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Abstract: In this paper the problem of evaluation of 

the bound accuracy for range based localization 
techniques in wireless sensor networks is considered. 
The comprehensive analysis of the existing solution of 
the Cramer-Rao lower bound problem for the anchored 
localization based on the time of arrival or relative signal 
strength principles shows certain discrepancy between an 
analytical solution and simulation results. Therefore, a 
new bound for this problem has been developed on the 
basis of more accurate stochastic modeling of the 
localization error.  
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1. Introduction 
The availability of location information in a wireless 

network plays the vital role in such applications as 
geographical routing, target tracking and environmental 
monitoring, and provides a possibility to complete these 
problems in a more efficient (in terms of energy, latency, 
etc.) way. Another important aspect of the localization 
methods design consists in the comparison of their 
performance with certain theoretical limits, a.k.a. 
bounds, on the localization error. Among numerous 
existing bounds, the Cramer-Rao lower bound (CRLB) is 
probably the most popular tool for the benchmarking of 
performance of localization methods. Initially originated 
from the radar and remote sensing techniques [1-3], the 
existing solution of the CRLB problem was directly 
applied to the task of nodes localization in wireless 
sensor networks (WSN) [7,9-11]. However, obtained 
under certain assumptions, which are not valid anymore 
in the WSN, the sensor localization CRLB requires a 
new and more detailed consideration. 

The main contribution of this paper consists in the 
derivation of the CRLB for the range-based localization 
using more accurate ambiguity function that adequately 
represents the procedure of node position estimation. 

2. General assumptions 
Considering bounds on the sensor localization error, 

this paper is concentrated only on the WSN, where time 
synchronization (TOA) or propagation of predefined and 

standardized signals (RSS) is available. By other words, 
the particularities of the CRLB for one-hope nodes 
localization based on the independent range estimations 
is investigated. The problem consideration is restricted to 
pair-wise (anchor-node) measurements under static 
topology conditions. Also, the node localization under 
only ideal electromagnetic wave propagation conditions 
(absence of multipath, diffraction etc.) is analyzed. The 
localization problem consideration is restricted to a 2D 
case, whereas the extension to the higher dimensions 
cases is straightforward. 

In wireless communications each anchor can be 
considered as a point source of the electromagnetic radiation, 
thus, the polar coordinate system is used as the most natural 
way to describe the pair-wise (anchor-node) measurements. 

Therefore, using measurements  ,ψ r φ , where 

,i i ir    ψ  denotes values of the range ir  and angle i  that 

are obtained by means of the ith anchor with coordinates 

,i X i Y i    ξ , a vector of parameters ,r     ω  

should be estimated. This vector describes a position of the 
node N in the polar coordinate system (Fig. 1). At the same 
time, the Cartesian coordinate system provides more 
convenient way for the WSN topology description. Here, the 

vector  ,X Y θ  describes the position of the node N. 

Therefore, the CRLB of the node N localization, which is 
evaluated based on the ψ , is supposed to be introduced in 

the Cartesian coordinates as well. The problem analysis is 
elaborated using the probabilistic description of the node N 
position. Then, the CRLB is represented as:  

   
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where     2 2lnI p      ΞΘθ ξ θ θ  is the Fisher 

information matrix and    p LΞΘ ξ θ θ  denotes a 

likelihood function that is associated with measurement 
data. 
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Fig. 1. Range based localization (the node N is localized  
using measurements of anchors A1,…, Am) 

 

3. Proposed solution to CRLB problem 
We start the analysis by an accurate stochastic modeling 

of the localization procedure. The problem linearization, 
which physically means assumption about plane wave 
propagation in far-field communications, is not valid in the 
description of localization problems in WSN. 

The analysis of the localization problem is based on 
the definition of joint pdf of measurements which can be 
written based on the chain rule for probabilities as: 

       
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where the last step is possible due to the independence of 
the measurements. The localization procedure does not 
also depend on the coordinate system used for its 
description, therefore: 
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According to (1) the  CRLB ω  in the polar 

coordinate system is equal to: 

   
1

2 2ˆvar ln .p
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       ω ψ ω ω             (4) 

Then, in the Cartesian coordinates  CRLB θ  will be 

determined as:  
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where  fθ ω  is the function that defines a 

transformation of the coordinate system.  J f  ω ω  

is the Jacobian matrix, such that: 
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It has to be highlighted, that the 2D likelihood 
function in the existing solution is defined only by range 
measurement projections causing singularity of the 
Fisher information matrix, while the proposed solution 
operates with both the range and angle estimation 
models. The fact that angle measurements are not carried 
out is interpreted in the proposed solution as the angle 
measurement with uniformly distributed support error, 
creating a random variable on the circle [12]. Taking into 
account the independence of polar coordinates, the error 
of node localization by each anchor can be divided onto 
independent components, which are related with range 
and angle estimations as: 

       ,i i r i r ip p p r p      ψ ω ψ .  (7) 

The range estimation is described by the Gaussian 
distributed (3) ambiguity, whereas: 
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          (8) 

where H() is the Heaviside function. Then, the Fisher 

information matrix for the  CRLB ω  is equal to 
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where  2 ln 0rp        ψ ω  and 

 2 ln 0rp        ψ ω  due to the independence 

of the coordinates of polar coordinate system, and 

 2 2 2ln 1r r rp r          [3,4]. The closed form 

solution for   2 2ln p          is still a 

challenging problem. However, inverting statement of 
(1): the CRLB is the lower bound of any unbiased 
estimator, one can conclude that the CRLB itself is upper 
bounded by the variance of any such estimator. 
Therefore, in the Fisher information matrix this value is 
approximated by the variance of the parameter 
estimation using, for instance, maximum likelihood 
approach that is known to be asymptotically efficient: 
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Solving  ln 0,p     φ  the left-hand side of 

this equation is a constant being independent of  , 
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therefore, ˆ , .         This means, that for the 

measurement made by ith anchor any value of the angle 
can be considered as the estimation of the angle of the 
node N position. Due to the closed space of the support 
for real angles, which are random variables on the circle, 
the maximum likelihood estimation of the angle with 
uniform error distribution is asymptotically unbiased 
because of the symmetry of the error pdf, i.e., 

ˆ      , where support symmetry is conditioned by 

the properties of distribution on the circle. The variance 
of this estimator is equal to: 
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Therefore,  
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and the Fisher information is defined as follows: 
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Using the additive property of the Fisher information 

the  I θ  based on the m  independent pair-wise 

measurements can be written as: 
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where  iI θ  denotes the Fisher information about vector 

θ  evaluated based in the ith anchor measurement. 
The comparison of the CRLB problem solutions has 

been performed using geometrical dilution of precision 
(GDOP) [8]. This parameter is derived based on the 
CRLB and often used for the localization benchmarking 
providing an integral evaluation of the localization 
ambiguity. Using the setup from [5] the dependence of 
the GDOP from anchors locations based on the existing 
and proposed solutions have been obtained (Fig. 2). The 
presented results demonstrate same qualitative behavior, 
i.e., the positions of minima and maxima of the GDOPs: 

 maxGDOP GDOP  in the case, when 

   2 1 3 2 2 20, , ,             , and 

 minGDOP GDOP  if  2 1 3,2 3,4 3,5 3         

 3 2 2 2,2 ,3          . However, with the proposed 

solution of the CRLB problem, the GDOP achieves the 
finite non-zero values that correspond to the finite 
localization ambiguities defined in terms of the entropy 
of a separate anchor localization. 
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Fig. 2. Comparison of the CRLB for the range based 
localization: (a) existing solution, (b) proposed solution 

 

4. Conclusions 
In this paper the problem of node localization bounds in 

the anchored wireless sensor networks has been investigated. 
Focusing on the CRLB approach of the localization error 
evaluation, it has been shown the lack of accuracy of the 
existing solution of this problem. Based on the more accurate 
measurement model an improved solution of the CRLB 
problem for the TOA/RSS localization in the WSN has been 
developed and the impact of the network topology on the 
localization precision has been investigated. It has been 
shown that the proposed solution overcomes the drawback of 
the existing one.  

Future work in this area will consist in the 
investigation of the conditions of CRLB applications as 
well as in development of information-theoretic criteria 
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of the localization problem in WSN. Another extension 
will be focused on the application of the proposed 
solution to the error propagation model in multi-hop 
localization problems. 
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УТОЧНЕНИЙ РОЗВ’ЯЗОК ГРАНИЦІ  
РАО-КРАМЕРА У ЗАДАЧАХ TOA/RSS 

ЛОКАЛІЗАЦІЇ 

Т. Голотяк, С. Волошиновський,  
Ж. Ролім, І. Прудиус  

У цій статті розглядається проблема оцінки нижньої 
границі середньоквадратичної похибки локалізації об’єктів 
у сенсорних мережах на підставі методів вимірювання 
відстані. Аналіз існуючих розв’язків нерівності Рао-
Крамера при локалізації об’єктів на основі вимірювання 
часу приходу сигналу або його відносного загасання 

показав розходження між аналітичним рішенням та 
результатами моделювання. Таким чином, 
використовуючи точніше стохастичного моделювання, 
нова нижня границя похибки локалізації запропонована у 
цій статті. 
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