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The summary - Theoretical substantiation of a method for
providing the convergence of a solution of mathematical model of
an independent system to a given solution with the help of the
second method of Lyapunov is considered. The method is
illustrated by model of the self-oscillator, for which the conditions
of ""soft" excitation of oscillations are provided.
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|. THEORETICAL SUBSTANTIATION

Let mathematical model of an autonomous system is given
as a system of the differential equations

dy,/dt =y,;
dy,/dt = y,; 1)
dy, /dt = f(y,, Y,,...

where the nonlinear function f(Y;a) is continuous, Y=(yi,

Y,..., Yn), and the vector @ contains parameters.
It is shown in [1], that the system (1) models the wide class
of systems with concentrated stationary values by parameters.

Some vector function Y (t)=(¥,(t),¥,(),.... ¥, (®);
te(t,, T) is given. Then the task of identification of

mathematical model (1), which solution is close to a given
vector function, looks like:

mln_[

If we approximate f(Y;a)in a linear Euclidean space of

VYo a);

F7 ;) - o (t)“ dt. @)

basis functions ¢, (Y (t)), i=1m, then there exists a unique
solution of the identification task

min | (Zagy, ¥ty - (t)j dt. ®)

In practice the continuous task (3) is substituted by a
discrete one owing to digitization of a continuous set (t,,T):

te(t,T)ot, <t <T; k=LK .

Hence the discrete task of identification is the following:

man(Zago,(Y(t ) — AG )J .

k=1\i=1

(4)

The solution of the discretized task (4) is equivalent to a

solution in the quadratic metric of a rectangular system of the
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linear algebraic equations in relation to a vector of

approximating coefficients a :

Zaco.(Y(t D=l =ik 5)

The solution (5) always exists and it is unique.

The tasks of identification (2) - (5) are incorrect. It is
expressed by the fact that their solutions unacceptably strong
depend on errors ¥ (t) and from calculation errors. As the
result, solution of a system (1) can be somehow far from a
given vector Y (t).

Regularization according Tihonov together with a method
of reduction of an approximating polynomial [2], [3]
(combined regularization) ensures a correctness of the task of
identification. However domain of convergence to a solution

Y(t) can be too small. Really, the identifications (2) - (5)
control the behaviour of the approximated function only along
a trajectory Y (t) in a phase space.

Using the ideas of the second method of Lyapunov it is
possible to set a desirable domain of convergence of a system
solution (1).

Let construct such Lyapunov function in relation to
aberrations of a solution Y (t) of a system (1) from a given
vector Y (t), that it will be positive in the necessary area,
excepting Y (t)=Y (t) points, where it is equal to zero [4].

The choice of the Lyapunov function is very complex task

in the case of searching for a stability region of a system [4]. In
our case a stability region (that is the domain of convergence to

a solution Y(t)) is not determined, but it is set. Therefore

choice of the Lyapunov function is much easier. A satisfactory
sample of such function - incomplete quadratic shape:

V=X (4 O-50) ©

At such Lyapunov function the domain of convergence can
include all phase space.

For Y (t) convergence to Y(t) in some area Q of a phase

space of a system (1) it is enough, that derivative of a
Lyapunov function (6) according to equation of motion (1) will

be negative in this area, excepting Y (t)=Y (t) points, where it
should be zero [4]:

Za\gy(Y) d);'<0 npu YeQ; (7
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=0 nmpu Y=Y. 8)

The condition (8) for the function (6) is met always.
Let calculate the left part of an inequality (7) taking into
account (6) and (1):

S (O~ 5 0) Vi ®) +
E( ©)

+(Y, (O -5,(0)- f(¥,a) < 0;

The condition (9) in discrete variant looks like:

n-1

t, t.)) Vi (t,
;y&)y&)yw(H )

(1,0 -,0)) FY )8, <0

From inequalities (10) it is possible to obtain the algebraic
equations, which are convenient for supplement of the
identification system (5). For this purpose we select such
function A(Y), that A(Y)<0 at YeQ and A(Y)—0 at Y—Y . An
example is the Lyapunov function (6) with negative sign:

A== (v, -5,®) . (11)

i=1

Having equated the left parts of inequalities (10) to the
function (11), we obtain a system of equations, which is
equivalent to the system of inequalities (10) in sense of our
task:

D006 100) %6+ ((6) -5, 0))
F0Y(4).8) = A 6);

Let solve the obtained equations in relation to the

Y(t)eQ

approximated function f(Y (t,),a)=> a¢ (Y (t)):

i=1

) A ) - (%) -5, 0)) Voalt)
) = = 12
izzllal(/)l(Y(tk))Y(lk)EQ yn(k)_yn(k) ( )

The equations (12) have the same structure as equation (5).
The mutual solution of the equations (5) and (12) provides the
extension of a domain of convergence to a given solution.

It is necessary to select those points Y(t) inside area Q, in
which we should control the convergence of a solution Y (t) of

the system (1) to a given solution Y (t). The more such points,

the more reliably convergence to a given solution in area Q is
guaranteed, but the quality of approximation (5) is declined in
this case. It is also necessary to avoid points near a trajectory
Y (t) or on it. Then the conditionality of an aggregate algebraic

system consisting of the equations (5) and (12) will not be
declined.

II. EXAMPLE OF THE METHOD USAGE

The inspection of the explained method on a test example
of the self-oscillator has shown reliable convergence of a
solution of mathematical model to a given solution inside the
selected area.

With the use of the method of inverse linear subsystem [1]
and combined method of regularization [2], [3] the
mathematical model of the self-oscillator as a system of two

differential equations with the nonlinear function is
constructed. The equations of model are as follows:
dy,/dt =y,;
{dyz/dt =0 (F (Y1, ¥2) - W) 13)
()= Y ayiyl i+j<s

i.j=0

In a fig.1 a circuit of the self-oscillator and equivalent
circuit of its mathematical model (13) are shown.
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Figure 1. The self-oscillator and its mathematical model
described for MicroCap-5.

The differential equations of model (13) are presented in a
fig. 1 by two integrating links from linear controlled current
sources NF and capacities 1F. State variables y1 and y2 are the
voltages of nodes 11 and 10. The nonlinear function f(y,,y,) is a
fifth degree polynomial of two state variables, this function is
presented by controlled voltage source E.

Two variants of the nonlinear polynomial function, shown

inafig. 1, correspond to:

—method of a combined regularization ("Kd");

— method of a combined regularization with the use of the

second Lyapunov method ("KdLap").

Output signals of the generator and model are voltage on
capacitor 10p and voltage of the 11 node. In fig.2 the output
signals of the generator and model with the first variant of the
nonlinear function are shown.
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Figure 2. Output signals of the generator and model



The analogs of the equations (5) for model (13), using
which the identification of the first variant of the nonlinear
function is realized, look like:

S [(dye)Y | dE)
i;oaijy(tk)[ " ]— preal

i+)<5 o®=2256,14; k=1,400

o’ +¥(t); _ (14)

where §(t,) is reading of an output signal of the generator in a

fig.2 in k-th time moment.

In a fig.3 boundary cycle of oscillations of the self-
oscillator on a phase plane in coordinates of output signal and
its derivative is shown. The points of the starting conditions of
model with the first variant of nonlinearity, at which the
integral of model converges to boundary cycle, are presented
also.
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Figure 3. Points — model starting conditions, at which the
transient process converges to given boundary cycle.
In area Q the oscillations damp

In a fig.3 it is visible, that for model with the first variant of
nonlinearity  (obtained by combined method of a
regularization) there exists area of the starting conditions, at
which the transient process of model damps and does not
reconstruct the given output signal of the generator. It
corresponds to the so-called "rigid" condition of excitation of
oscillations.

Let it is necessary to generate model, which will not have
indicated area, that meets the conditions of "soft" excitation.
This task we shall solve with the help of a circumscribed above
method.

Let construct the Lyapunov function according (6) for
boundary cycle in fig.3 with normalized derivative. This
function is shown in fig.4.

The analogs of the equations (12) for model (13), which
supplement the system (14) for providing the condition of

"soft" excitation, are written as:
> a0 =460 -5.60F {10 - ) -
I+JS5 (]_5)

() -R0) %G, »/(yz(tk)—d%(%); V()0

where (¥, (t,),d¥,(t,)/dt) - point of boundary cycle which is
the nearest to a point (y,(t.), ¥, (t,) )
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Figure 4. The surface corresponding to Lyapunov function (6).
The marked points are the ones, in which additional equations
(15) for "soft" excitation of oscillations are composed

In a fig.4 the points of a phase plane are marked, in which
the additional equations (15), providing a condition of "soft"
excitation of oscillations, are composed according to the
explained method.

By mutual solution of 400 basic equations (14) and 11
additional equations (15) we have found the coefficients of the
nonlinear function shown in the second variant in fig.1
("KdLap™). The model with such nonlinear function has no
interior area of the starting conditions, for which the periodic
regime is not excited, that is corresponds to the generator with
"soft" excitation.
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