УДК 535.37

І.І. Герман, В.П. Махній, О.І. Черних

Чернівецький національний університет імені Юрія Федьковича, кафедра оптоелектроніки

МЕХАНІЗМИ ФОРМУВАННЯ ОБЕРНЕНОГО СТРУМУ В ФОТОЧУТЛИВИХ СТРУКТУРАХ Au/CdTe:O

© Герман І.І., Махній В.П., Черних О.І., 2013

I.I. German, V.P. Makhniy, O.I. Tchernykh

INVERSE CURRENT MECHANISMS IN PHOTOSENSITIVE Au/CdTe:O STRUCTURES

© German I.I., Makhniy V.P.,. Tchernykh O.I, 2013

Проаналізовано основні механізми формування оберненого струму в поверхневобар'єрних діодах на основі підкладинок n-CdTe. Встановлено, що експериментальні вольтамперні характеристики при низьких обернених напругах визначаються тунельними процесами, а при великих – помноженням носіїв у результаті ударної іонізації.

Ключові слова: Телурид кадмію, поверхнево-бар'єрний діод, надбар'єрний і генераційно-рекомбінаційний струм, тунелювання, ударна іонізація.

Analysis of the main mechanisms of inverse current in the surface-barrier diodes based on n-CdTe is carried out. Established that the experimental current-voltage characteristics at low inverse voltages are determined tunnel processes and at high inverse voltages – the sharp increase of carriers as a result of impact ionization.

Key words: cadmium telluride, surface-barrier diode, generation-recombination current, tunneling, impact ionization.

Вступ

Для розв'язання деяких задач фотоелектроніки необхідні широкосмугові приймачі, діапазон чутливості яких охоплює ближню інфрачервону, видиму та ультрафіолетову області спектра. Сьогодні для цих цілей використовують поверхнево-бар'єрні діоди (ПБД) на основі GaAs [1], технологія вирощування якого, на жаль, є складною внаслідок високого тиску As (~100 атм) при температурі вирощування, а також вартісною, особливо з урахуванням відомого дефіциту галію [2]. Крім того, цей напівпровідник має порівняно низьку радіаційну стійкість [3]. Зазначених недоліків певною мірою позбавлений телурид кадмію, ширина забороненої зони E_g якого близька до GaAs, а радіаційна і температурна стійкості значно вищі. Звернемо також увагу на те, що при певній обробці (модифікації) поверхні підкладинок структури типу Au/CdTe:O мають підвищену короткохвильову чутливість, яку можна ще збільшити шляхом подачі на фотодіод оберненої напруги [4, 5]. Зауважимо, що при цьому відбувається також збільшення оберненого струму I_{of} і відповідне погіршення відношення сигнал/шум. Оптимізація цього параметра значно спрощується за наявності інформації про механізми, які визначають обернені вольтамперні характеристики (BAX) діодної структури. У роботі ця задача розв'язується для поверхнево-бар'єрних діодів на основі модифікованих підкладинок n-CdTe, для яких зазначене питання нині залишається нез'ясованим.

Об'єкти досліджень

Підкладинки розміром 4×4×1 мм³ вирізали з кристалів n-CdTe з питомим опором 10–30 Ом·см при 300 К. Після механічного та хімічного полірувань на одну з більших сторін пластинок вплавляли індієві омічні контакти. Перед нанесенням на протилежну сторону випрямляючого контакту, яким слугувала напівпрозора плівка золота, підкладинки відпалювались на повітрі для модифікації поверхні [4].

Виготовлені структури мали яскраво виражені діодні характеристики з коефіцієнтом випрямлення не менше ніж 10^7 при 300К і напрузі V=1В. Висота потенціального бар'єру φ_0 була близькою до E_g телуриду кадмію і досягала 1,4 еВ[4]. Вимірювання вольтамперних характеристик проводили у режимі постійного струму при 300К, оскільки експлуатація фотодіодів здійснюється здебільшого саме за таких температур.

Обговорення результатів досліджень

Перш ніж розпочати обговорення експериментальних ВАХ проаналізуємо основні транспортні процеси, які можна реалізувати у ПБД при оберненому зміщенні. Його енергетичну діаграму і схему руху носіїв заряду зображено на рис. 1. Тут стрілками1 і 1' показано проходження електронів і дірок над потенціальним бар'єром відповідно; 2 – генерація електроннодіркових пар за участю глибоких центрів E_t в області просторового заряду (ОПЗ); 3 і 3' – тунелювання електронів з металу у зону провідності напівпровідника відповідно без і за участю глибоких центрів; 4 – процеси помноження носіїв за рахунок ударної іонізації.

Оскільки наведені на рис. 1 процеси за винятком ударної іонізації відбуваються паралельно, то кожен з них може виявитись домінуючим лише за певних параметрів діодної структури (висота і товщина бар'єру, концентрація і глибина залягання глибоких центрів) та умов досліду (температура і величина напруги). Для оцінювання внеску кожної зі складових у обернений струм скористаємось аналітичними виразами, які наведені у роботі [6].

Насамперед відзначимо, що обернений надбар'єрний струм для досліджуваних ПБД є електронним (процес 1), у зв'язку з вищим бар'єром для дірок. Для діодної теорії випрямлення при $|eV| \ge 3kT$ надбар'єрний струм $I_d^{o\delta}$ описується формулою

$$I_d^{ob} = I_s = SA^*T^2 \exp(-j_0/kT) \tag{1}$$

де *S* – площа діода, A^* – ефективна стала Річардсона. Приймаючи для досліджуваних структур *S*≈0,1 см², A^* ≈12 А·см⁻² К⁻² і φ_0 ≈1,4 еВ, отримаємо при 300К для $I_s^{meop} \approx 10^{-19} A$. Це узгоджується з експериментальними значеннями I_s, знайденими з прямих ВАХ, аналогічних ПБД [7]. Зауважимо, що надбар'єрний струм є домінуючим лише при великих (близьких до φ_0) прямих зміщеннях.

У разі низьких напруг прямий струм визначається генераційно-рекомбінаційними процесами в ОПЗ [7]. При оберненому зміщенні і $|eV| \ge 5kT$ цей струм описується виразом

$$I_{gr}^{o\delta} = S \cdot e \cdot d \cdot \frac{\sqrt{N_c N_u}}{t} \exp(-\frac{E_g}{2kT}), \qquad (2)$$

де d – ширина ОПЗ; τ – ефективний час життя нерівноважних носіїв у ньому, N_c і N_v – ефективна густина станів у вільній та валентній зонах напівпровідника. Приймаючи $\sqrt{N_c N_u} \approx 10^{18}$ см⁻³, $S\approx 0,1$ см², $d\approx 5\cdot 10^{-5}$ см, $E_g\approx 1,5$ еВ і $\tau=10^{-10}-10^{-8}$ с, отримаємо для $I_{gr}^{meop} = 10^{-11} - 10^{-9}$ А, що значно більше від надбар'єрного струму I_d^{meop} . Крім того, на відміну від останнього

$$I_{gr}^{o\delta} \sim \sqrt{j_0 - eV} , \qquad (4)$$

що необхідно врахувати під час розрахунку $I_{\rm gr}$ за формулою (2).

Розрахункові обернені ВАХ з врахуванням отриманих вище параметрів і виразів (1) та (2) наведено на рис. 2 кривими відповідно 1 і 2. Як видно з наведених даних експериментальна залежність I(V) (точки) не узгоджується з жодною розрахунковою кривою, що вказує на інший механізм формування струму. Логічно припустити, що ним, може бути тунелювання носіїв заряду (переходи 3 і 3' на рис.1), які згідно з [4] описуються виразом

$$I_{t} = I_{t0} (j_{0} - eV) \exp(-\frac{b_{0}}{\sqrt{j_{0} - eV}}).$$
(3)

Оскільки коефіцієнти I_{t0} і b_0 залежать від багатьох факторів (параметрів підкладинки і діода, виду тунельного переходу, числа і параметрів центрів E_t тощо), то їх аналітичний розрахунок виконати фактично неможливо. У зв'язку з цим їх зазвичай знаходять шляхом зіставлення дослідних ВАХ з виразом (3), що ілюструється на рис. 2. При цьому найкраще узгодження експериментальних і теоретичних залежностей $I_{o6}(V)$ спостерігається за таких значень коефіцієнтів: $I_{t0}\approx 10^{-8}$ A/eB і $b_0\approx 20$ eB^{1/2}, що свідчить про тунельний характер оберненого струму. Водночас питання, які з тунельних переходів, зображених на рис. 1, є домінуючими, залишається нез'ясо-

Рис. 2. Обернені ВАХ структур Аи/CdTe:O. Точки – експеримент, суцільні лінії – розрахункові, причому номер кривих відповідає номеру формули

ваним. Відповідь на нього можуть дати окремі дослідження, які виходять за межі цієї роботи.

Як видно з рис. 2 при *V*≥30 В експериментальні точки відхиляються від теоретичної залежності $I_{00}(V)$, що обумовлено помноженням носіїв заряду в результаті ударної іонізації (процес 4 на рис. 1). Це підтверджується також помноженням фотоструму І_р, однак, цей ефект у даному випадку спостерігається при значно менших обернених напругах (V≥10В) [8]. Різниця в напругах пояснюється тим, що фотоносії проходять надбар'єрним шляхом всю ОПЗ, а темнові – лише її частину. У результаті перші з них набувають порогову енергію ударної

іонізації за нижчих напруг, ніж ті, які частину ОПЗ пройшли тунельним шляхом без зміни енергії. Аналіз залежностей коефіцієнта помноження від напруги, визначених з темнових і світлових вольтамперних характеристик, свідчать про те, що ударна іонізація здійснюється переважно носіями одного знака, що не суперечить результатам роботи [8].

Висновки

Отже, наведені результати свідчать, що обернений струм діодів Au/CdTe:O визначається тунелюванням носіїв за низьких напруг і процесами помноження у результаті ударної іонізації – за високих.

- 1. Бланк Т.В. Полупроводниковые фотопреобразователи для ультрафиолетовой области спектра / Бланк Т.В., Гольдберг Ю.А. //ФТП. 2003.– Т.37.–В.9. С. 1025–1055.
- 2. Арсенид галия. Получение, свойства и применения / под ред. Кесаманлы Ф.П., Наследова Д.Н. М.: Наука, 1973. 64 с.
- Дмитриев Ю.Н. Термодинамика изовалентного легирования кристал лов полупроводниковых соединений типа А^{II}В^{VI} / Дмитриев Ю.Н., Рыжиков В.Д., Гольчинецкий Л.П. – Харьков: ВНИИ Монокристаллов, 1990. – 50 с.
- 4. Makhniy V.P. Perspective of surface modification of CdTe singlecrystal substrate for creation photosensitive barrier structures/ V.P Makhniy., N.V. Skrypnyk, Yu. N. Boyk Semiconductor Physics/ Quantum Electronics. 2009. Vol. 12. N 2. P. 143–146.
- 5. Патент України на корисну модель UA56873. Спосіб використання поверхнево-бар'єрного детектора ультрафіолетового випромінювання / В.П Махній, заявник і патентовласник Чернівецький національний університет. – пр. від 30.07.2010 р, опубл. 2011 р.бюл. "№ 2.
- 6. Махний В.П. Физические процессы в диодных структурах на осове широкозонных полупроводников A²B⁶/ дис. докт.физ.-мат. наук: 01.04.10/ Махний Виктор Петрович Черновцы, 1992. –293 с.
- 7. Махний В.П. Механизмы прохождения прямого тока в фотодиодах Au-CdTe с модифицированной поверхностью/ Махний В.П, Бойко Ю.Н., Скрипник Н.В // ФТП. 2009. Т. 43.–В. 5. С. 630–631.
- 8. Демич М.В. Електричні та фотоелектричні властивості діод них структур на базі монокристалічного телуриду кадмію / дис.канд.фіз.-мат. наук: 01.04.10./ Микола Васильович Демич Чернівці, 2000. С. 126.