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CucremMa NpuiHATTS pilleHb, sika 0a3yeThbesi HA HelipoHHil Mepexi Koxonena LVQ2,
Oysia BUKOpHCTAHA 1A Kiaacudikamii cTaTHCTHKHN BiIOUTKIB Bix MeTeopoJsiorivnnx 06’ €KkTiB.
Po3pizHsiioTh Misk co0o10 Tpu Kjaacu po3nogini: log-nopmanbmii, BeiiOyana i K.Data, saki
aHajizyBajanch 3 BUKopuctanaam L cmyrosoro paaapa. Iloka3ano, mo Bumipsini ammiityan
eK3eMILISApiB BiIOUTKIB, 3rifHO 3 KIacudikanicro, niaAnopaaKoByThCs po3noaiay BeiiGyna.

A decision system based on Kohonen LVQ2 neural network was used to classification of
weather clutter statistics. Three classes of distributions were distingished: log-normal,
Weibull and K.Data were observed using L. band radar. It was shown that the measured
clutter amplitude samples obey a Weibull distribution, according to the classifier decision.

Introduction

In radar signal processing an important problem is the suppression of clutter, which is defined [1] as
"confused unwanted echoes on radar display". Such waves, reflected for example from the ground surface,
sea waves, clouds or raindrops, make the detection of wanted (target) echoes more difficult or impossible.
The classification procedure allows to identify the radar clutter and it could considerably improve radar
detection performance [2].

The clutter classification is important not only in the classical radar systems but also in more
sophisticated applications, like meteorological radars or teledetection satellite systems. Many
identification techniques are used for the classification purposes: visual examination of radar display,
spectral analysis, autoregressive modelling, pattern recognition, amplitude distribution analysis,
parametric and nonparametric statistical decision rules and recently neural networks [3,4].

Our previous work [5] has demonstrated some successful results in introducing the Kohonen neural
network for distinguish between several classes of clutter statistics. The probability of correct decision of
the proposed classifier was evaluated for clutter samples, modelled with given Non-Rayleigh amplitude
distribution and different values of correlation coefficient.

In this paper the results of real data classification by using the mentioned Kohonen neural network
are presented. A brief review of the classifier structure is given in Section II. Section Il provides a
description of the experimental data, which represents weather clutter samples. The results, discussed in
section IV, allow to fit the Weibull model for observed data.

The neural network classifier

Kohonen neural networks are used mostly to the classification problems [2]. Fig. 1 shows the
classifier structure based on an LVQ2 neural network, presented and evaluated in [5]. In our work we
have concentrated on an LVQ2 architecture (LVQ stands for Linear Vector Quantization). The network
contains J nodes, each of them being a prototype vector (so called weight vector) w? of a j-th class. After
feeding the network with an input x, a winning node j* is calculated as the closest to the output such that

iwo) x| <|wo ] o

During the training phase, the classification of the input vector is apriori known, and the following
weight adjustment is performed after selecting the winner j*:
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wi":=wU" + n;x if the resulting class equals the expected 2)
wiH:=wl) —n,x otherwise 3)

where 1; and 1), are training factors, gradually decreased to provide convergence. In the recognition phase,
weight vectors w" are frozen and the class of the winner j* is reported as a result.
The LVQ2 network was employed as a part of the system given in Fig.1.
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Fig. 1. Clutter classifier system based on the Kohonen neural network

An input to the system is a vector x € R" of samples of a random variable; the output is the
decision, which distribution type it resembles mostly. The number J of classes the network can recognise
is predefined, there is no "don't know" class.

For each "suspected” distribution we calculate (in the block EST)) its parameters by their estimation
based on data input. Then we generate (in the block GEN;) a sample set of random variables with assumed
distribution and estimated parameters. Based on this we create the histograms (HIST;) of the generated set
of samples. The histograms are used to train LVQ2 network. Simultaneously, the block HIST creates a
histogram of empirical data with an unknown distribution. Finally, having presented the empirical
histogram as an input vector to the previously trained LVQ2 network we obtain the resulting class as an
answer.

Let an input to the system is a set X={X; ; i=1,...., N} of clutter samples with unknown amplitude
probability density function (APDF) p;. The otput is the decision which distribution class p; (=I....., J)
the radar clutter belongs to. The number J and type of APDF is predefined. In recent years non-Rayleigh
models have received much attention [6] and we assumed log-normal, Weibull or K-distributed models
(J=3). The APDF for these models are respectively
for log-normal:

1 —(In X —m)*
X)= ex 1
where X>0 and m, © are clutter distribution parameters,
for Weibull:
py(X)=ad(X)" " exp(—=6X*) )

where X>0 and o, d are clutter distribution parameters,
and for K-distributed:

28 (Bx Y’
X)y=———|—| K,,_(bX 3
p3(X) F(M)( 5 ) M—.\(ﬁ ) 3)
where X>0 and [, M are clutter distribution parameters, I" is the gamma function, K is the s-order
modified Bessel function.
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The estimators of distribution parameters, obtained by moments method, are
for log-normal:

Inx . 4

6= \/%i(lnx, —-m)’, (5)

for Weibull:
~ T
o= , 6
60 ©
o i
§ =exp(-2L _y), 7
p( N Y) (7

where m, & are given by (4) and (5) respectively,
for K-distributed:

A 2
p =2 | ~ ®)
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here m ! ix d E{x?] ! ixz
where m = — . an =— -
N N
For each of assumed APDF its parameters are estimated in the block EST, based on data input.
Then in the block GENy a sample set of random variable with distribution p, and estimated parameters is
generated. Based on this a histogram of the generated set is created in block HIST, . The histograms are
used to train LVQ2 network. Simultaneously the block HIST creates a histogram of empirical data as an
input vector to the previously trained network.

Experimental data

Weather clutter was observed using an L. band long range air-route surveillance radar (ARSR) of the
beamwidth 1.2 ©, pulsewidth 0.45 us, pulse-repetition frequency 500 Hz. Data were taken from the centre
of the rain-cloud in a range about 40 km. Each sample X; is a 12 bits word that represents clutter
envelope from one of the 64x64 resolution cells. Fig. 2 represents recorded clutter samples area.

Fig. 2. Recorded weather clutter area
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Fig. 3. Normalized autocorrelation of clutter samples (a) in range, (b) in azimuth

Fig. 3 shows the correlation properties of weather clutter in a range and in an azimuth. It must be
emphasized that the correlation between samples is comparatively high . The correlation coefficient, given

by
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(10)

var (X)

<(Xi B m)(Xi” B m)>alli
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3pocTaHHSl CKJIAJHOCTI CYyYACHHX iHTerpajbHHX cXeM MNPH3BOAUTH A0 3POCTAHHSA
BAJKJIMBOCTI Takux edeKTiB, 0 BHHHKAIOTH MiK 3’€IHAHHAMH, SIK 3ATPHMKH Ta nepexpecHi
3aBagu. Ili epexTH BU3HAYAIOTHCA MAPA3UTHHMH eJleMeHTAMH BiANOBiAHO 10 3’€AHYBAJIbHUX
JiHii. AHagi3y€ThCcsl BIJIMB reoMeTpH4HOi KoH(pirypauii mmu Ha napa3uthi emuocri. Jas
nboro 0yja BuBeaeHa opmyJia 1Jisl HOKPALIIAHHS TOYHOCTI EMHiICHHX MoJeIeii.

Increasing complexity of modern integrated circuits causes that importance of effects
occurring in interconnections, such as delay and crosstalk, grows. These effects are
determined by parasitic elements corresponding to the connection lines. In this paper we
discuss influence of geometrical configuration of the bus on parasitic capacitances. Suitable
formulas improving accuracy of capacitance models have been developed.

Introduction

Continuous progress in VLSI technology enables increasing of the circuits’ scale of integration.
Modern chips including millions of transistors become more and more complex and their area grows. As a
result, complexity of the net of conductive lines connecting devices in the subcells and leading signal
between the subcells rapidly grows too. In effect propagation parameters of the interconnections are even
crucial for performance of the circuit. These parameters strongly depend on values of parasitic elements
corresponding to the interconnection lines. For this reason availability of effective models allowing to
determine parasitic capacitances is indispensable for correct verification of the circuit.

In our previous works [1-3] we discussed some problems of interconnection capacitance modelling.
Numerical methods, used in such computer programmes as CAPCAL [4] and FastCap [5-7] are too time-
consuming for verification of large circuits, especially during statistical verification. For such purposes
empirical models have to be used. But existing empirical models [8-12] determine the capacitance values
basing only on line dimensions (width () and thickness (7)) and on spacing between the line and closest
neighbours (spacing between lines (S) and distance to the plane (H)). In our works we have shown this
approach is not justified for lines on one plane (Fig. 1). In such a case further lines intercept part of the
flux and influence the values of Caf (capacitance between the line and the plane) and Ccoup (capacitance
between the lines). It is less important for connections inside the subcells, because of their relatively low
lengths. But lines leading signal between subcells may be long (even several centimetres) and these effects
should not be neglected.
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