
Numerical synthesis of the macromodel of generator  

with soft excitation of oscillations with the help  

of the second method of Lyapunov 

Matviychuk Ja.

 

                                                           
Ja.Matviychuk, DSc, Professor, Institute of Telecommunications, Radioelectronics and Electronic Devices, National University "Lviv 

Polytechnic" (Lviv, Ukraine). 

The summary - Theoretical substantiation of a method for 

providing the convergence of a solution of mathematical model of 

an independent system to a given solution with the help of the 

second method of Lyapunov is considered. The method is 

illustrated by model of the self-oscillator, for which the conditions 

of "soft" excitation of oscillations are provided.  
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I. THEORETICAL SUBSTANTIATION 

Let mathematical model of an autonomous system is given 

as a system of the differential equations 
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where the nonlinear function ( ; )f Y a  is continuous, Y=(y1, 

y2,…, yn), and the vector a  contains parameters. 

It is shown in [1] , that the system (1) models the wide class 

of systems with concentrated stationary values by parameters.  

Some vector function 1 2( ) ( ( ), ( ), , ( ));nY t y t y t y t     

0( , )t t T  is given. Then the task of identification of 

mathematical model (1), which solution is close to a given 

vector function, looks like: 
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If we approximate ( ; )f Y a in a linear Euclidean space of 

basis functions ( ( )), 1,i Y t i m  , then there exists a unique 

solution of the identification task  
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In practice the continuous task (3) is substituted by a 

discrete one owing to digitization of a continuous set (t0,T): 

0 0( , ) ; 1,kt t T t t T k K     . 

Hence the discrete task of identification is the following: 
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The solution of the discretized task (4) is equivalent to a 

solution in the quadratic metric of a rectangular system of the 

linear algebraic equations in relation to a vector of 

approximating coefficients a : 

1

( )
( ( )) ; 1,

m
n k

i i k

i

dy t
a Y t k K

dt




 
 . (5) 

The solution (5) always exists and it is unique. 

The tasks of identification (2) - (5) are incorrect. It is 

expressed by the fact that their solutions unacceptably strong 

depend on errors ( )ny t  and from calculation errors. As the 

result, solution of a system (1) can be somehow far from a 

given vector ( )Y t . 

Regularization according Tihonov together with a method 

of reduction of an approximating polynomial [2], [3] 

(combined regularization) ensures a correctness of the task of 

identification. However domain of convergence to a solution 

( )Y t  can be too small. Really, the identifications (2) - (5) 

control the behaviour of the approximated function only along 

a trajectory ( )Y t  in a phase space. 

Using the ideas of the second method of Lyapunov it is 

possible to set a desirable domain of convergence of a system 

solution (1). 

Let construct such Lyapunov function in relation to 

aberrations of a solution ( )Y t  of a system (1) from a given 

vector ( )Y t , that it will be positive in the necessary area, 

excepting ( )Y t = ( )Y t  points, where it is equal to zero [4]. 

The choice of the Lyapunov function is very complex task 

in the case of searching for a stability region of a system [4]. In 

our case a stability region (that is the domain of convergence to 

a solution ( )Y t ) is not determined, but it is set. Therefore 

choice of the Lyapunov function is much easier. A satisfactory 

sample of such function - incomplete quadratic shape: 
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At such Lyapunov function the domain of convergence can 

include all phase space. 

For ( )Y t  convergence to ( )Y t  in some area Ω of a phase 

space of a system (1) it is enough, that derivative of a 

Lyapunov function (6) according to equation of motion (1) will 

be negative in this area, excepting ( )Y t = ( )Y t  points, where it 

should be zero [4]: 
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The condition (8) for the function (6) is met always. 

Let calculate the left part of an inequality (7) taking into 

account (6) and (1): 
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The condition (9) in discrete variant looks like: 
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From inequalities (10) it is possible to obtain the algebraic 

equations, which are convenient for supplement of the 

identification system (5). For this purpose we select such 

function β(Y), that β(Y)<0 at YєΩ and β(Y)→0 at Y→ Y . An 

example is the Lyapunov function (6) with negative sign: 
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Having equated the left parts of inequalities (10) to the 

function (11), we obtain a system of equations, which is 

equivalent to the system of inequalities (10) in sense of our 

task: 
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Let solve the obtained equations in relation to the 

approximated function 
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The equations (12) have the same structure as equation (5). 

The mutual solution of the equations (5) and (12) provides the 

extension of a domain of convergence to a given solution. 

It is necessary to select those points Y(tk) inside area Ω, in 

which we should control the convergence of a solution ( )Y t  of 

the system (1) to a given solution ( )Y t . The more such points, 

the more reliably convergence to a given solution in area Ω is 

guaranteed, but the quality of approximation (5) is declined in 

this case. It is also necessary to avoid points near a trajectory 

( )Y t  or on it. Then the conditionality of an aggregate algebraic 

system consisting of the equations (5) and (12) will not be 

declined. 

ІІ. EXAMPLE OF THE METHOD USAGE  

The inspection of the explained method on a test example 

of the self-oscillator has shown reliable convergence of a 

solution of mathematical model to a given solution inside the 

selected area. 

With the use of the method of inverse linear subsystem [1] 

and combined method of regularization [2], [3] the 

mathematical model of the self-oscillator as a system of two 

differential equations with the nonlinear function is 

constructed. The equations of model are as follows: 
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In a fig.1 a circuit of the self-oscillator and equivalent 

circuit of  its mathematical model (13) are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The differential equations of model (13) are presented in a 

fig. 1 by two integrating links from linear controlled current 

sources NF and capacities 1F. State variables y1 and y2 are the 

voltages of nodes 11 and 10. The nonlinear function f(y1,y2) is a 

fifth degree polynomial of two state variables, this function is 

presented by controlled voltage source Е. 

Two variants of the nonlinear polynomial function, shown 

in a fig. 1, correspond to:  

– method of a combined regularization ("Kd");  

– method of a combined regularization with the use of the 

second Lyapunov method ("KdLap").  

Output signals of the generator and model are voltage on 

capacitor 10p and voltage of the 11 node. In fig.2 the output 

signals of the generator and model with the first variant of the 

nonlinear function are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The self-oscillator and its mathematical model 

described for MicroCap-5. 
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Figure 2. Output signals of the generator and model 
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The analogs of the equations (5) for model (13), using 

which the identification of the first variant of the nonlinear 

function is realized, look like: 
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where ( )ky t  is reading of an output signal of the generator in a 

fig.2 in k-th time moment. 

In a fig.3 boundary cycle of oscillations of the self-

oscillator on a phase plane in coordinates of output signal and 

its derivative is shown. The points of the starting conditions of 

model with the first variant of nonlinearity, at which the 

integral of model converges to boundary cycle, are presented 

also. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a fig.3 it is visible, that for model with the first variant of 

nonlinearity (obtained by combined method of a 

regularization) there exists area of the starting conditions, at 

which the transient process of model damps and does not 

reconstruct the given output signal of the generator. It 

corresponds to the so-called "rigid" condition of excitation of 

oscillations. 

Let it is necessary to generate model, which will not have 

indicated area, that meets the conditions of "soft" excitation. 

This task we shall solve with the help of a circumscribed above 

method. 

Let construct the Lyapunov function according (6) for 

boundary cycle in fig.3 with normalized derivative. This 

function is shown in fig.4. 

The analogs of the equations (12) for model (13), which 

supplement the system (14) for providing the condition of 

"soft" excitation, are written as: 
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 (15) 

where (
1( )ky t ,

1( ) /kdy t dt ) - point of boundary cycle which is 

the nearest to a point (
1( )ky t ,

2 ( )ky t ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a fig.4 the points of a phase plane are marked, in which 

the additional equations (15), providing a condition of "soft" 

excitation of oscillations, are composed according to the 

explained method. 

By mutual solution of 400 basic equations (14) and 11 

additional equations (15) we have found the coefficients of the 

nonlinear function shown in the second variant in fig.1 

("KdLap"). The model with such nonlinear function has no 

interior area of the starting conditions, for which the periodic 

regime is not excited, that is corresponds to the generator with 

"soft" excitation. 
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Figure 4. The surface corresponding to Lyapunov function (6). 

The marked points are the ones, in which additional equations 

(15) for "soft" excitation of oscillations are composed 

Figure 3. Points – model starting conditions, at which the 

transient process converges to given boundary cycle. 

In area Ω the oscillations damp 
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