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In this work, the MOSFET device is considered. The carrier densities in the MOSFET
are modeled by the drift-diffusion equation. We manipulate the formulas of the charge
density at the equilibrium in order to derive a simple Poisson’s or Laplace’s equation. To
formulate a shape optimization problem, we have defined a cost functional. The existence
of an optimal solution is proved. To solve the involved optimization problem, we have
designed a numerical approach based on the finite element method combined with the
genetic algorithm. Several numerical examples are established to prove the validity of the
proposed approach.
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1. Introduction

Inverse boundary identification problems are ubiquitous in medicine, engineering, industry, and other
fields [1–3]. This kind of problem consists in finding an unknown boundary defined as a part of the
domain boundary’s or a boundary which separates two regions, that is called a free interface. Likely in
the framework of semiconductor industry the depletion layer is assumed to be a free boundary, it is the
interface which separates two regions, the depletion and conductivity regions. In this paper, we study
the reconstruction of the depletion layer in the MOSFET (Metal–Oxide–Semiconductor Field-Effect
Transistor) device [4].

To solve a free boundary problem, we pass through two phases, the first consists in defining a shape
functional that can help to transform the free boundary problem into a shape optimization problem,
then prove the existence of an optimal solution. The second phase implies the design of a numerical
method in order to approximate the free boundary or the free interface numerically.

Several numerical schemes to solve this kind of problem have been proposed, most of them are gra-
dient based methods, such as the famous conjugate gradient method combined with some discretization
scheme, such as the work of Abouchabaka et al. [1] they use the boundary elements method combined
with gradient method to solve an optimization problem in MESFET device. The work of ZhangP. [5],
deals with the application of the finite element combined with a gradient method to solve an inverse
scattering problem. In this work we put the light on the heuristic methods, they are considered as
feasible strategies to solve a given optimization problem. Gradient based methods have a major in-
convenience, which is the need to evaluate the gradient of the cost functional, in the case of shape
optimization it concerns the computation of the shape derivative that can be evaluated by solving two
subproblems named the sensitivity and the adjoint problems. There comes the simplicity of Heuristic
methods, they consist of finding the optimal solution in a population of candidate solutions, basing on
the value of the cost functional that depends only on the solution of the state problem.

In this work, to solve the involved shape optimization problem we propose the combined finite
element method [6] with the genetic algorithms [7]. The search of the optimal depletion layer is
performed by the genetic algorithm process, that consists in moving an initial population of candidate
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Reconstruction of the depletion layer in MOSFET by genetic algorithms 97

solution to a new one based on the genetic operations, selection, mutation, and crossover. The optimal
solution is obtained after exceeding a maximal generation or satisfying the stopping criteria.

This work is organized as follows, in the next section 2 we introduce the MOSFET and its math-
ematical model. In section 3 we introduce a cost functional to formulate the shape optimization
problem. Section 4 is dedicated to describe the proposed scheme. In section 5, we establish some
numerical examples to show the validity of the two approaches to approximate the depletion layer in
MOSFET.

2. Problem formulation

The Metal Oxide Semiconductor Field Effect Transistor abbreviated by MOSFET is an important
semiconductor device used mainly in the fabrication of microwaves, for its property such as the low
noise signal amplifier [4]. MOSFET is composed from a drain, source and a gate terminals (Fig. 1).
There is two working mode’s of the MOSFET, the first one is the depletion mode, it is realized when
the applied voltage to the gate terminal is zero, we say that the MOSFET is on. The other one is the
enhancement mode, where the MOSFET is off, it is realized when we apply a negative voltage to the
gate terminal.
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Fig. 1. Geometry of MOSFET.

The domain of the MOSFET is Ω, we
assume that ∂Ω is smooth. C and D are
the conductivity and depletion regions re-
spectively. We set ΓD = Γ2 ∪ Γ3 ∪ Γ4 and
ΓN = ∂Ω \ ΓD. where Γ2, Γ3 and Γ4 are
the source, the gate and the drain termi-
nals, respectively. The depletion layer is
denoted by Γ. The carriers density in the
MOSFET can be described in the domain
of MOSFET Ω by the following equation:

− ε∆u = q(n− p−m),

Jn = q(Dn∇n+ µnn∇u),

Jp = −q(Dp∇p+ µpp∇u),

div(Jn) = 0 div(Jp) = 0,

(1)

q is the elementary charge and ε is the materials permittivity, they are also called the physical constants.
n, p and m are the electrons, holes densities and the doping profile, respectively. Jn and Jp are the
current densities. The variable u stands for the electrostatic potential.

We add to the system (1) the next boundary conditions

n = nd p = pd u = ud on ΓD,

∂n

∂ν
=
∂p

∂ν
=
∂u

∂ν
= 0 on ΓN .

(2)

As we want to identify the depletion layer, we first need to simplify the previous expression using some
relations on the charge density in the semiconductor at the equilibrium stage. In the equilibrium,
inside the depletion region there are no mobile charges means that the ionized donor density equals
the donor density N ,

n− p−m = N,

and the conductivity region is neutral, means that

n− p−m = 0.
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The above equations can be simplified as follows [4]:




−∆u = 0 on C,

−∆u = ζ on D,

∂u

∂ν
= 0 on ∂Ω ∩ ΓN ,

u = ud on ∂Ω ∩ ΓD,

(3)

where ud equal V + on Γ1, V − on Γ3 and 0 on Γ5. And ζ = N/ε. The equation (3) can be transformed
into the following system (4)–(5):





−∆u1 = 0 on C,

∂u1
∂ν

= 0 on ∂C ∩ ΓN ,

u1 = ud on ∂C ∩ ΓD,

(4)





−∆u2 = ζ on D,

∂u2
∂ν

= 0 on ∂D ∩ ΓN ,

u2 = ud on ∂D ∩ ΓD.

(5)

The potential u is assumed to be continuous on the depletion layer Γ, in order to guaranty the
equivalence between equation (3) and the system (4)–(5), means that

u1 = u2 and
∂u2
∂ν

=
∂u1
∂ν

on Γ. (6)

The unknown in (4)–(6) is the potential u and the depletion layer Γ, in the next section we design the
shape identification problem in order to determine u and Γ.

3. Shape identification problem

First, let the functional space be: H1
ΓD

(Ω) = {u ∈ H1(Ω), u = 0 on ΓD}, where H1(Ω) is the standard

Sobolev space. It is obvious that ΓD ⊆ ∂Ω. The trace operator from H1(Ω) in H
1
2 (ΓD) is surjectif,

then there exists U ∈ H1(Ω) such U = ud on ΓD, then the weak formulation of system (4)–(5) can be
written as:





Find u1 ∈ H1
ΓD

(C) such:∫

C
∇u1(x)∇v(x)dx = −

∫

C
∇U(x)∇v(x)dx, ∀v ∈ H1

ΓD
(C).

(7)





Find u2 ∈ H1
ΓD

(D) such:∫

D
∇u2(x)∇v(x)dx =

∫

D
ζv(x)dx−

∫

D
∇U(x)∇v(x)dx, ∀v ∈ H1

ΓD
(D).

(8)

Now, we assume that the free layer Γ is parametrized by:

Γ(ϕ) = {(x, ϕ(x))/x ∈ [0, L] and 0 6 ϕ(x) 6 H},

ϕ is the function characterizing the free boundary Γ. Then θad the set of admissible layers is given by:

θad =
{

Γ(ϕ)/ϕ ∈ C([0,H]), ∃L0 > 0, |ϕ(x1)− ϕ(x2)| 6 L0|x1 − x2|,

0 6 ϕ(x1) 6 H ∀x1, x2 ∈ [0,H] and ϕ = 0 on [0, aΓ] ∪ [bΓ, L]
}
.

(9)

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 96–103 (2020)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Reconstruction of the depletion layer in MOSFET by genetic algorithms 99

We note that for any admissible depletion layer Γ ∈ θad, the variational problems (7) and (8) admit
unique solutions, the proof is based on the Lax–Milgram theorem [8].

Now we consider the following cost functional:

J(Γ, u) =
1

2

∫

Γ
(u1 − u2)2dx + ρmeas(Γ),

the first term in J is to satisfy the continuity of the potential u on the depletion layer, means that we
must have u1 = u2 on Γ at convergence. The second term is a regularization term added to ensure the
uniqueness of the optimal solution, defined as the measure of Γ:

meas(Γ) =

∫

Γ
1ds,

ρ is a penalty parameter. Let F be the following space:

F = {(Γ, u),Γ ∈ θad, u = (u1, u2); u1 solution of (7) and u2 solution of (8)}.

Finally, the shape identification problem can be given by the following:




Find (Γ⋆, u⋆) such:

(Γ⋆, u⋆) = argmin
(Γ,u)∈F

J(Γ, u). (10)

Theorem 1. The problem (10) admits at least one solution in F .

The proof of this theorem requires the compactness of the space F and the lower semi-continuity
of functional J .

Proposition 1. The space F is compact.

Proof. First we demonstrate that θad is compact. Let (Γ(n))n = (Γ(ϕn))n be sequence lives in θad,
using the Ascoli–Arzela theorem, we deduce that (Γ(n))n converge to ϕ in terms of subsequence. Since
ϕn = 0 on [0, an] ∩ [bn, L] we can easily derive the existence a and b such that an −→ a and bn −→ b
uniformly in [0, L], in addition we have ϕ = 0 on [0, a] ∩ [b, L]. Hence θad is compact.

Let now (u(n)) solution sequence of (3). We note that a solution of (3) is bounded in H1(Ω)
independently of Γ [9], then (u(n)) is bounded, therefore we can extract a subsequence denoted again
(u(n)) that converges to u weakly in H1(Ω). Similarly to [9], we can show that u is a solution of (3)
and the convergence of (u(n)) to u is strong. �

Lemma 2. The functional J is lower semicontinuous on F .

Proof. Let (Γ(n), u(n)) be a sequence in F that converges to (Γ, u). Since we have proved the strong
convergence of (un) to u , then we have

lim
n→∞

∫

Γ(n)

[
u
(n)
1 − u(n)2

]2
dx =

∫

Γ
(u1 − u2)2dx.

On the other hand [8], we have

meas(Γ) =

∫

Γ
1ds 6 lim inf

n→∞

∫

Γ(n)

1ds = lim inf
n→∞

meas
(
Γ(n)

)
.

Therefore,
J(Γ, u) 6 lim inf

n→∞
J
(
Γ(n), u(n)

)
,

which prove the lower-semi continuity of J . �
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As we mentioned in the introduction, to solve this shape identification problem, we propose an
approach designed by a combination of the genetic algorithm with finite element method. The next
section will concentrate on the description of this approach.

4. The proposed algorithm

Genetic algorithms (GA) [7, 10] become a feasible strategy to solve a wide classes of optimization
problems. GA works on a population of candidate solutions, the candidate solutions or the individuals
should be represented by a binary or a float code, for the problem at hand the float representation
can be implemented easily, in contrast the binary representation will cost a huge time from run to
run. A new generation is created after applying the three genetic operators, selection, crossover, and
mutation.

Selection: it may be the most important step in a genetic algorithm, it leads us to know which
individuals will survive to be parents to create the future generation. Several selection operators
exist,e.g. the roulette wheel selection, stochastic universal selection, and the tournament selection.
In this application we use the tournament selection which takes a chosen number of individuals for a
battle, the winners will be the parents for the next meeting.

Crossover: this genetic operator combines the information of two parents to produce new offspring
or children. There are different crossover schemes such, one-point crossover, multi-point crossover, the
random barycentric crossover, the crossover is applied with the probability pc. In this work, we use
the random barycentric crossover, from two parents X1, X2 and a weight α chosen randomly within
the range [0, 1], it produces two new children: Y1 = αX1 + (1− α)X2, and Y2 = αX2 + (1− α)X1.

Mutation: it performers diversity in the population by changing one or more genes in an individual
radically, for the binary mutation it reverses 0 to 1 or 1 to 0. In our case, its desirable to use the non-
uniform mutation or the Gaussian mutation. The mutation is applied with a probability pm, as in
nature the mutation is rare, therefore this probability should be small.

In order to simplify the task, we use the bézier curve [11] to parameterize our free boundaries, which
means we will give just some control points in place of giving the entire coordinates of the boundary.
As advantages of the bézier curves is that the curve is a continuous and infinitely differentiable curve,
and it is bounded by the convex envelope formed by the control points. We note that the individuals
will be vectors of control points, then we use the Casteljau algorithm [11] to convert each individual
to a curve.

Algorithm 1 GAFEM

Require: choose a precision tol, pc, pm and set t = 0.;
1: Generate a random population P (0) in the range [0, H ].;
2: for each individual in the population P (t) do:
3: Solve the problems 7 and 8;
4: Extract the current best individual Γbest in the new population;
5: evaluate J ;
6: end
7: if | J(Γbest) |6 tol then
8: Stop;
9: else

10: Apply the genetic operations (crossover and mutation);
11: set t = t+ 1 and back to step 2;
12: end

5. Numerical results

We assume the device domain of the MOSFET is Ω = [0, 1] × [0, 12 ]. To solve the stated problem we
call the P1 finite element, for the mesh we call the algorithm proposed by P.Persson and G. Strang [12].
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For the genetic operations we choose the tournament selection, the barycentric crossover and the non-
uniform mutation operators. To tune our GAFEM algorithm we consider the parameters given in
Table 1.

Table 1. GA parameters.

Population size Max iterations Crossover percentage mutation percentage
30 500 75% 5%

Each individual in the population is assumed to be a vector of control points of Bézier curve,
which we transform by the Casteljau algorithm [13] to a continuous curve, in other word to candidate
boundary. The choice of Bezier curve is due to their properties of producing a continuous and smooth
curve, in addition to overcome the non-differentiable character of the free boundary.

Our numerical examples are decomposed into two, first we study the approximation when the
MOSFET is in the depletion mode, then we move to the enhancement mode. In the depletion mode,
the gate is unbiased. The application of a positive voltage to the drain terminal implies the current
flowing through the channel. While increasing the drain voltage, the depletion region becomes more
wider, as a resistance to the current flow. We can remark in Fig. 2, when we vary the drain voltage
from 0.1 V, 0.4 V to 0.7 V, the depletion zone is much wider, the gate voltage is fixed at 0 V.
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Fig. 2. Optimal boundaries under depletion mode obtained by
GAFEM.
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Fig. 3. Optimal boundaries under enhancement mode obtained by
GAFEM.

In the enhancement mode the
gate in biased. We apply a positive
voltage to the drain terminal thus the
current flow through the channel. We
fix the drain voltage at +0.4 V. In this
mode, the depth of the depletion re-
gion becomes higher when we increase
the gate voltage, there the depletion
layer will stop the current flow. The
demonstration of this mode is illus-
trated in Fig. 3, the depletion zone is
much wider when we vary the drain
voltage from 0 V, −0.4 V to −0.7 V.

The obtained results with the
combined method GAFEM keep the
physical properties holding, that is
proved by Figs. 2 and 3, where the
depth of the depletion region changed
by varying the applied voltages to the
gate and the drain terminals, and the
depth is more important in the case
of the enhancement mode, where the
depletion region is too large to make
the current flow move slowly through
the channel.

Table 2. The optimal cost for each functioning mode.
Depletion mode Enhancement mode

V + V − cost V + V − cost
+0.1V 0.0V 0.021 +0.4V 0.0V 0.033
+0.4V 0.0V 0.043 +0.4V −0.4V 0.041
+0.7V 0.0V 0.078 +0.4V −0.7V 0.067

In Table 2 we recorder the obtained optimal
cost for different voltage values, for both cases,
the depletion and the enhancement modes. V +

and V − stand for the applied voltage on the
drain and the gate terminals, respectively, cost
stands for the value of the cost functional J .
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6. Conclusions

In this work, we have considered the free boundary problem for the MOSFET device. The numerical
simulation has been performed using the finite element method combined with the genetic algorithm.
The functioning of the MOSFET is governed by two modes: the depletion and enhancement modes,
our proposed method has succeeded in the identification of the depletion layer in both modes, as it
ensures their physical properties preservation, namely the depletion region increment’s depth while the
increment of the gate voltage.
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Реконструкцiя збiдненого шару в МДП-структурi за допомогою
генетичних алгоритмiв

Ель Язидi Юнес, Еллабiб Абделлатиф

Унiверситет Кадi Айяд,

Лабораторiя прикладної математики та обчислювальної технiки,

Факультет науки i технiки,

Авеню Абделькрим Ель-Хаттабi Б. П., 549, Марракеш, Марокко

У цiй роботi розглядається напiвпровiдниковий пристрiй на основi МПД-структури.
Густину носiїв заряду в МПД-структурi змодельовано рiвнянням дрейфової дифузiї.
Для того, щоб отримати просте рiвняння Лапласа або Пуассона, використано фор-
мули густини заряду за умов рiвноваги. Означено функцiонал витрат для формулю-
вання задачi оптимiзацiї форми. Доведено iснування оптимального розв’язку. Для
розв’язання задачi оптимiзацiї розроблено числовий пiдхiд на основi методу скiнчен-
них елементiв у поєднаннi з генетичним алгоритмом. Для пiдтвердження обґрунто-
ваностi запропонованого пiдходу наведено декiлька чисельних прикладiв.

Ключовi слова: напiвпровiдник, оптимiзацiя форми, скiнченний елемент, гене-

тичний алгоритм.
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