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Abstract: This paper considers the stability of 

dynamical systems described by differential equations 
with fractional derivatives. In contrast to a number of 
works, where the differential equation describing the 
system may have a set of different values of fractional 
derivatives, and the characteristic polynomial is formed 
on the basis of the least common multiple for the 
denominators of these indicators, this article proposes 

forming such a polynomial in a specific
1
3j  basis and 

studying the stability of systems with such fractional 
description based on the resulting rotation angles of 

( )
l
m

nH j w  vector at a frequency change from zero to 
infinity.  

This technique is similar to the investigation of 
system stability by frequency criteria used for a similar 
problem in describing the system by differential 
equations in integer derivatives. 

The application of characteristic polynomials formed 

in the 3
1

j  basis for the description of the processes in 
dynamic systems and the analysis of the stability of such 
systems on the basis of the frequency criterion are the 
essence of the scientific novelty of this paper. 

The article contains the following sections: problem 
statement, work purpose, presentation of the research 
material, conclusions, list of references. 

Key words: dynamic system, fractional derivative, 
stability, characteristic polynomial, frequency stability 
criterion. 

1. Problem statement. 
The application of fractional order controllers in 

technical systems together with the creation of process 
models using fractional order derivatives have formed 
new classes of problems in such systems. These are the 
formation of the mathematical apparatus for the study of 
transition processes in systems with fractional order 

derivatives, on the one hand, and the analysis of the 
stability of such systems, on the other. Although the 
approximation of fractional order systems by systems 
with integer order derivatives is quite often used for 
the study of transition processes, the application of 
this approach for stability analysis requires additional 
research. According to Matignon’s stability theorem 
[1], the location area of the roots of a characteristic 
polynomial ensuring stable operation of the system 
varies depending on the base index of the degree of 
the characteristic polynomial a1j . The fractional 
order system can be stable even in the presence of a pair 
of complex conjugated roots in the right plane. At the 
same time, the presence of roots in the right half-plane 
for systems with derivatives of the integer order clearly 
indicates the instability of such a system. The 
transformed complex Rw  – Riemann plane [2–4] or the 
Lyapunov stability criterion [5–6] are most frequently 
used to study the stability of the fractional order system. 
It should be noted that the traditional transformation of 
the characteristic polynomial 
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where m is calculated on the basis of the least common 
multiple of nbbb ..., 21 , can lead to a high-order 
polynomial, and the analysis of the stability of the 
system will be significantly complicated. It is the high 
order of the obtained characteristic polynomial that 
creates significant difficulties in applying the frequency 
criteria for the analysis of the stability of systems with 
integer derivatives in fractional order systems. Thus, 
in [7], to eliminate the problem of high orders, it is 
proposed to analyze the argument of a modified 
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characteristic polynomial of a system of the form 
1

0
0

( ) ( )
m mk

m k
k

a s a sa al-
=

× × +å , where l  is a natural 

number. The system will be stable if the argument of the 
modified polynomial is equal to zero. In [8], the stability 
criterion for a system with fractional order derivatives is 
formulated as follows: “the stability of the system 
requires that the hodograph, starting at the positive part 
of the real axis 0=w  while w  growing to ¥  should 

pass sequentially through the )2( a
p

×
×m

 sectors of the 

complex plane, where m is the order of the polynomial, 
a  is determined from the characteristic polynomial 

basis a1s . 
It should be noted that it is possible to apply the 

fractional order characteristic polynomial to describing 
the processes in electromechanical systems [9, 10].   
Moreover, the order of the polynomial itself is not high, 
and the basis of such a polynomial can be either 21s or 

31s , 32s .  
The purpose of this work is the formation of 

characteristic polynomials of systems in the 3
1

j  basis of 
fractional values and the analysis of the stability of such 
systems based on the frequency criterion.  

2. Presentation of the research material. 
Integer order characteristic polynomial of a closed 

dynamic system of the form:  
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after the transition to the frequency domain by replacement 
w® js  can be written as: 
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where npppp ...,, 321  are the roots of the characteristic 
equation H(s=jω)=0. 

Having moved from the Cartesian coordinate system 
to the polar one, we obtain 
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where å
=

=
n

i
i

1
)()( wjwj  is the argument (arg) of the 

complex function )( wjH . 
In order to write similar expressions for polynomials 

of fractal systems, it is necessary to solve the issue of 
choosing the basis for a characteristic polynomial in its 
frequency representation.  

Let us consider the case of 31j value as the basis 
for a characteristic polynomial and investigate the 
relationship of the roots of a fractional characteristic 
polynomial in the frequency representation under the 
condition of the stability of fractional systems. 

It is known that the trigonometric form of a 
complex number is generally represented as follows: 

)sin(cos jj jrjbaz +×=+= , where 22 bar += ; 

a
barctg=j . Representation of a complex number in 

trigonometric form is required for the application of the 
well-known Moivre formula which enables calculation 
of any fractional degree d of a complex number, i.e. for 

m
ld = , where m is the degree of the root of a complex 

number and l is the degree of a complex number (m and l 
are integers) . 

Then, taking into account the Moivre formula, we 
can write for the case when l = 1 

)2argsin2arg(cos
m

kzj
m

kzzz mm pp +
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where )1,...(2,1,0 -= mk . 

For m=3 we obtain 
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and when ®= 0k  
32
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Now, a polynomial in the 3
1

j  basis can be formed 
which looks as follows: 
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and, having written it as 
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we can analyze the options for the placement of roots 
on the complex plane )(wjV , )(wU  and the resulting 

angles of vector rotation )( 3
1

іpj -w  to meet the 
condition of the frequency criterion of stability given 
in [8].   
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It is worth noting that according to this criterion, 

the total angle of the vector rotation ))(* wm
l

n jH  at 
the frequency changing from 0 to infinity must be 
equal to  

,
2 m

ln
×
×

=
p

j  

where n is the exponent of the polynomial. 

 

3. Analysis of the influence of the location of the 

roots of characteristic polynomial )( 3
1

wjHn
*  on the 

system stability. 

3.1. All roots are real numbers and are located in 
the left half-plane. 

The analysis of the displacement of the vector 

1
3
1

pj -w  for the first root under the condition ω=0÷∞ is 
shown in Fig.1 

6
p

13
1 pj -w

w3
1

j

 
Fig. 1. 

For frequency 0=w , the vector ( 13
1

pj -w ) 

occupies the position 1p+ . As the frequency increases 

to ¥=w , the angle of rotation of the vector ( 1
3
1

pj -w ) 

will be equal to +
6
p  (counterclockwise rotation). 

Therefore, the total angle of the vector )( 3
1

wjHn
*  

rotation with taking into account all n roots will be: 

∆
66

1
6

)1( ppp
j ×=×+-= nn . 

Thus, by analogy with the Mikhailov criterion and in 
accordance with criterion [8] in this case for a stable 

system, the resulting angle of the vector )( 3
1

wjHn
*  

rotation at the frequency changing from zero to infinity 

takes the value 
6
p

×n . 

3.2. At least one real root is placed in the right 
half-plane. 

For this case, the analysis of the displacement of the 

vector 13
1

pj -w  for the first root under the condition  

ω = 0 ÷ ∞ is shown in Fig. 2. 
 

6
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1
3
1

pj -w

w3
1

j

 

Fig. 2. 

If the frequency 0=w , then the vector ( 13
1

pj -w ) 

takes the position “ 1p- ”. If ¥®w , the angle  

of the vector ( 13
1

pj -w ) rotation equals 
6

5 p
×  

clockwise, i.e. the angle is negative. Provided that 
the remaining roots are located in the left half-plane, 
the total angle of the vector rotation can be calculated  
as follows:  

∆ p
ppp

j -×=×--=
66

5
6

)1( nn . 

Here ∆
6
p

j ×¹ n , i.e. such a value of ∆φ occurs due 

to the instability of the system. 

3.3. All roots are complex-conjugated numbers 
with a negative real part. 

For this case, the analysis of the vector displacement 
for the first two complex-conjugated roots under the 
condition ω = 0 ÷ ∞ is shown in Fig. 3. 
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Fig. 3. 

The resulting angle of the vector ( 13
1

pj -w ) rotation, 
provided that the frequency changes from 0 to ¥ , is 

equal to ( a
p

+
6

) counterclockwise and the angle of 

the vector ( 23
1

pj -w ) rotation is equal to (
6
p

a - ) 

clockwise. Thus, the resulting angle of the rotation  
of vectors of the pair of complex conjugated roots  
is equal to 

6
2)

6
(

6
pp

aa
p

j ×=--+=D pair . 

With regard to the rest of similar roots, the angle of 

vector )( 3
1

wjHn
*  rotation will be written as follows: 

66
2

6
)2( ppp

j ×=+-=D nn . 

Therefore, we may conclude that such a value of 
jD  is associated with a stable system.  

3.4. At least one pair of roots is complex-conjugated 
numbers with a positive real part (the roots are in the 
middle of AOB sector). 

For this case, the analysis of the vector displacement 
for the first two complex-conjugated roots under the 
condition ω = 0 ÷ ∞ is shown in Fig. 4.  

Here, the angle of the vector ( 13
1

pj -w ) rotation, 
while w  is changing from zero to ¥ , is equal to 

6
5 p

a ×+  clockwise (negative angle). The angle of the 

vector ( 2
3
1

pj -w ) rotation, if ¥££ w0 , is equal to 

a
p

-×
6

5 , also clockwise (negative angle). Therefore, 

the total angle of the vectors rotation for such a pair of 
roots is as follows: 

6
52

6
5

6
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a
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aj ×-=+---=D pair . 
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Fig. 4. 

Taking into account that the remaining roots are 

stable, the resulting angle of the vector )( 3
1

wjHn
*  

rotation is equal to   

.
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With regard to the obtained result, it can be 
concluded that such a system is not stable.  

3.5. Complex-conjugated roots with a positive real 
part (the roots are outside the AOB sector). 

For this case, the analysis of the vector displacement 
for the first two complex-conjugated roots under the 
condition ω = 0 ÷ ∞ is shown in Fig. 5. 

It can be seen from this figure that the angle of 

rotation of the vector ( 13
1

pj -w ) is equal to +( a
p

-
6

7 ) 

(counterclockwise), and the angle of rotation of the 

vector ( 23
1

pj -w ) is equal to -( a
p

-
6

5 ) (clockwise).  

Thus, in the case when the pair of complex-
conjugated roots is outside the AOB sector, the resulting 
rotation angle of the pair of roots will be equal to 

6
2)

6
5(

6
7 p

a
p

a
p

j ×=---=D pair . 
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Fig. 5. 

Taking into account the remaining roots, the total 

angle of rotation of the vector )( 3
1

wjHn
*  will be equal to 

66
2

6
)2( ppp

j nn =+-=D . 

By analogy with the value of ∆φ for stable systems, 
we can conclude that such a fractional order system is 
stable even with a positive real part of complex 
conjugated roots. 

The latter result does not fit into the classical 
understanding of the condition of root placement in 
terms of the system stability when describing by the 
transfer functions of the integer order. It is obvious that 
for describing the model of fractional systems the 
condition of a non-stable system is transformed into the 
condition of finding the root in the corresponding sector 
of the right plane, and not in the whole right half-plane. 
Therefore, it is probably necessary to check the angles of 

rotation of the hodograph )( wm
l

n jH  for different orders 
of characteristic polynomials n  under the condition of 
changing the frequency within ¥££ w0 . This will once 
again verify the correctness of the criterion in [8], if the 

total angle of vector )( wm
l

n jH  hodograph rotation 

based on the formation of the m
l

j  basis will be equal to 

∆φ =
m
ln

×
×p

×
2

, where n  is the order of the characteristic 

polynomial in the m
l

j  basis. 

Let us investigate hodographs for the systems of 
different order, which are represented by a characteristic 
polynomial in the j1/3 basis. 

а. Second-order hodograph  
The characteristic polynomial in the j1/3 basis can be 

written as follows: 

23
1

1
23

1

03
1

2 )()()( ajajajH ++=* www . 

Obviously, here n=2.  
Let us move on to representing this expression in the 

j  basis, using the formula  
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2
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Then 21
2

0 3
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1)( aaaU ++= www  is a real part, 

        www 1
2

0 2
13

2
1)( aaV +=  is an imaginary 

part. 
For 0=w  we have 2)( aU =w , 0)( =wV . 
For ¥=w  we have ¥=)(wU  and ¥=)(wV . 

So,  
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Then 
6

2603 p
j === oarctg . The magnitude of 

the rotation angle of the vector )( 3
2 w

l

jH  obtained earlier 

indicates that such a system is stable. Therefore, the 
conclusion is that the analysis of the stability of fractional 
systems can be performed on the hodograph of the 
characteristic polynomial in the j basis, which corresponds 
to the characteristic polynomial in the j1/3 basis. 

b. Third-order hodograph 
Let us write the characteristic polynomial in the j1/3 

basis for the case when n=3: 

))()()()( 3
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1

2
23

1

1
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1
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1

3 ajajajajH +++=* wwww . 

Then we move on to the characteristic polynomial in 
the j basis. Using the formula j1/3, we write: 

.)3(
2
1

)31(
2
1)(
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2
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Therefore, the expressions of the real and imaginary 
part of this expression are as follows: 

32
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2
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2
1)( aaaU ++= www , 

wwww
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2
1

3
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For 0=w  we have 3)( aU =w , 0)( =wV . 
If ¥=w , the resulting rotation angle of the vector 

)(*
3 wjH  can be determined as follows: 

3
0 1 2 2

3
1 2 32 3

1 1 1 1( 3 )
2 2

1 1 1 1 1( 3 )
2 2
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tg

a a a
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w
w wf

w
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= = ¥

+ +
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Hence, ∆
6

3
2

pp
j ==¥= arctg . Taking into account 

the signs of )(wV  і )(wU , the angle is in the first 

quadrant, i.e. ∆
6

3p
j = . 

This value of the hodograph rotation angle corresponds 
to the condition of stability. 

c. Fifth-order hodograph 
Let us write the characteristic polynomial in the j1/3 

basis for the case when n=5: 
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Let us move on to the characteristic polynomial in 
the j  basis. Considering that 

)3(
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characteristic polynomial )( 3
1

5 wjH  in j basis will have 
the form: 
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Having grouped the real and imaginary part, we 
obtain 
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According to these expressions, let us analyze the 
hodograph in the j basis. 

If 0=w , 5)( aU =w , 0)( =wV . 
If ¥=w , by writing the expression for jtg  as 
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we obtain ∆
6

5)
3

1( p
j =-= arctg . 

Therefore, the hodograph of the vector )( 3
1

5 wjH  in 
the representation in the j basis when changing the 

frequency from 0 to ¥  will return to the angle 
6

5p , and 

this corresponds to the stability condition shown above. 
Thus, the obtained values of hodographs of vectors 

)( 3
1

wjHn  at 0=w  and ¥=w  do not contradict the 
conditions of the above-mentioned criterion of stability 
of the system with fractional derivatives.   

4. Conclusion  
The analysis of the influence of root location in the 

complex plane )(wjV  and )(wU  on the stability of the 
system and the study of the resulting rotation angles of 

vectors )( 3
1

* wjHn  for =n 2, 3, 5 when changing the 
frequency from zero to infinity has been carried out. It 
has confirmed the condition of the frequency criterion 
of system stability described by fractional order 
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equations for the case of characteristic polynomials 

formed in the 3
1

j  basis. 
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ЗАСТОСУВАННЯ ЧАСТОТНОГО 
КРИТЕРІЮ СТІЙКОСТІ ДЛЯ АНАЛІЗУ 

ДИНАМІЧНИХ СИСТЕМ  
З ХАРАКТЕРИСТИЧНИМИ 

ПОЛІНОМАМИ, СФОРМОВАНИМИ  
В БАЗИСІ J1/3 

Орест Лозинський, Ярослав Марущак,  
Андрій Лозинський, Богдан Копчак, Лідія Каша 

В даній статті розглянуто питання стійкості дина-
мічних систем, які описуються диференціальними рівнян-
нями з дробовими похідними. На відміну від ряду робіт, де 
диференціальне рівняння, яке описує систему, може мати 
набір різних значень показників дробових похідних, а 
характеристичний поліном формується на основі наймен-
шого спільного кратного для знаменників цих показників, 
в даній статті пропонується сформувати такий поліном в 

конкретному базисі 3
1

j  і далі проводити дослідження 
стійкості систем з таким дробовим описом на основі 

результуючих кутів повороту вектора )( wm
l

n jH  при 
зміні частоти від нуля до нескінченності  

Така методика є аналогічною до дослідження стійкості 
систем за частотними критеріями, які використовуються 
для подібної задачі при описі системи диференціальними 
рівняннями в цілочисельних похідних. 

Саме застосування для опису процесів в динамічних 
системах характеристичних поліномів сформованих в ба-

зисі 3
1

j  і аналіз стійкості таких систем на основі час-
тотного критерію становлять суть наукової новизни даного 
матеріалу. 

Стаття містить наступні розділи: постановка пробле-
ми, мета роботи, виклад основного матеріалу, висновки, 
список літератури. 
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