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Abstract: The mahematicd modd of a
synchronous machine developed by means of the
authors method of average voltages on an integration
step is described. This modd is formed in phase
coordinates and takes into consideration non-linearity of
a magnetization characteristic. The features of the
mathematicd model developed are high cdculation
performance and numerical stability that enables the
developed model to be used for real-time modding of
complicated electrical power systems. The described
mathematical model has been used asa part of the real-
time mathematical model of the dectric power
generation system of South-Ukrainian Nuclear Power
Plant. The computer simulation results are presented.
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1. Introduction

The area of application of mathematica modding
methods is congantly expending. Today, mathematical
models are being used not only to anayse complicated
eectrica engineering systems but aso to control and
diagnose them. Hybrid modes have good prospects for
being applied since they combine mathematical (digitd)
models and physical objects. Such models can be used for
solving the whole complex of tasks rdated to the analysis of
operating regimes, diagnogtics and tuning of contral
sysems, training of maintenance gaff. In this case, the
mathematical models must work in real-time mode and,
also, be characterized by high calculation performance and
numerical stability. The devd opment of such mathematical
models for the elements of dectrical engineering systems,
in particular for synchronous machines widdy used in
power sysems, isof interest at thistime.

2. Statement of problem

There are known mathematical models of synch-
ronous machines in phase coordinates that take into
consideration non-linearity, asymmetry of windings,
influence of damper system [1, 2]. Such models, together
with the models of semiconductor converters and other
typical component elements, can be used for the creation

of computer models of complicated eectrical power
systems. However, they require a considerable amount
of calculations on the integration step, accuracy and
numerical stability being largely determined by the
chosen method of integration. This complicates their
application in control systems and hybrid models, which
must function in areal-time mode.

Simpler models in orthogona coordinates provide
high performance of calculations but they have a limited
area of application because of lower completeness of
description, and impossibility of asymmetry realization.

Consequently, it is vital to develop mathematical
models of synchronous machines that would combine
high description completeness inherent in the models in
phase coordinates, and would require a diminished
amount of calculations.

In order to increase the performance of computations
and to provide real-time calculations, such modds must
allow long-term calculations at a greater integration step.
Thisarticleis concerned with the crestion of such modds.

3. Synchronous machine equations

Let us consider a nonsdient pole synchronous
machine (SM) without taking into account the influence
of rotor damper circuits.

Let us present each phase of SM's dtator as an
electric branch as shown in Fig. 1.

Fig. 1. Electric branch of a SM's stator.

The value of equivalent inductance can be found by
the transformation from the known equivalent circuits of
SM in dg-axes as

2
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where Lg = Lyg + L -
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In order to take into consideration the non-linearity
of a magnetization characteristic, the inductance Ly is
defined as a function of magnetization current.

Thee.m.f. in SM's gator phases electric branches are
determined as
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where r'; is the resistance of a fiedd winding

referred to the stator winding; ug¢a, Ugg, Usc are the

projections of excitation voltage on the stator’s winding
axis, which are determined as:
Ufa = U'f COS(Q),
Ufg = U't CcOS(g—T), )
Ufc = U'g cos(g+r).

r=2p/3, u'y stands for the excitation voltage,

referred to the stator winding; isa.ig.ifc ae the

projections of an excitation current on the stator winding
axis; wr represents the angular speed; z, is the number

of pole pairs.
The flux linkage of the stator's phasesin (1) will be
equal to:
Y o= Lagla + Lgia,
Ye = Lals + Ly, ©)
Y ¢ = Lagle *Lyic-

The currents of stator and rotor windings are

determined through the following differential
equations
di, u,te,-r, dig Uugteg-rgig
ot Ls "ot Ls
di. u.+e. - rci
—~Cc _-cC C c'C , (4)
dt Lg
din _en Lagdin ds_ €5 Ly dig
dt L, Ly ot dt L, Ly dt
di L di
i:i_ﬂ_c_ (5)

The el ectromagnetic torque of SM will be equal to:

Z
_ p . i . i . i
Mau _E(y A('fc 'fB)+y B('fA 'fC)+yC('fB 'fA))-(B)
The rotation speed of SM is determined by using the
equation below:

dwg _ Mgy - Mg
dt J
where M, isthe external torque.

: (")

4. The algebraization of SM's equations based on
the method of aver age voltages on an integration step

For the agebraization of SM's equations, let us use
the method of average voltages on an integration step
that is notable for its stahility and high accuracy, even at
alargeintegration step value[3].

According to this method, the equation for eectric
branch that contains the source of e.m.f., inductance,
capacity and resistance is written as

1 t0+|1

— ¢ (ute-ug-uc-u )dt=0, (8)

fo

where u, € Ug, Uc, U represent the instantaneous
values of the applied voltage, em.f., voltages on
resistance, ided capacitor and inductance, t; stands for
the time value at the beginning of an integration step,
Dt denotes the integration step value.

Having integrated (8), the following eguation has
been obtained:

U+E-Ug-Us-U, =0, 9)
where
lt0+Dt lt0+Dt
U = — ) >dt, E:_ s >dt1
ot J ot &

to+Dt

e >dt,
to

1 bt 1
U,=— @ >dt,U.=—
R~ oy dlr c o

to

1
Up :E(Yryo)

are the average values of the applied voltages and the
voltages on the branch elements, respectively; y gy 1
stand for the flux linkages at the beginning and at the
end of an integration step.

The instantaneous values of the voltages on the

resistance and capacitor is presented as
UR:URO"'DJR! UC:UCO"'DJC! (10)

where Ugq,Us, are the values of voltages at the
beginning of an integration step:
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11
S (R ()
represent the increments of these voltages beginning
from t >ty;

k k
d( )URO d( )UCO
a7 )
the voltages at thetime moment t =t;.

When analysing, it is necessary for currents, voltages
and flux linkages to be calculated at the end of an
integration step. For this purpose, the character of a
current curve should be defined within the integration
step. It can be a straight line, a parabola, or an m-order
polynomial in general. In this case, the increment of the
current on the integration step will be equal to:

are the k-order derivatives of

m otk dig
Di=ij-ig= § —%——~~. 12
1°'0 ha Kl dt(k) ( )
With (12) being taken into consideration, the
dependences between the derivatives of voltages and
currents are as follows:

d(k)uco _i\,d(k-l)io
a®) C gD
On the basis of (10) — (13) in [1], an equation for the
branch has been obtained, The equation contains such
unknowns as the branch current a the end of the
integration step i1 and the average value of the applied
voltage U on the step:

(13)

@R Dt 2- (m+1)(m+2) Loo
—o -

E-
VU bR oot e e ) (med) Dt

mleepyk k., ok [m)(m+2) - (k+1)(k+2) &d ()

fllé(kﬂ)u mL Clk+2) (m+)(m+2) rad()
& R Dt Lt
Eme1 C(meg(me2) 05T o

where igis the branch current at the beginning of the
integration step; Ly, Ly arethe branch inductances at the

beginning and a the end of the integration step, m
represents the order of a polynomial by which the
current curve is described on the integration step (order
of method); Dt stands for the integration step value.

As an example, in accordance with the 2™-order
method of average voltages on an integration step, an
electric branch that contains resistance R, inductance L
and em.f. isdescribed by the following eguation

aR io
§3 o

Having applied equation (15) to the SM's model, we
shall obtain the following eguations for the SM's stator
(indexes 0 and 1 correspond to the variable value at the
beginning and at the end of the integration step
respectively):

R[I dlo aR Ll 0

6 at %3 Digt 1=0.(15)
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The average values of e.m.f. on an integration step
are defined as

dADt eBDt
Epn=€epg+—=—, Eg = +—B =
AT B = €Bo i 2
de: Dt
=g F—C — 17
Ec =eo pr— (17)

The derivatives of e.m.f. in the stator phaseswill be
determined from (1):
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aslurc 3 difC L ZVResy g dy a0 0
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where the derivatives of excitation current projections on
the stator winding axis are determined from (5); the
derivatives of stator flux linkage will be equal to:

d A dia L dii
d Ao " ar
dyg . di digg
@ et @
dy ¢ dic dic

A ORIl O .
d ot dt
the derivatives of excitation voltage projections on the
stator winding axis, according to (2):

dqu du’ f

T_Tcos(g)- ZpWrU't Sin(g),

du du’

%-d_tfcos(g- r)- zowgu's sin(g- r), (20)
du du’ .
%_d_tfcos(gﬂ ) ZWRU'¢ sm(g+r )

The projections of an excitation current on the
stator winding axis at the end of an integration step are
determined from the formulas below:

ifag =iga0 * LA Dt - L_('Al' in0)
ad ff
E

'fBl"fBO+LB Dt'_(lBl'lBO) (21)
ad f
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5. Thealgorithm of equation solving

The algorithm for solving mathematical model
equations on an integration step is as follows.

1. The projections of an excitation voltage on the stator
winding axis U, Usp,Usc ae determined from (2); the

flux linkage of dtator phasesy 4.y gy ¢ ae determined

from (3) based on the values of gator and fidd currents at
the beginning of an integration step; the em.f. in the Sator
phases e, e, e~ aedetermined from (1).

2. The derivatives of stator currents are determined

from (4).

3. The electromagnetic torque of SM is determined
from (6)

4. The derivative of SM’s rotation speed is
determined from (7).

5. The derivatives of excitation current projections
on the stator winding axis are found from (5).

6. The derivatives of stator flux linkage are obtained
from (19), and the derivatives of excitation voltage
projections on the sator winding axis are determined
from (20).

7. The derivatives of stator e.m.f. are determined
from (18).

8. The average values of the stator e.m.f. on an
integration step E 4, Ep, E- are determined from (17).

9. The values of stator currents ipq,igy,ic7 @ the

end of an integration step are determined from (16).
10. The projections of an excitation current on the
stator winding axis iag.itg1,i5c1 e determined from

(21) (the amplitude of these currents is equal to the
excitation current).

The input computationa informetion includes voltages
applied to the dator phases values of the variables at the
beginning of an integration Sep, €ectromagnetic parameters,
an externd torque on the shaft of SM.

5. The model application results

The described mathematiical modd of a synchronous
machine has been used for the mathematicd modeling of
pardld-working turbogeneraors SG2 and SG3 as part of the
mathematical modd of the dectric power generation system
of South-Ukrainian Nucler Power Plant (Fig. 2), which
containsthree 1000 MW turbogenerators SG1, SG2 and SG3
operating in pardld. Thenomind data of the turbogenerators
ae |,= 26.7 kA, U, = 24 kV, cosj , =0.9.

The excitation system of the turbogenerators contains
a brushless exciter (the excitation systems of the
turbogenerators SG2 and SG3 are not shown in Fig. 2).

The mentioned mathematica modd of the € ectric power
generdion system of South-Ukrainian Nudear Power FRlant
works in a red-time mode as part of the digitd diagnodic
complex designed for the tegting and diagnostics of real
excitation sysems by connecting the physical exdtation
system to the red-time computer model of a power unit;
tuning of excitation controllers and protection systems;
andysis of turbogenerator's operating regimes and detection
of reasons for abnormal Situations; training of maintenance
saff of apower plant (worksasatrainer) [4].

TG2 TR2 30K

TR3

&

e TRe TEW

S

Fig. 2. Thefunctional scheme of an electric power generation
system: EX — brushless exciter; TR1 —input transformer of the
main generator's excitation system; TR2, TR3, TR4 —generator

trandormers, AT — autotransformers, EC — exditation controller.
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The features of the implemented in the DDC model
of an electric power generation system are as follows:
taking into consideration the non-linearity of eectric
machines (modelled in phase coordinates) and
semiconductor converters (every thyristor (or diode) is
replaced by the branches with resistance and
inductance); taking into consideration the asymmetry
and interferences between all component parts; the
possibility of mode’s interacting with real physical
equipment through anal ogue and discrete sgnals.

A necessity of applying superfast mathematical
models of generators operating in paralle is explained
by the necessity of increasing the speed of computation
and providing the continuos rea time model operation
for along period of time (for about twenty-four hours).

Figures 3-6 depict the Smuldtion results in the form of
time dependencies of variables for the regimes of initia
excitation of the synchronous generator TG2, its connection
to apower network and loading by active power.

Fig. 3. Sator phase voltage of TG2 inthe regime
of initial excitation.
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Fig. 4. Excitation current of TG2 during theinitial excitation,
connecting to a power network and loading by active power.

Fig. 5. Sator currents of TG2 during theinitial excitation,
connecting to a power network and loading by active power.
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Fig. 6. Active and reactive output power of TG2 during
theinitial excitation, connecting to a power network
and loading by active power.

Fig. 7 shows a computation oscillogram of reactive
power on the outputs of TG1 and TG2 for the regime of
output reactive power redistribution between the
generators as the result of increasing TG2's voltage set
point. The results demonstrate that with the reactive
power on the output of TG2 increasing, the reactive
power generated by TG1 is reduced. The vaue of
reactive power is determined by the value of voltagein a
power line and the voltage set point signals in the
excitation controllers of the generators.

Fig. 7. Computation oscillograms of reactive power
redistribution between TG1 and TG2.

6. Conclusion

The developed mathematicll model of a
synchronous machine is notable for a diminished amount
of calculations on an integration step and, a the same
time, keeps al the advantages of the mathematical
models in phase coordinates.

The use of the method of average voltages on an
integration step for the creation of this mathematical
model provides high numerical gability, possibility to
increase the step value resulting in high computational
accuracy. This substantially enhances computation
performance of the model and provides good prospects
of using it in real-time systems.

References

[1] O. G. Pakhtyna, Mathematical modeling of dectro-
technical systems with semiconductor converters.
Lviv, Ukraine, 1986. (Russian)



100

(2]

(3]

[4]

A. S Kutsyk, “The object-oriented mathematical
model of a synchronous machine’, Teoretychna
elektrotekhnika, no. 58, pp. 120129, Lviv,
Ukraine, 2005. (Ukrainian)

O. G. Plakhtyna, “The digital one-step method for
simulation of eectric circuits and its use in
electromechanical tasks’, Visnyk NTU “KhPI”,
no. 30, pp. 223-225, Kharkiv, Ukraine. 2008.
(Ukrainian)

O. Rakhtyna, A. Kutsyk, M. Malcev, and V. Chumak,
“Theanayss of dynamics of paralld operation of the
South-Ukrainian  Nucler Power Station turbo-
generators by using mathematical modelling method”,
Elektromekhanichni i enerhozberihayuchi  systemy,
val. 19, no. 3, pp. 342-344, Kremenchuk, Ukrane,
2012. (Ukrainian)

MATEMATHYHA MO/JEJIb
CUHXPOHHOI MAIIIMHHA
HA OCHOBI METOAY CEPEJHIX

HAIIPYT HA KPOLI IHTEI'PYBAHHA

Owmensa [Tnaxtuna, Aunpii Kymmk

Onwucano MaTeéMaTu4Hy MOZCIJIb HESIBHOIOJIIOCHOI CHHX-

Omeljan Plachtyna, Andriy Kutsyk

MaremaTH4Hy MOZENb CTBOPEHO Yy (asHMX KoopAMHATaxX 3
ypaxyBaHHAM HENiHIHHOCTI XapaKTepUCTUKN HaMarHiuyBaHHS.
OcobnuBicTio 1i€l Mozeni € ii BUCOKa IBHUAKOAISA Ta YHUCIOBA
CTIHKiCTh, IO Ja€ 3MOry BHMKOPHCTOBYBaTH il misi Mare-
MAaTUYHOrO MOJENIOBAaHHA B pEaJbHOMY 4Yaci CKJIaJHUX
€JICKTPOTEXHIYHNX CHCTEM.
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