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Po3pobaeno imiTauiiiHy mMoaenb MeXaHiYHOI KOMIIOHEHTH NOBHICTIO Au(epeHUiliHOrO
emuichoro MEMC axkcesniepomerpa B cepenoBuiti MATLAB/Simulink. Moaens aae 3mory
MO/IeJIIOBATH TepeMillleHHs po00o4oi MacH, 3MiHy €MHOCTeil BUMipIOBaJLHUX KOHAEHCATOPIB
YyTJIUBOTO ejieMeHTa, YYTJIUBIiCTh MiKpoaaBaya BiJl MPUKJIAIEHOTO MPUCKOPEHHS, a TAKOXK
NPOBOIUTH YACOBMI1 aHAJII3 iIHTErPaJbHOr0 NPUCTPOI0 HA CHCTEMHOMY PiBHi MPOEKTYBAHHSI.

Kmiouosi cioBa: Mikpoenexkrpomexaniuni cuctemu (MEMC), noBHicTio audepenuiii-
Huii emHichnii MEMC akcenepoMerep, NPHCKOPeHHsI, MaTeMaTH4YHe MOJEJIOBaHHs, iMmirTa-
uiiiHa Moaeb, noseainkosuii anaiis, CAIIP, MATLAB/Simulink.

Simulation model of the mechanical component of the fully differential capacitive
MEMS accelerometer has been developed using MATLAB/Simulink environment. The model
allows to simulate movement of the proof mass, capacitance changes of the sense capacitors of
the senditive e ement, sensitivity of the sensor depending on the applied force of acceleration,
and to perform the transient analysis of the integrated device at the system level of computer-
aided design.
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Introduction

Micro-Electro-Mechanical systems (MEMS) are miniaturized integrated devices or systems which
combine electrical and mechanical components fabricated by using micromachining technologies.
Mechanical components are typically divided into sensors and actuators. The sensors convert a physical
action into an electrical signal. In the case of the actuators, they convert the electrical signal into some
physical actions. Nowadays, MEMS technologies are being developed very rapidly because of the high
demand for such devices in the different engineering areas. Some of such devices are acceleration sensors
(integrated microaccelerometers (MEMS accelerometers)). MEMS accelerometers play an important role
in the state-of-the-art technology. They are widely used in automobiles (air bag deployment systems, anti-
lock systems ABS, traction control, active suspension systems, anti-theft systems); consumer electronics
(inertial navigation, smartphones, tablets, laptops (free-fall protection systems for hard disk drives); sports
equipment (simulators, pedometers); geophysical application (earthquake monitoring systems); defense
industry (high-tech military gear and gadgets, airplanes, helicopters, unmanned aerial vehicles, ground-
based robotic systems), etc. [1].
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The important role in the design of such heterogeneous systems as MEMS accelerometers play
computer-aided design systems which allow to reduce the development time of integrated devices and their
cost. The analysis of the literature in the field of MEMS design and modeling, allows to say that the
creation of qualitatively new mathematical and computer models of the integrated devices to optimize their
design parameters and the technical characteristics is an actual problem [2-4].

I. Construction and mathematical model of the mechanical component
of the fully differential capacitive MEM S accelerometer
In Fig. 1 construction and mechanical parameters of the sensitive element (SE) of the fully
differential capacitive MEMS accelerometer are schematically shown. The core of the SE of the MEMS
accelerometer is a proof mass M, which is suspended by the spring elements with a spring coefficient K to
the frame.

Fig. 1. Schematic view of the SE of the fully differential capacitive MEMS accelerometer

Motion of the SE of the working mass can be described using Newton’s second law by the following

differential second order equation, as a system mass-spring-damper:
d?x _dx
dt_2+ DE—’_ Keff X(t) = Fext (t) = Maext (t) ) (1)
where M — proof mass, D and K¢ — damping and spring coefficients, Fe, — external inertia force, which
acts on the proof mass when the external acceleration appears aey.
The analytical solution of such inhomogeneous differential equation (1) will be the sum of the
solutions of the generic solution of its homogeneous differential equation x(t) and particular solution of the

differential equation (1) X,(t): x(t)=x.(t)+ X, (t).

Having the appropriate characteristic equation (M/12+D/1+ Keﬁ)eM:O for a homogeneous

—-D+,/D? - 4MK,,
2M '
If D2 —4MK >0, then the solution is a function of the form y = Ae® + Be (where A, B, a, f -
constants, a, f — negative), which reflects the short-fading process (duration depends on the damping time

constant a, f). This so-called inert review and meets great value D >> M (D? > 4MK 4 ), presents itself a

differential equation x.(t) and solving it we obtain the following roots: 4, , =

heavily damped system. If D®=4MK, , then the solution is a function of the form y = (A+Bt)e” (with
constants A, B, Ker, M), having regard to the critically damped system.

_D +4MKy —D?
For our oscillation system D?-4MK, <0, then ﬂi,zzzﬁi 2:\; i=axpfi. The
general solution will be: x, (t)=c,e® cos(t)+c,e”sin(St)=e™ (c,cos(ft)+c,sin(ft)), or
x(t) =ae” cos(fBt-¢), 2)
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where a=+A%+B? and ¢ — amplitude and phase shift of the movement of the SE. If w # B, then the
particular solution of the differential equation (1) we search using the following formula:
X, (t)= Acos(at)+Bsin(at).

(-M @A+ K A)cos(at) +(—M@’B+ K B)sin (at) = F, cos(at)

F .
cos(at): (—Ma)2+Keﬁ)A=Fo, A:Keﬁ_—(’sz; s|n(a)t):(—Ma)2+Keff)B=O, B=0
F F F
X (t)=——22—cos(at)=———2——cos(at)=——2——cos(at). 3
p() Keﬁ_Ma)z ( ) ( ) M(wg_wz) ( ) ()

M (Keff _wzj
M
Thus, the final solution of the differential equation (1) at w # g will be the following:

x(t) =ae™ cos(ﬂt—(p)+%cos(a)t). 4
M (a)o - )
If w = B, then the particular solution of the differential equation (1) has the following form:
X, (t) = Atcos(ayt) + Btsin (ayt)

(-M@§ + Ky ) Atcos(at)+(—M@f + K ) Bsin(at) +2M a, B cos(at) — 2M a, Asin (at) = F, cos ()

2
K K
~M @ + K =—M[ n;ﬁ] + K =—M( I\;“JJrKeﬁ =0

2M @,B cos(at)— 2M @y, Asin(at) = F, cos(at)

cos(at): 2Ma,B=F,, B=2'\|/:|° ; sin(at): 2Ma,A=0, A=0

Wy
X, (t)= il tsin(ampt). (5)
P 2M @,
So, the final solution of the differential equation (1) at w = # has the following form:
F
x(t) = ae™ cos( Bt — )+ ——tsin(awpt) . 6
(1 (A=) + gtotsin(an) ©

The effective spring coefficient of the spring suspension system of the accelerometer SE (Ke) can be
calculated by the formula:

Keff =K

mechanical — Kelectrical : (7)

The mechanical and electrical spring coefficients can be calculated by the formulas:

wh? V2
Kmechanical = GEXh(Tj J Kelectrical = Cs W J (8)

where E, — Young’s modulus; h, w and | — thickness, width and length of the spring element, respectively;
Cs — nominal rest capacitance between moving and fixed electrodes of the proof mass at the initial distance
between them d; V — voltage applied to the measuring capacitor. MEMS accelerometer is designed taking
into account that Kelectrical << Kmechanical-

The air-damping coefficient D can be calculated by the following formula [4]:

3
D= Nl ot Ie (%j ) (9)

where n - total number of the comb-drive electrodes; U — effective air-viscosity coefficient
(1,839x10° Pa-s); he and I, — height and length of the comb-drive electrode, respectively.
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The MEMS accelerometer, which is designed, has the fully differential topology, it means, that there
are four sense capacitors Cg, Cs,, Cs3, Cg4 in the single node of the proof mass.

Cq,=(C,£AC,)/4, (10)

where Cs — nominal rest capacitance and 4Cs _the change of the nominal capacitance of the microsensor.
Under the action of the external acceleration, the proof mass begins to move along the sensitivity axis with
respect to the moving frame of reference (X =Y — Z) which leads to the change of the distance between its
electrodes and the neighboring fixed comb-drive electrodes of the SE. This movement of the proof mass
can be measured as small changes of the capacitances between the movable and fixed electrodes of the
integrated device.

If a, = 0, then capacitances of the sense capacitors are equal and calculate them by the formula:

Cy=C,,=Cy,;=C, =Ase/d=C,/4, (11)

where A, — area of the sense electrode formed by comb-drive electrodes; d — distance between comb-drive
electrodes (plates) of the capacitor; ¢, — dielectric permeability of the environment between the capacitor
electrodes; &, — dielectric permeability of vacuum (8,8541x10*% F/m).

If a.; # 0 and 4d << d, then the capacitance change of the sense capacitor can be obtained from the

formula:
1 1 Ad
ACS =Csl +Cs4 _CSZ _CS3 = Zpbgrgo(d _Ad - d + Ad j:CsT (12)
and the capacitances of the capacitors from the formulas:
C,=C,, =(C,+AC,)/4 C,, =C,;=(C,—-AC,)/4, (13)

K Ky - M
where @, :1/ I\jlﬁ =2rf, and quality factor Q :JeﬁT . When the frequencies are much lower then

the resonant frequency (w<<wo), movement x = a,, /@ , which leads to the sensitivity S,:

x 1 (14)

2

Qo Wy

This ratio determines the sensitivity dependence on the bandwidth of the microsensor: the low

resonance frequency leads to large displacements, and thereby the high resolution limit the bandwidth of

the microsensor. But usually, the lower border of the resonant frequency is limited by many factors, such

as resistance to the mechanical shock, the lowest coefficient of elasticity, the most effective mass,
manufacturing technology.

From (12) and (14) the capacitance sensitivity of the accelerometer can be calculated by the formula:

A
5, =8C G M _GC 1 (15)
aext d Keff d wO
Brownian noise equivalent of acceleration (BNEA) can be obtained by the formula:
2 4k, TD
BNEA~ % _V¥aTD _ [4keTay (16)
Af M MQ

Another limiting factor is the electrical circuit noise equivalent acceleration (CNEA), which depends
on the capacitive resolution of the interface circuit (4Cy,) and the capacitive sensitivity of the
accelerometer S, (S, = 4Cs/aey), and which can be defined by the formula:

CNEA = ACmin (17)
S
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For ana = 5g and maximum displacement Xyax = 50 nm (10 % of capacitive gap in 0,5 mxm), we find
the resonant frequency f, = 5 kHz respectively to (4). Respectively, values of M, and K¢z we calculate at
the constant f,. M = 9,011x10™ kg, K¢ = 0,889 N/m, i D = 28,287x10° Ns/m. Finally, total noise
equivalent of the acceleration (TNEA) is:

TNEA = /BNEA? + CNEA? . (18)
The sensitivity of the system we can calculate from the following formula:
s, = You _ Ky (19)
At @

. . c,-C, C,-C
where Vo, — output voltage which we obtain from the formula V,, =V, | =L—2 - =83 _=s4 | '\ —
Csl + Csz Cs3 + Cs4
modulation voltage.
The minimum sense acceleration ai, can be obtained from the total incoming accelerometer noise,
including noise from mechanical microsensor from (16) and electronic noise from the interface circuit
from (17). The maximum sense acceleration a,., we can obtain from Ad..

a_ —Ad_ -af. (20)

1. MATLAB-Simulink modédling of the mechanical component
of the fully differential capacitive MEM S accelerometer
In Fig. 2 the developed MATLAB-Simulink model of the mechanical component of the fully
differential capacitive MEMS accelerometer is shown.

Fig. 2. Simulink —model of the mechanical component
of the fully differential capacitive MEMS accelerometer
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In Fig. 3, 4 the smulation results of the motion and response of the SE of the proof mass under the action
of the sinusoidal accderation with the amplitude of 5 g are shown. In the chart it can been seen that the
movement of the proof massis in the range from -50 nm to 50 nm. In Fig. 5 the transient movement of the proof
mass under the influence sustainable acceleration 5 g is shown. The graph in Fig. 6 shows the speed of response
and SE operating mass transition to a new equilibrium under the the action of acceleration 5 g. Fig. 7 showsthe
dependence of the movement of the proof mass of the SE of applied acceleration in the range of + 5 g. The
graphs in Fig. 8 show the capacitance change of the sense capacitors at the acceleration 5 g, which is within
627.8 ... 629.2 fF. In Fig. 9 the smulation of the output voltages of the microsensor at the sinusoidal change of
the acceleration with the amplitude of 5 g. In Fig. 10 dependence of the capacitive sensitivity of the microsensor
a the change of the resonant frequency of the SE in the range of 5 to 100 Hz at the different values of the
nominal capacity. From the obtained results it can been seen that for such defined design parameters of the
mechanica component of the fully differentid capacitive MEMS accelerometer high-precise circuits for
processing such small changes of the output signal's are needed.

Conclusion

The simulation model of the mechanical component of the fully differential capacitive MEMS
accelerometer has been developed using MATLAB/Simulink environment. On the base of the developed
model the behavioral simulation of the SE of the fully differential capacitive MEMS accelerometer has
been conducted. From the obtained simulation results the relationship graphs are depicted and analysis of
the static and dynamic characteristics of the SE of the MEMS accelerometer such as. movement
parameters of the proof mass, change of the output sense capacitances of the SE, sensitivity of the SE
depending on its construction parameters has been conducted.
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