Jak widać, uzyskano dobrą zgodność zmierzonych i obliczonych charakterystyk przetwornicy BUCK z rozważanym regulatorem. Wyniki obliczeń w programie SwitcherCAD i SPICE praktycznie pokrywają się. Z kolei różnice pomiędzy wynikami pomiarów i symulacji zarówno z zamkniętą, jak i otwartą pętlą sprzężenia zwrotnego nie przekraczają 12 %. W symulacjach potwierdzono dużą szybkość wykonywania obliczeń przez program SwitcherCAD. Przykładowo, wykonanie analizy stanów przejściowych układu aplikacyjnego rozważanego regulatora z otwartą pętlą sprzężenia zwrotnego w przedziale czasu 0 do 30ms w programie SPICE zajmuje 10408s, natomiast w programie SwitcherCAD tylko 861s. Tak więc obliczenia w programie SwitcherCAD są wykonywane 12-krotnie szybciej.

1. Górecki K., Zarębski J., Posobkiewicz K. Elektrotermiczny model regulatora LT1073 dla programu SPICE. Artykuł w przygotowaniu. 2. LT1073 – Micropower DC/DC Converter Adjustable and Fixed 5 V, 12 V. Linear Technology corporation, 2000. 3. LTspice/SwitcherCADIII. Linear Technology. <u>http://www.linear.com/software</u>. 4. Posobkiewicz K., Górecki K., Zarębski J. Modelowanie scalonego stabilizatora impulsowego w programie SPICE. VIII Konferencja Naukowo-Techniczna Zastosowanie Komputerów w Elektrotechnice ZKwE'2003, Poznań, 2003. – T. 1. – S. 337. 5. Zarębski J., Górecki K., Posobkiewicz K. Modelling temperature influence on the characteristics of the monolithic voltage regulator LT1073 in SPICE. 10-th International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2003, Łódź, 2003. – P. 342. 6. Zarębski J. Modelowanie, analiza i pomiary przebiegów elektrotermicznych w elementach półprzewodnikowych i układach elektronicznych. Prace Nauk. WSM w Gdyni, 1996.

> Janusz Zarębski, Krzysztof Górecki, Piotr Jasicki Gdynia Maritime University, Department of Marine Radioelectronics, POLAND

MODEL TRANZYSTORA COOLMOSC2 DLA PROGRAMU SPICE

© Zarębski Janusz, Górecki Krzysztof, Jasicki Piotr, 2003

In the paper a new class of power unipolar transistors called CoolMOSC2 proposed by Infineon Technologies is considered. The detailed form of this macromodel of the considered device for SPICE is presented. The usefulness of this macromodel has been tested on the example of SPP07N60C2 transistor. The selected SPICE characteristics have been compared with the results of measurements.

Wprowadzenie. W układach impulsowego przetwarzania energii kluczowe znaczenie mają obecnie tranzystory MOS mocy z uwagi na ich znakomite właściwości statyczne i dynamiczne.

W segmencie wysokonapięciowych tranzystorów MOS mocy ($U_{BR} \le 1000V$) duże nadzieje można wiązać z pojawieniem się na rynku w 1998 roku nowego produktu firmy Infineon Technologies – tranzystora CoolMOS [1].

Jak wynika z dostępnej literatury [1–5], tranzystor CoolMOS jest intensywnie udoskonalany. Cechą charakterystyczną pierwszej generacji omawianych tranzystorów CoolMOSS5 (1998) było radykalne zmniejszenie rezystancji R_{ON}, druga generacja CoolMOSC2 (2000) legitymowała się zmniejszeniem ładunku bramki, a stąd skróceniem czasów przełączeń, natomiast w trzeciej generacji CoolMOSC3 (2001) osiągnięto istotne zwiększenie transkonduktancji i jeszcze lepsze właściwości impulsowe przyrządu.

Dla wszystkich generacji tranzystorów CoolMOSC2 zostały opracowane przez firmę Infineon makromodele tego elementu przeznaczone dla programu SPICE [6]. Różnice między tymi modelami dotyczą sposobu uwzględniania temperatury. I tak dla modelu Level 1 jest to ustalona temperatura, jednakowa dla całego elementu, w modelu Level 2 ustaloną temperaturę można przypisać poszczególnym fragmentom konstrukcji tranzystora, natomiast w modelu Level 3, poprzez dodanie obwodowej postaci modelu termicznego możliwe jest wyznaczenie czasowego przebiegu temperatury wnętrza tranzystora różniącej się od temperatury otoczenia na skutek zjawiska samonagrzewania.

W pracy przedstawiono model Level 1 tranzystora CoolMOSC2 oraz dokonano oceny jego dokładności poprzez porównanie wyników symulacji z wynikami pomiarów dostępnymi w katalogu, dla tranzystora SPP07N60C2.

Postać modelu. Zaproponowany przez Infineon Technologies macromodel tranzystora CoolMOSC2 na poziomie Level 1 ma postać obwodową przedstawioną na rys. 1.

Rys. 1. Reprezentacja obwodowa makromodelu

Głównym elementem makromodelu jest sterowane źródło prądowe G_G1 opisujące zależność prądu drenu od napięcia sterującego, którego wydajność opisana jest zależnością

$$I_{G1} = \begin{cases} I_{g} \left(\frac{\sqrt{1 + 4 \cdot a1 \cdot u_{DS}} - 1}{2 \cdot a1}, u_{GS}, T_{j} \right) & dla \ u_{DS} > 0 \\ I_{g} \left(-u_{DS}, u_{GS}, T_{j} \right) & dla \ u_{DS} < 0 \end{cases}$$
(1)

gdzie u_{DS} oraz u_{GS} oznaczają odpowiednie napięcia dren-źródło oraz bramka-źródło, T_j jest temperaturą elementu równą sumie parametru Tref oraz temperatury analizy podanej w instrukcji TEMP, natomiast funkcja $I_g(u_{DS}, u_{GS}, T_j)$ opisana jest wzorem

$$I_{g}\left(u_{DS}, u_{GS}, T_{j}\right) = \frac{W}{L} \cdot \frac{C_{oxi} \cdot g2}{\left(1 + \text{theta} \cdot \left(u_{GS} - V_{TH}\right)\right)} \cdot \left(\frac{T_{j}}{T}\right)^{-1.5} \cdot I_{3}$$
(2)

w którym temperaturowa zależność napięcia progowego V_{TH} ma postać

$$V_{\rm TH} = V th - auth \cdot (T_j - T).$$
(3)

Występująca we wzorze (2), mocno rozbudowana funkcja I3 dana jest w postaci

$$I_{3} = \begin{cases} ble \ dla \ k101 < \frac{u_{GS} - V_{TH}}{psi} < k102 \\ I_{1} \ dla \ \frac{u_{GS} - V_{TH}}{psi} < k101 \\ I_{2} \ dla \ \frac{u_{GS} - V_{TH}}{psi} > k102 \end{cases}$$
(4)

gdzie

$$ble = \left[3 - 2 \cdot \left(\frac{u_{GS} - V_{TH}}{psi} - k101\right)\right] \cdot \left(\frac{u_{GS} - V_{TH}}{psi} - k101\right)^2 \cdot (I_2 - I_1) + I_1$$
(5)

$$I_{1} = \begin{cases} \frac{psi^{2}}{4 \cdot c} \cdot exp\left(\frac{u_{GS} - V_{TH}}{psi} - 1\right) & dla \ 0 < u_{GS} - V_{TH} < psi \ oraz \ u_{DS} > \frac{psi}{2 \cdot c} \\ \frac{psi^{2}}{4 \cdot c} \cdot exp\left(\frac{u_{GS} - V_{TH} + (u_{GS} - V_{TH})^{3}}{psi} - 1\right) & dla \ u_{GS} < V_{TH} \ oraz \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(psi - \frac{u_{GS} - V_{TH}}{2} \right) \cdot exp\left(\frac{u_{GS} - V_{TH}}{psi} - 1\right) & dla \ u_{GS} > V_{TH} + psi \ oraz \ u_{DS} > \frac{u_{GS} - V_{TH}}{2 \cdot c} \\ (f) = \left(psi - c \cdot u_{DS} \right) \cdot exp\left(\frac{u_{GS} - V_{TH}}{psi} - 1 \right) & dla \ u_{GS} > V_{TH} + psi \ oraz \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{psi}{2} \right) \cdot \frac{psi}{2 \cdot c} & dla \ u_{DS} > \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - c \cdot u_{DS} \right) \cdot u_{DS} & dla \ u_{DS} < \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - c \cdot u_{DS} \right) \cdot u_{DS} & dla \ u_{DS} < \frac{psi}{2 \cdot c} \\ (f) = \left\{ \begin{array}{l} \left(u_{GS} - V_{TH} - \frac{c}{2 \cdot c} \right) \right\} \right\} \right\} \right\} \right\} \right\} \right\}$$

Wzór (7) opisuje wartość I₂ tylko dla $u_{DS} > 0$, natomiast w pozostałych przypadkach I₂ jest równe zero. We wzorach (1)–(7) występują 23 parametry modelu tranzystora: c, a1, W, L, C_{oxi}, g2, theta, Vth, auth, psi, k101, k102, Un, g16, Rd1, Ubr, aubr, Ibr, Utnbr, T, Rd0, Uc, g11.

Z kolei wbudowana w strukturze tranzystora CoolMOS dioda podłożowa (body diode) jest zamodelowana za pomocą prądowych źródeł sterowanych G_diode, G_diode2 oraz G_Rdiod, niezależnego źródła napięciowego o zerowej wydajności V_sense oraz dwóch rezystorów: Rd02, bocznikującego źródło prądowe G_diode oraz R_RERd_dio niezbędnego z uwagi na formalne wymagania programu SPICE. Inercję diody opisuje zewnętrzny obwód złożony z kondensatora C_C001, rezystora R_R001, źródła napięciowego o zerowej wydajności V_sense2 oraz sterowanego źródła napięciowego E_E001.

Źródło prądowe G_diode opisujące składową dyfuzyjną prądu diody, ma postać

$$I_{D1} = I_{S} \cdot \left[exp\left(\frac{U_{ID1}}{Un \cdot T_{j}}\right) - 1 \right]$$
(8)

gdzie U_{ID1} oznacza napięcie na źródle prądowym G_diode, natomiast prąd nasycenia I_S zależy od temperatury zgodnie z następującym wzorem

$$I_{S} = \left(\frac{T_{j}}{T}\right)^{1.5} \exp\left(g16 + \left(\frac{T_{j}}{T} - 1\right) \cdot \left(\frac{1.12}{Un \cdot T_{j}}\right)\right)$$
(9)

w którym Un oraz g16 to parametry.

Źródło prądowe G_diode2 modeluje inercję elektryczną w diodzie oraz efekt przebicia. Wydajność tego źródła dana jest wzorem

$$I_{D2} = I_{DE} - Ibr \cdot exp\left(\frac{-U_{ID1} - Ubr - aubr \cdot (T_j - T)}{Utnbr}\right)$$
(10)

gdzie I_{DE} oznacza prąd płynący w pomocniczym obwodzie modelującym inercję diody, natomiast aubr, Utnbr, Ubr, Ibr to parametry modelu.

Rezystancja szeregowa diody modelowana jest przez sterowane źródło prądowe G_Rdiod o wydajności opisanej następującym wzorem

$$I_{RDS} = \frac{U_{RDS}}{Rd1 \cdot \left(\frac{T_j}{T}\right)^{1.5}}$$
(11)

gdzie U_{RDS} jest napięciem na rozważanym źródle.

Z kolei wydajność źródła E_E001 jest proporcjonalna do prądu I_{D1} a współczynnikiem proporcjonalności jest iloraz parametrów ta do td.

Rezystancje szeregowe bramki (R_Rg) i źródła (R_Rs) mają w makromodelu ustalone wartości, natomiast uwzględniono nieliniowość rezystancji szeregowej drenu, modelowanej przez sterowane źródło prądowe G_R_Rd, którego wydajność dana jest wzorem

$$I_{Rd} = \frac{u_{Rd}}{Rd0 \cdot 0.5 \cdot \left[1 + \sqrt{1 + 4 \cdot \left(\frac{u_{Rd}}{Uc}\right)^2}\right] \cdot \left(\frac{T_j}{T}\right)^{g_{11}}}$$
(12)

gdzie u_{Rd} oznacza napięcie na źródle prądowym G_R_Rd, T₀ to temperatura odniesienia. Rezystor liniowy R_R_Erd_g potrzebny jest ze względów formalnych i zapewnia skończoną rezystancję między zaciskami źródła prądowego G_R_Rd.

Nieliniowe pojemności Cgs, Cgd oraz Cds są modelowane za pomocą szeregowo połączonej pojemności liniowej, rezystora liniowego oraz sterowanego źródła napięciowego. W opisie wydajności tych źródeł zawarta jest informacja o nieliniowościach wymiennych pojemności. Opisy tych nieliniowości są bardzo złożone, a jedynie wydajność źródła opisującego pojemność Cgs opisana jest prostym wzorem o postaci

$$u_{EGS} = 0.5 \cdot \left[\left(u_{GS} - k14 \right) + \sqrt{\left(u_{GS} - k14 \right)^2 + 0.3 \cdot delta} - 0.3 \cdot delta \right] \cdot \frac{C_{ox}}{C_{gs} + C_{ox}}$$
(13)

gdzie k14, delta, C_{ox} oraz C_{gs} są parametrami modelu.

Na rys. 1 nie zaznaczono elementów mających mniejszy wpływ na właściwości tranzystora, np. dwójników LR włączonych szeregowo z każdym wyprowadzeniem.

Wyniki badań. Aby ocenić dokładność modelu przedstawionego w rozdziale 2, przeprowadzono z wykorzystaniem programu SPICE symulacje wybranych charakterystyk statycznych i dynamicznych tranzystora SPP07N60C2. Wyniki obliczeń porównano z wynikami pomiarów zamieszczonymi w katalogu. W tabeli 1 przedstawiono wartości parametrów rozważanego tranzystora.

Na rys. 2 przedstawiono charakterystyki wyjściowe oraz charakterystyki diody zintegrowanej rozważanego tranzystora dla temperatury pokojowej [7].

Z kolei na rys. 3 zilustrowano zależność czasu opadania t_f tranzystora CoolMOS w temperaturze 125 °C od wartości zewnętrznej rezystancji bramki RG. Badania przeprowadzono w układzie z rys. 3b. Wartości parametrów przebiegu pobudzającego wynoszą V1 = 10 V, V2 = 0, t₁= t₂= 15 ns [8].

Jak widać wyniki symulacji są jakościowo zgodne z wynikami pomiarów, natomiast rozbieżności między tymi wynikami dochodzące do około 40 % na charakterystykach wyjściowych (dla $u_{GS} = 7 \text{ V}$) oraz na charakterystyce diody (dla $u_{SD} = 120 \Omega$) i do ponad 70 % na charakterystykach dynamicznych (czas t_f dla RG = 120 Ω), wskazują na konieczność modyfikacji makromodelu.

Tabela 1

Parametr	Rs	Rg	Cox	Cds0	Cgs	Vp	Fg	delta	k2	k3	k4	k5
Wartość	1m	0.8	1.56n	3.61n	812p	100	30m	1	4.32µ	19.14	0.439	135.8
										μ	р	m
Parametr	k7	k8	k9	k10	k11	k12	k13	k14	k20	k21	k22	k23
Wartość	155.7	0.625	0.276	29.35	38 µ	0.25	240	-2	937n	15.35	26.35	8μ
										μ		
Parametr	L	g2	theta	c	Vth	Т	Tref	auth	aubr	Ibr	Ubr	Coxi
Wartość	2 μ	57.5m	90m	1.4	5.2	300	273	7.5m	0.6	100p	600	431u
Parametr	psi	Un	Utnbr	W	g11	g16	k101	k102	a1	Rd0	Rd1	Uc
Wartość	0.22	98.32	0.207	0.478	2.4	-26.07	0.5	1.5	1	0.465	14.96	12.5
		u									m	
Parametr	ta	td	R_Red_g		R_R_Erd_dio		Rd02	Rd01	R_R001		C_C001	
Wartość	1μ	110n	10k		10μ		500 M	500 M	1		99.1n	

Wartości parametrów modela tranzystora SPP07N60C2

Rys. 2. Charakterystyki wyjściowe tranzystora (a) oraz diody zintegrowanej (b)

Rys. 3. Zależność czasu opadania t_f od rezystancji $R_G(a)$ oraz badany układ (b)

Uwagl końcowe. Przedstawiony model firmy Infineon tranzystora CoolMOSC2 jest modelem o stosunkowo niskiej dokładności, lecz odzwierciedlającym jakościowo poprawnie właściwości tranzystora. Opis źródeł nieliniowych jest mało przejrzysty, a oznaczenia wielu parametrów nie kojarzą się użytkownikowi z modelowanym zjawiskiem fizycznym. Istotną wadą modelu jest również zastosowanie instrukcji TEMP, co oznacza konieczność operowania jedną (taką samą) temperaturą dla wszystkich tranzystorów CoolMOS występujących w analizowanym układzie.

1. Lorenz L., Marz M., Debory G. CoolMOS – An Important Milestone Towards a New Power MOSFET Generation. PCIM'98. –P. 151–160. 2. Puerschel M., Zverev I. CoolMOS-C2 Optimised to be the Fastest High Voltage Switch. PCIM Europe 8/9 2000. P. 24–26. 3. Lorenz L. CoolMOS Technology – Outstanding Prospects towards Idealized Power Semiconductor Swich // EPE Journal. – April 2000. – Vol. 10. N 1. – P. 11–16. 4. Deboy G., Ahlers D., Griebel E., Lorenz L. CoolMOSTM C3 – a Further Step Towards the Ideal Switch. PCIM'01, Monachium 2001. 5. Zarębski J. Właściwości i charakterystyki tranzystora CoolMOS. Elektronika. – 2001. – N 12. – S. 9. 6. Pspice Libraries for CoolMOS Power Transistors. Infineon Technologies AG, <u>http://www.infineon.com</u>. 7. Zarębski J., Posobkiewicz K., Jasicki P. Właściwości tranzystorów VDMOS i CoolMOS – charakterystyki i parametry statyczne. Elektronizacja, Not-Sigma, N 10. – 2002. – S. 7. 8. Zarębski J., Posobkiewicz K., Jasicki P. Właściwości tranzystorów VDMOS oraz CoolMOS Charakterystyki i parametry dynamiczne. Elektronizacja, Nr 12. – 2002. – S. 18.