пропускання під час падіння світлового променя на зразок у напрямі, близькому до нормалі. У роботі спектри пропускання ферогранатових епітаксійних структур (плівка на підкладці) отримували за допомогою спектрофотометрів Specord M-40 і Specord 75IR. Причому, для плівок товщиною  $\leq 4$  мкм вимірювання виконувались у видимій і близькій інфрачервоній (ІЧ) областях на спектрофотометрі Specord M-40, а для плівок товщиною  $\geq 4$  мкм – в середній ІЧ області на спектрофотометрі Specord 75IR. З рис. 1 видно, що оптичні параметри можна визначити тільки в області прозорості підкладок, тобто при  $\lambda < 7$  мкм. Похибка вимірювань становила 0.1 % при визначенні показників заломлення і 2 % при визначенні товщини.

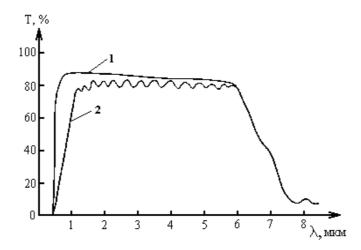



Рис. 1. Спектри пропускання світла:  $1 - підкладки з \Gamma \Gamma \Gamma$ ;  $2 - плівки 3 I\Gamma$ 

Для досліджень були вирощені монокристалічні плівки залізо-ітрієвого гранату (ЗІГ)  $Y_3Fe_5O_{12}$  і заміщеного галієм ЗІГ  $Y_3Fe_{5\cdot x}Ga_xO_{12}$  (x=0.1; 0.3; 0.5). Ферогранатові плівки вирощували методом ізотермічної рідкіснофазної епітаксії на підкладках з галій гадолінієвого гранату (ГГГ)  $Gd_3Ga_5O_{12}$  орієнтації (111) з розплавів гранатоутворюючих оксидів  $Y_2O_3$ ,  $Fe_2O_3$ ,  $Ga_2O_3$  і розчинника  $PbO-B_2O_3$ . Товщина плівок не перевищувала 10 мкм, а товщина підкладок становила 0.5 мм. Для епітаксійного вирощування використовували автоматизовану установку, в якій технологічними операціями керував комп'ютер. Точність підтримування температури в зонах печі становила  $\pm 0.1$ К.

### Теоретична модель

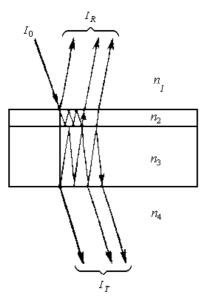



Рис. 2. Схематичний розріз системи плівка – підкладка і хід променів у ній

На рис. 2 показано схематичний розріз системи плівка—підкладка і хід променів у ній. Позначимо показники заломлення плівки і підкладки відповідно через  $n_2$  і  $n_3$ . За обмежувальні середовища приймемо повітря з показниками заломлення  $n_1=n_4=1$ . Для визначення показників заломлення підкладки і плівки необхідно виміряти спектральні залежності коефіцієнтів пропускання  $T_0$  чистої підкладки і T—системи плівка - підкладка.

Розглянемо випадок, коли на прозору підкладку нанесена слабко поглинаюча плівка. Коефіцієнт пропускання  $T_0$  чистої підкладки за умови, що товщина підкладки набагато більша від довжини хвилі  $(h_3 >> \lambda)$ , виражається формулою [3]

$$T_0 = \frac{2n_3}{n_3^2 - 1}. (1)$$

3 цієї формули розраховується показник заломлення підкладки  $n_3$ .

Коефіцієнт пропускання Т системи тонка слабко поглинаюча плівка-підкладка задається виразом

$$T = \frac{T_{31} \cdot T_{34}}{1 - R_{31} \cdot R_{34}},\tag{2}$$

де  $T_{31}$  і  $R_{31}$  — коефіцієнти пропускання і відбивання тонкого шару (плівки) при падінні світла на цей шар з підкладки. Ці коефіцієнти виражаються досить складними співвідношеннями [3].  $T_{34}$  і  $R_{34}$  — френелівські коефіцієнти, відповідно, пропускання підкладки і відбивання від однієї поверхні підкладки (межа розділу середовищ 3 і 4).

$$T_{34} = \frac{4n_3}{(n_3+1)^2}, \quad R_{34} = \left(\frac{n_3-1}{n_3+1}\right)^2,$$
 (3)

Співвідношення (2)–(6)  $\epsilon$  робочими формулами для визначення показника заломлення ферогранатової плівки  $n_2$  та її товщини  $h_2$ . Зрозуміло, що такі громіздкі розрахунки можна реально провадити тільки з використанням комп'ютера.

Показник заломлення плівки визначається за формулою

$$n_2 = 0.5(n_1 + n_3)\sqrt{c} \pm \sqrt{\left[(n_1 + n_3)\sqrt{c}\right]^2 - 4n_1 \cdot n_3},$$
(4)

де C — контрастність інтерференційного фільтра

$$c = \frac{T_{\text{max}}}{T_{\text{min}}}.$$
 (5)

Значення  $T_{
m max}=T_{
m max\; eкстр}+T_{
m max}'$  , а  $T_{
m min}=T_{
m min\; eкстp}+T_{
m min}'$  .

Значення  $T_{\max \text{ екстр}}$  і  $T_{\min \text{ екстр}}$  — максимальні і мінімальні значення коефіцієнтів пропускання на експериментальній кривій  $T(\gamma)$ , де  $\gamma$  — хвильове число. Величини  $T'_{\max}$  і  $T'_{\min}$  визначаються за формулами

$$T'_{\text{max}} = R_{34} - \left[ \left( 1 - T_{\text{max excrn}} \right) R_{34} \right]$$
 (6)

$$T'_{\min} = R_{34} - \left[ \left( 1 - T_{\min \text{ excrp}} \right) R_{34} \right].$$
 (7)

Після визначення показника заломлення плівки  $n_2$  по (4), її товщину знаходимо за формулою

$$h_2 = \frac{1}{4n_2(\gamma_{n+1} - \gamma_n)},\tag{8}$$

де  $\gamma_{n+1}$  і  $\gamma_n$  — хвильові числа сусідніх екстремумів  $T_{\max \text{ екстр}}$  або  $T_{\min \text{ екстр}}$  на кривій  $T(\gamma)$ .

#### Експериментальні результати та їх обговорення

Розрахунки показників заломлення ферогранатових плівок і підкладок та товщин плівок виконувались на ком'ютері. У табл. 1 наведені значення показників заломлення підкладки  $Gd_3Ga_5O_{12}$  для хвильового інтервалу від 0.5 до 5.167 мкм. Спостерігається незначне зменшення показника заломлення від 1.97 до 1.93 з ростом довжини хвилі (нормальна дисперсія). У табл. 2 наведені значення показників заломлення плівок ЗІГ і галій—заміщеного ЗІГ.

| λ, мкм | $n_3$ | λ, мкм | $n_3$ | λ, мкм | $n_3$ |
|--------|-------|--------|-------|--------|-------|
| 0.500  | 1.97  | 0.825  | 1.95  | 2.000  | 1.93  |
| 0.625  | 1.97  | 0.849  | 1.95  | 2.695  | 1.93  |
| 0.649  | 1.96  | 0.874  | 1.95  | 2.873  | 1.93  |
| 0.674  | 1.96  | 0.900  | 1.95  | 3.062  | 1.93  |
| 0.699  | 1.96  | 0.925  | 1.95  | 3.286  | 1.93  |
| 0.725  | 1.96  | 0.950  | 1.95  | 3.552  | 1.93  |
| 0.750  | 1.96  | 1.000  | 1.95  | 3.856  | 1.93  |
| 0.775  | 1.96  | 1.100  | 1.94  | 4.640  | 1.93  |
| 0.800  | 1.95  | 1.200  | 1.94  | 5.167  | 1.93  |

при різних довжинах хвиль

У наведених спектральних інтервалах значення показників заломлення ферогранатових плівок зменшуються з ростом довжини хвилі, тобто також спостерігається явище нормальної дисперсії. Отримані нами значення показника заломлення для  $Y_3Fe_5O_{12}$  добре узгоджуються з літературними даними. Наприклад, для  $\lambda$ =1,6 мкм за нашими даними n=2.23, а в роботі [7] — n=2.20. З порівняння даних з табл.2 видно, що заміщення частини іонів  $Fe^{3+}$  на іони  $Ga^{3+}$  зумовлює зменшення показника заломлення ферогранатових плівок. Зменшення показника заломлення при введенні в плівку ЗІГ іонів галію, очевидно, пов'язано з тим, що галій в основному заміщує іони заліза в тетраедричній підрешітці, які роблять основний внесок в поляризованість ЗІГ [5].

|                                | λ,      | 1.60 | 2.09 | 2.19 | 2.31 | 2.43 | 2.57 | 2.73 | 2.92 | 3.14 | 3.38 | 3.65 | 4.35 | 5.20 |
|--------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| $Y_3Fe_5O_{12}$                | MKM     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| ( <i>h</i> =5.1 мкм)           | $n_2$   | 2.23 | 2.22 | 2.21 | 2.23 | 2.22 | 2.23 | 2.23 | 2.23 | 2.17 | 2.18 | 2.15 | 2.14 | 2.12 |
|                                | _       |      |      |      |      |      |      |      |      |      |      |      |      |      |
|                                | λ,      | 1.57 | 2.07 | 2.14 | 2.25 | 2.38 | 2.51 | 2.83 | 3.25 | 3.50 | 3.80 | 4.62 | 5.04 | 5.62 |
| $Y_3 Fe_{4,5} Ga_{0,5} O_{12}$ | МКМ     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| ( <i>h</i> =7.2 мкм)           | $n_{2}$ | 2.08 | 2.06 | 2.07 | 2.06 | 2.06 | 2.06 | 2.06 | 2.05 | 2.05 | 2.04 | 2.04 | 2.04 | 2.05 |
|                                |         |      |      |      |      |      |      |      |      |      |      |      |      |      |

3 рис. 3 видно, що при збільшенні вмісту іонів  $Ga^{3+}$  зменшується значення коефіцієнта поглинання. Як встановлено в [6] на основі оптичних досліджень Ga-заміщених і Sc-заміщених 3ІГ, спостерігається загальна тенденція до зменшення поглинання при заміщенні заліза як в тетраедричних, так і в октаедричних положеннях.

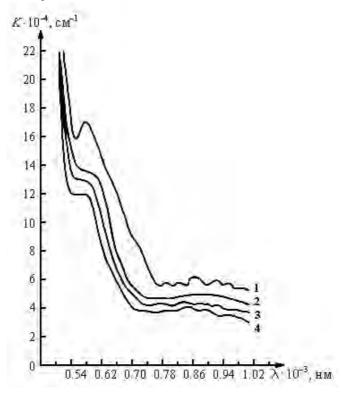



Рис. 3. Залежність коефіцієнта поглинання в плівках  $Y_3Fe_{5-x}Ga_xO_{12}$  від довжини світлової хвилі: 1-x=0; 2-x=0.1; 3-x=0.3; 4-x=0.5

Спектри поглинання ферогранатів у видимій і близькій ІЧ—областях в основному визначаються переходами, пов'язаними з октаедричними іонами  $Fe^{3+}$ :  ${}^6A_{1g} \rightarrow {}^4T_{1g} (\lambda = 0.9 \text{мкм})$ ,  ${}^6A_{1g} \rightarrow {}^4T_{2g} (\lambda = 0.7 \text{мкм})$  і тетраедричними іонами  $Fe^{3+}$ :  ${}^6A_1 \rightarrow {}^4T_1 (\lambda = 0.6 \text{мкм})$  і  ${}^6A_1 \rightarrow {}^4T_2 (\lambda = 0.52 \text{мкм})$ . Інтенсивність відповідних ліній поглинання, що відповідають цим переходам, зменшується при заміщенні октаедричних іонів  $Fe^{3+}$  іонами  $Sc^{3+}$  [6], або тетраедричних іонів  $Fe^{3+}$  іонами  $Ga^{3+}$  (рис. 3).

#### Висновки

Показано, що оптичний інтерференційний метод може бути успішно застосований для контролю товщини плівки і показників заломлення плівки та підкладки у ферогранатовій епітаксійній структурі. Товщину епітаксійних ферогранатових плівок до 10 мкм доцільно вимірювати саме інтерференційним методом як точнішм, порівняно з іншими методами. Точність вимірювання товщин плівок становить 2 %, показників заломлення плівки і підкладки – 0.1 %.

- 1. Kamada O., Minemoto H., Itoh N. // J.Appl. Phys. 1994. Vol. 75, №10. P. 6801–6803.
- 2. Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат. 1990. 320 с.
- 3. Рыков А.В. Спектрофотометрия тонкопленочных полупроводниковых структур. М.: Сов. Радио. 1975.-175 с.
- 4. Черемухин Г.С., Кириенко Б.В., Гурдин Е.К. // Оптико-механическая промышленность. 1976. №6. С.13—15.
- 5. Одарич В.А., Рубан В.А., Гульчук П.Ф.//Физ. тверд. тела. -1978. Т.20, №11. С.3477—3479.
- 6. Wemple S.H., Blank S.L., Seman J.A., Biolsi W.A// Phys. Rev. B. 1974. Vol.9, N = 5. P.2134-2144.
  - 7. Jonson B., Watson A.K.//Brit. J. Appl. Phys. -1965. Vol 16. -P.475.