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The mathematical model to determine the physical constants on the boundary of the
metal and inert gas environment developed based on the basic equations of surface physics and
thermodynamics of nonequilibrium processes. These physical constants are included into the
state equation, taking into account internal mechanical stresses caused by redistribution of
conduction electrons. Using the experimental values of surface tension and energy of the
contracted media, we determined physical characteristics of the surface layer, in particular on
the boundary of the aluminium (germanium) and the inert gas environment.
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MATEMATUYHE MOJIEJIIOBAHHS ITPOIIECIB
Y IPUTIOBEPXHEBUX IIAPAX TBEPIUX TLI
3A MIZK®A3ZHOI B3AEMO/III

Ha ocHoBi 0a3zoBux piBHAHb (i3MKHM NOBepPXHI Ta TePMOAUHAMIKN HEPiBHOBAKHMX
npouecie  po3pod/ieH0 MaTeMATHYHY MoOAedb Jisfi BU3HAYEHHS (Pi3MUHUX MOCTiIHHUX Ha
rpaHuNli MeTajay 3 IHEPTHMM Tra30BHM CepelOBHINEM, IO BXOAATH Yy PiBHAHHA CTaHy, 3
ypaxXyBaHHSIM BHYTPIillIHiX MeXaHIYHUX HANPY:KeHb, 3yMOBJIEHUX MePepo3NoAiIoM eJIeKTPOHIB
NnpoBiaHocTi. 3 BHKOPHUCTAHHAM €KCIMEPHMEHTAJBHAX 3HAaYeHb IOBEPXHEBMX HATATY Ta
eHepri'l' AJIsi KOHTAKTYIOUMX CE€pPEeaAOBHII] BU3HAYCHO q)i3l/l‘lHi XapaKTCPUCTUKHU MOBEPXHEBOI0
mapy, 30KpemMa Ha Me:Kax ajqoMiHili(repmaniii) — inepTHe ra3oBe cepeIoBHIILe.

KarouoBi cioBa: MOZ[eJIIOBaHHﬂ,MexaHi'lHi HAIIPYKCHHS, MeXﬂHoeJ’leKTpl/I‘lHi nmpouecu,
NPUIIOBEPXHEBUI LIAp.

Introduction

The traditional approach of quantitative description of the interfacia interactions usually involves
finding energy options of the interfacial interaction and calculation physical characteristics of surface
layers. These physical characteristics are characterize the spatial (coordinate) distribution of charges,
mechanical stress inside double layer, thickness of interacting phases, surface charge, etc. Also they
interconnect state parametersin the relevant state equations. It is clear that adequate values of the such type
of characteristics should match the main real energy characteristics of the surface layers, such as the
surface tension o, and the surface energy v.

For the solution this problem is usually used agorithmic approach of imitative simulation. The
disadvantage of this approach is the some ambiguity of the values of the obtained physical parameters of
materials with reliable values of energy characteristics (o, V).

We use a dlightly different approach and solve the problem of determining the energy characteristics
¢ and y,formally.

The aim of this work is to develop a mathematical model to determine the physical constants of
materials in state equations, taking into account internal mechanical stresses caused by the redistribution of
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the conduction electrons. This model based on the principles of surface physics and thermodynamics of
nonequilibrium processes without the use of cumbersome approaches of statistical physics.

1. Theoretical preconditionsfor mathematical modeling
of chargesdistribution and mechanical stress

Research object. As the model object of research we choose a defect-free uniform metallic
deformed elastic sphere of radius R. The research subject is the macroscopic correlations of surface physics
and thermodynamics of nonequilibrium processes, which used to determine surface tension and energy.

We formulate one-dimensiona correlations for modeling mechanical stress and redistribution of
electric charges (free for metals and related to semiconductor or insulator) with r coordinate, where r —
radius vector of a point in a spherical coordinate system. The sphere (V, area, r < R) is placed in auniform
inert gas environment (V. area, r > R), which pressure is equal p = 100 kPa. The electric double layer
generated conduction electrons and metal ions and located on the sphere surface on the spherical ring,
which thicknessh (R > r > R-h) [1].

We simulate the metal sphere using two-component homogeneous solid environment consisting of
two continuous continuums: the conduction electrons and grid ions, for which carried out the hypothesis of
continuity and local thermodynamic equilibrium [2,3].

The €electric double layer is formed on the border of metal (the sphere) and external inert
environment. This layer corresponds to the gradient of the electron density in the small border layer
(thickness is less than 20 nm) [1]. During this process the electric shells of the thin border atoms are
deformed. These deformations are manifested in the change of grid parameters. Based general ideas
surface physics and continuum mechanics we put the deformations of atoms in correspondence to the
mechanical stresses. Also we consider the distribution of electrical charges and mechanical stress are
interrelated. To find the distribution of electrical charges and mechanical stress in a thin surface layer of
metal we use Poisson's equation (for electrical charges) of the balance of items of solids and determination
of surface tension and energy.

Selecting state parameters. To describe mechanoelectric distributions in the sphere we consider two
pairs of parameters of the thermodynamic state : @) for redistribution of electrical charges — concentration
of electrons C,, ions Ci,, and the chemica potentials Me, Mo, corresponding them (concentrations are
dimensionless, dimension of chemical potentials—J/ kg); b) for the stressed state — tensors of deformation
€ and mechanical stresses 6 [2-5].

These settings we substitute in the extended Gibbs equation for state function U - isinternal energy
([U]1=J/kg) o[24]:

dU =TdS +%_ ilo'-j -dejj + MdCq + M, dCig - (1)
I, ]=

Where S, T-entropy and temperature of the local element respectively ([S] = J+ (kg*K) *, [T] = K);
p — specific density of material ([p] = kg » m?); &;, p;j — components tensors of stresses G and
deformations € (i, =1, 2, 3; [c5] = Pa). Given that the mass of the electron by three orders less than the
mass of theion, we can take dC;,, = 0.

Then we multiply and divide expression M,-dC, by a constant z., where z, — electric charge of unit
mass of conduction electrons ([z]] = Cl « kg!). Result of multiplication is C,z. =0=wmy/p; where o, 0y —
specific electric charges of local element calculated per unit mass and unit volume respectively: (o] = Cl «
e kg!, [my] = Cl » m?). The relation My/ze =®=®,+ ¢ is caled modified chemical potential of the
conduction electrons (MCPCE) ([®] = [¢] = B).

In this case, the Gibbs equation (1) can be written (including replacement of multiplication result
M,-dC.=®-dw) for the free energy F=U-TS—w®) in the form of [2-4]:

3
dF =-SdT + 23 o, -de, +@d® . @

Pij=
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From (2) follow the state equation in general form:
oF
;o w=p| — 3
p[ p @j ©)

oo (%) o [®
dT Jle: d=const =7 dejj e T=const
ij ) JIT @=const ij’

In the next we confine the isotherma case and we aren't congdering the state equation for the entropy.
Methods for formulating State equations based on relations (2), (3) are shown, for example, in [2—4]. With this
purpose usudly functiond for free energy F is decomposed in the Taylor series on the Sate parameters in the
neighbourhood of the specified equilibrium state. After that decomposition of the functiond limited of second
component of decomposition is subgtituted in (3). Then we are get the linear state equations.

Using the principles of the explained technique, according to (2) and (3), we are abtain linear state
equations for tensor components of mechanical stress c;;and density of electric charge o [3-5]:

Gijj :((K—nge—quAT—KWJb}J—+2Geij, (@]

@ = pw=pCy(P— 1 -AT)+bKe. 5)

Where &; — Kronecker symbols; e = e;/3 — the first invariant of deformations tensor; ¢ = ® —®, —
rejections of the modified chemical potential ® of conduction electrons from its equilibrium value @, in
the volume of the body away from the surface; AT = T — T, — temperature changes (T, — temperature values
in the initial equilibrium state); K, G — factors of the comprehensive compression and shear; C,, — specific
capacitance; b — electrostrictive coefficient of volume expansion; o, — temperature coefficient of volume
expansion; y; — temperature coefficient of changes MCPCE.

Galvani potential. To analyze the redistribution of the conduction electrons of the neighbourhood of
the metal surface we are considering Galvani potentia (difference of internal electrical potentials - Ay).
This potential defines difference of the electrical potentials between two points in different phases [6].
These phases can be two different solids (eg, two mechanically connected metals, metal and
semiconductor, etc.).

Electrochemical potential 7z, for conduction electrons in the metal including definition of ® can be
represented as [6,7]:

ﬁezze(q)-i_\P)’ (6)
where ¥ — the potential of the electric-field intensity (scalar electric potential). y =¥ — ¥, - deviations of
potential W from itsoriginal equilibrium value W, (potential ¥ is defined up to a constant [6]).

If two phases o and o have the one common charged particle (for example, electron), then their

electrochemical potentials 7, and Z,; are aligned [6] and as the result we get the ratio:

Moy =2 (Pp+W,), Hop=2(Pp+W¥p), Hey=Mep, Pp+¥,=Ds+¥p,
Ay=Y;-¥,=0,-Ps=-Ap, Ay+A¢=0, A(y+9¢)=0,
A(y+9+®y)=0, y+¢p+Py=const. (7

As in this case, the Galvani potential is determined using difference of chemica potentias
Ay =AY =0, -, (6). This similar to definition of potential difference of MCPCE. Therefore in the
further transformations we use Ay = —A¢ (symbol A means the deviation of potential).

Using last relations (6.7) y+oe+d,=A=const we provide analysis of particular case, when phase o is
metal and phase B is not electroconductive inert gas environment, which we take 4 = 0 (because the
electrochemical potential is determined up to a constant).

In the external inert environment (outside sphere in volume V) for electric potential [2, 3] is:
AY =0, (8)
from which follows that Y .=A., where A, is constant. Taking the electric potential at infinity equal to zero,
we obtain Y .=A.=0 in the volume V..
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Since the electric potential ¥ on the border of arbitrary medium is continuous, then for the
boundaries of the phase o (on the surface I) from (7) follows the limit relation:
Pp+P@y=0, ¢=—-D,. 9)

2. Determining distributions of electrical charges and mechanical stress
2.1. Basic equations of mechanoelectrics for metal
In accordance with the fundamentals of dectrostatics and nonequilibrium thermodynamics [4, 5, 7, 8]
we can show the electric potential Y using Poisson's equation (10) and the stress tensor we can show as
part of the equilibrium equation (11):

EAY = eepAp=—po=-a, , (10)
Divé + p-w-E =0, (11)
€ = Defi, (12)

where U — is the movement vector in spherical coordinates U = (u, ,0,0)), which is associated with the

tensor of deformations € by the geometric equation (12) [9].
Boundary conditions on the surface G of the distribution of the electroconductive body and inert gas
environment, taking into account (8) [2.3, 8] can be represented as:

6'n:f)c+%£2(|§+|§c); Q=e6y(|E, |-|Eq |); W=¥¢ ¢=—Dp.  (13)

where p, — the environment pressure to the normal n to the surface G; W — surface charge;

e — permittivity material; E,,, E, —components of the electric-field intensity of environment and metal to
the normal to the surface G.

The problem of the distribution of electrical charges and the mechanical stresses corresponding them
in double electrical layer (4), (5) (10)«13) we can formulate in a spherical coordinate system (r, g, a). For
this we move the origin of coordinatesin the geometric center of the sphere. Then we obtain:

df1 d/» 3 d¢ j
dr[r2 dr( r)} 3K+4G(ﬁ ar A (14
2 -C
99,299 12 5 BKe {2 [0 . (15)
dr? r dr £ &)
@, = po=£gk’p+bKe ; (16)
O'iiz(K—nge—bK(zHZGeii (i=r,a,0), 17)
) du, up . .
e=e, + 24, € = Caa =G =7 ¢+y + D, = const;
d d d d
Er=—d—":=d—f; Qz—eoErzeod—l/r/=—eod—f; (18)
2 2
& (oy & (09
=—®,: —_S0 | Z¥ | 20 | Z¥ ar=R. 19
9 0 O =75 (8rj 2 [arj ' (19)

2.2. Method of determining distributions ¢, oy, o,

Since the expression (14) is nonlinear (expression wyE, is the ponderomotive component), then we
are solving the system of equations (14), (15) taking into account (16)—(19) for finding the distributions of
potential ¢ and mechanical stresses G,, Gy, anayticaly using the method of small parameter b,.=b-®,
limiting of the four approximations of the decomposition. Methodics of using the small parameter method
for solving problems of mathematical physicsis described in [10].
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We represent the components u, of movements and ¢ (deviation of MCPCE) as series of the small
parameter:

p=0p+(b-®g) g+ (b @)° 6, +(b-Dg) g5 +(b- D) -4 (21)
Relation for the potential j and mechanical stress s, s, we get from (14)—(19) for the area"V," taking

into account the shift Z, of double electric layer relatively border of the body [11]. The results of the
solution (14)—(19) we write in the abbreviated form:

o, =f.(r,b,k,R,®y); 0y = fo(r,b,k,R,Dp); (22)
R sh(kr) oW,
=f (r,k,R,d,)=-D,— : = € (2—exp(-kz,)); 23
¢= Ty ( 0) 0 Sh(KR) 0 26K ( p( b)) (23)
Z, _ 3755 g aesin |3 _ PE : (24)
4|2 | 3B, 3E; +5E, 1\ 3E.

where f., f, —are symbolizing complex relations which considered four approximations of the small

parameter b ®y,; Er — Fermi energy; Ey — electronic work from metal; ke — Fermi wave vector; W, — the
volume density of the conduction electrons of the metal far from the surface (at a distance of more than
30 nm) ([W.] = m®); qo — electron charge.

Shifting Z, of the double electric layer (24) corresponds to the relationship equations (14) and (15).
Note that represented above expression (.23) for Fy is similar to the expression from work [11] derived
using the methods of statistical physics. The formula for ¢ (23) obtained from the solution of (14)—21)
(including four approximations (21)), and similar to the first relation (23) for ¢ including Z, (24) (for
sphere with alarge radius R), given in work [11] virtually identical to within corrections, the magnitude of
which less than 4 %. This indicates that the result of four approximations (@i, @2, ©3, ¢4) for ¢ manifested
in shifting Zy,. Therefore we can replace the complex expression like (21) using compact relation for ¢ (23).

2.3 Limiting transition to the flat border
In relations (22), (23) make sense move to the flat distribution border of environments, because
effective thicknesses of the double electric layer (surface area) not more than 18 nm [1.11].
In expressions (22), (23) we carry the limiting transition R=eo, where 6,= 0, Ggp=0y, and
coordinate r corresponds to x. Then the resulting relations in abbreviated form become:
e f¢(x,k,<I>0):—d)o-exp(—kx); oy = f,(x,b,k,®@g);

o, = fx(x,b,k,cbo):—%go-kz 2.2 —%b-cpo-K D, e

2 —2kx 3,—3kx
~(b-®,)* '?’K;(H . e‘Zka—(b.¢0)3.L)2(}+ . e—ZkXJ_

2(3K+4G) 4 2(3K +4G)°\3 20
4
—(b-d)o)“-Le“”‘X (1+id>*e‘2kxj+cx, (25)
8(3K +4G)° 10
2 52
where f, — isthe complex relations; @, =eok—<l>o
3K +4G

3. The method of deter mining the physical characteristics of the material
3.1. Representing systems of nonlinear equations
Traditional approaches to assess of the physical k, b characteristics of the surface layer of metal in
the state equations (16), (17) are providing usage approaches of statistical physics or quantum mechanics,
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which often lead to ambiguous results. The proposed approach uses a method of the decomposition of
displacement variables and potential ¢ to the small parameter. Also this approach isn't expect explicit usage
of theories of statistical physics or quantum mechanics.

Formal expressions for solution of previous problem (25) we are substitute in the system of the four
equations [1, 4, 5], in which the surface tension s, and energy g are defined as:

h
[o,dx=0,, oy=0,, (26)
0

Vet 5714 =7 (27)

C
8_7/23(% +§7/M) =0’ k = P ¢ (28)

ok ok &
s, + p =0 (for x = h) (p = 100 kPa— atmospheric pressure). (29)

h h
where y, =[w,dx — the electrical component of the surface energy (SE); 1y, =|w,dx — mechanical
0 0

2 2
oy (o, —4vo 1-v)o
component of SE; We=€—20(—j and w, = (0 y)+( oy _ densities electrical and

oX " 2E E

mechanical components SE; h — effective thickness of the surface layer; E, v — Young's modulus and
Poisson's ratio, respectively;.

Expressions (26), (27) describing the determination of energy characteristics of surface layers.
Relation (28) is a condition of dynamic quasiequilibrium of particles (electrons and ions) that form the
double electric layer on the surface of the body. Expression (29) is the condition of the effective thickness
of the surface layer. The stresses s, are stretch (positive) in the boundaries of the surface layer, and p = 100 kPa
(atmospheric pressure) corresponds to compressive (negative) stresses. Expression |s|=|p| is a some
distance from the surface h, therefore the resulting stress will be zero (|oy|-p|=0).

The system of equations (26)—(29) is applied to the physical characteristics of the material x, k, b, h
for the first time. In other works [4.5] relations (26)—(29) were, but in there them are used for determine the
change of surface tension and energy, and a x, k, b, h are considered constants (defined using methods of
statistical physics or quantum mechanics[1, 11, 12]).

3.2. Features of the method of calculation of physical quantitiesx, k, b, h

Relations (26)—(29) are a system of equations to determine the physical x, k, b, Foand geometric h
characteristics of the surface layer. The corresponding algorithm for determining x, k, b, Fo, h we present
in three stages. First step, using the equation of equilibrium of 6(14) and (15) for j, which follows from
the Poisson equations, state equation (16), (17) and aso boundary conditions (19), we find five
approximations of distributions normal mechanical stresses s, §; from coordinate r (in particular,
(22)«(24)) using the technique of [4, 10] and using method of decomposition ¢ and displacements u, in the
ranks by the small parameter b, = bF, (20), (21) . At the second step, we direct radius R to infinity and
obtain analytical expressions for |, s, S, (25) depending on the x and the parameter k, not specifying
numeric constants for the material. At the third step, we substitute expressions for », ¢, o 6, in the
relations ¢ (26)—29). For the system (26)—(29) we must set only numeric values oy, v, E, v, p, Ey;, which

are known from experiment [13-19] and Eg, W,, are obtained from reliable results modeling methods of
solid state physics p [20] (o, is determined on the basis of the experiment, and for y is known partia
results of experimental studies and theoretical models[19, 20]).

Thus, at the third stage as a result of calculations (simulation modeling), we get four important
physical properties of metal — &, k, b, h. On these basis we can determine the size and @, (23), through
which we are formulating the boundary condition (19) for the modified chemical potential ¢ of conduction
electrons.
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Electric component of surface energy y. we are submit through capacitance of the surface electrical
capacitor C and potential (Galvani potential) AW using relations of electrostatics [8]:
y,=Q%/(2-C) =C-A¥?/2, C=¢,-k/2, d=2/Kk, (30
where d — the effective distance between the plates of the capacitor surface (within the double electric layer).

3.3. Theresults of calculation of physical quantities. Checking of conver gence.

The presented algorithm for estimation characteristics of the material &, k, b, h tested for aluminium
and germanium (at 20 °C). Vaues of oy, v, E, v, p, Ev were determined by the results of theoretical and
experimental studies (mostly known tabular data) [5, 13-20] (Table 1).

Table 1
Physical characteristics of aluminium and germanium
Physical Physical

chara):/teristics Al Ge charac):lteristics Al Ge
E, GPa 140 108 Er, eV 7,50 -
v 0,30 0,30 Ev, eV 4,12+4,38 —
p, kg -m* 7860 2159 We, m 7,9810% 4,0.10%
K, GPa 110 110 oy, Hm™* 1,68:2,35 1,117
G, GPa 39 49 v, Im? 1,60+-2,01 1,231

E — Young's modulus, E — Poisson's ratio; p — density; K — module of volume compression; G —
shear modulus; Er — Fermi energy; Ey — electron work function; W, — concentration of conduction electrons
in the metal and particle density which correspond of bound charges in the semiconductor; oy, — surface
tension; y — surface energy.

It should be noted that the proposed approach for finding & k, b, h can also be applied to
semiconductors and dielectrics, but instead the potentia ® (MCPCE) should be considered potential
chemical Z., which correspond to the particles that form the bound electric charge (in this paper for silicon
atoms) [8, 21]. In addition, a shift of the double electric layer on the surface is not taken into account for
these materials.

Table 2
Physical properties of the surface layers of materials
Ne z/n Physical characteristics Materia
aluminium germanium

1 Fo, Hm* 4114 —
2 Zo, N-m™ — 5,210
3 3 0,201 0,581
4 b, B! 0,203 0,117
5 k, m? 1,19:10% 1,68-10™
6 Ve, M° 1,117 0,697
7 & Ymy M 0,695 0,405
8 Q, Cl-m? 0,406 0,313
9 h, nm 0,822 0,961
10 C, Fm? 69,5 53,5
11 Ay, in 6,04 —
12 AZ,V —_ 521
13 d=2k, nm 0,138 —
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Where Fy — equilibrium chemical potential of the electrons in the volume of solids; Z, — the
chemical potential of particles that correspond bound electrical charge in a semiconductor; & —
dimensionless coefficient that describes change in surface energy by changing the mechanical

Iy

component of surface energy [7(3 +&y,=7=> Py
7

M

=& |; b — electrostrictive coefficient of
Ye=const

volume expansion; k — value, which inverse to distance at which space charge in the surface layer
varies in e —times. The components of surface energy: y. — electrical component, &y, — mechanical
component; Q — surface charge; h — the thickness of the surface layer; C — the capacity of the double
surface layer; Ay — Galvani potential; 4Z — difference of the potentials of double electric layer on
the semiconductor surface (corresponds to related charges); d=2/k — the distance between plates of
the surface capacitor.

The resulting physical quantities received during calculations using (31) are given in Table 2. These
data correspond to aluminium and germanium without impurities at a temperature 7=20°C and
atmospheric pressure p = 100 kPa in the external gas environment. Very important is the significant
difference in the values of the electrical and mechanical components of the surface energy of the metal (Al)
and a semiconductor (Ge), which is caused by the different nature of the formation of a are double electric
layer (free and bound charges, respectively).

As aresult of calculations for aluminium received b, = bF; = 0,9 < 1; F. = 0,066. Condition b, <1
provides the ability to use the method of small parameter [10.22].

Estimation of convergence of calculations of physical quantities we produce for the expression oy
(25) for copper. Analysis o, (25) allows to confirm the convergence of oy, if the series was formed by the
coefficients of approximations

3K 3K? oK3 27K 4 27K°
(3K +4G)" (3K +4G)* 4(3K+4G)>" 20(3K +4G)*" 40(3K +4G)°’
ie, 1; 0.686; 0.157; 0,108; 0.0037; 0.00042 ..., the same.

1 (32

We can compare the series (32) with Dirichlet series i is (majorizing in respect to (32), which
n=1N

responds to the Riemann zeta function), wheren = 1, 2, 3 ... — natural numbers, Re (s)> 1. Dirichlet series
for s > 1is converged. Taking, for example, s = 1,2, we obtain numerical values for Dirichlet series. 1;
0.435; 0.268; 0.189; 0.145; 0.116 ...

In accordance with the feature for compare of the series (32) with Dirichlet series, we can
argue that a number (32) is also converged, and fractionals bFy, (bFg)? (bFo)°, ... in (25) are
reinforcing convergence.

Conclusions

1. Using basic equations of surface physics and thermodynamics of nonequilibrium processes we
developed a mathematical model to determine the physical quantities characterizing the redistribution of
conduction electrons (related charges) and mechanical stress in the surface layer of metal (semiconductor)
which correspond them. The presented model takes into account the condition of the dynamic
guasiequilibrium of conduction electrons (related charges) in the double electric layer on the metal surface
(semiconductor).

2. On the basis of the proposed model we developed the method of determining the physical
characteristics of the material which including in the linear state equation (physical equation), the boundary
conditions for the chemical potential Fy(Z;) and mechanical stress o.

3. Also we determined the most important physical quantities for metal surface — capacitance
of the double layer C and the Galvani potential AW, which can be used to diagnose structural
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elements in aggressive environments, as well as to determine the energy characteristics of the
surface and interphase layers.
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