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Abstract: This paper considers the stability of
dynamical systems described by differential equations
with fractional derivatives. In contrast to a number of
works, where the differential equation describing the
system may have a set of different values of fractional
derivatives, and the characteristic polynomial is formed
on the basis of the least common multiple for the
denominators of these indicators, this article proposes

1
forming such a polynomial in a specific j® basis and

studying the stability of systems with such fractional

description based on the resulting rotation angles of
|

H,(j™w) vector at a frequency change from zero to

infinity.

This technique is similar to the investigation of
system stability by frequency criteria used for a similar
problem in describing the system by differential
equations in integer derivatives.

The application of characteristic polynomials formed
1

in the jg basis for the description of the processes in

dynamic systems and the analysis of the stability of such
systems on the basis of the frequency criterion are the
essence of the scientific novelty of this paper.

The article contains the following sections: problem
statement, work purpose, presentation of the research
material, conclusions, list of references.
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1. Problem statement.

The application of fractional order controllers in
technical systems together with the creation of process
models using fractional order derivatives have formed
new classes of problems in such systems. These are the
formation of the mathematical apparatus for the study of
transition processes in systems with fractional order

derivatives, on the one hand, and the analysis of the
stability of such systems, on the other. Although the
approximation of fractional order systems by systems
with integer order derivatives is quite often used for
the study of transition processes, the application of
this approach for stability analysis requires additional
research. According to Matignon’s stability theorem
[1], the location area of the roots of a characteristic
polynomial ensuring stable operation of the system
varies depending on the base index of the degree of

the characteristic polynomial j]/a. The fractional

order system can be stable even in the presence of a pair
of complex conjugated roots in the right plane. At the
same time, the presence of roots in the right half-plane
for systems with derivatives of the integer order clearly
indicates the instability of such a system. The
transformed complex Wy — Riemann plane [2-4] or the

Lyapunov stability criterion [5-6] are most frequently
used to study the stability of the fractional order system.
It should be noted that the traditional transformation of
the characteristic polynomial

o1 a, a,

b

n

Q(s) =as by 4 aps b2 4+ ans
in the form

1 1 1
_ m myn-1 ‘mil
Q(s)=ay(s™)" +ap(s™)" +..+an(sM) +an,g,

where m is calculated on the basis of the least common
multiple of byq,b,..b,,, can lead to a high-order

polynomial, and the analysis of the stability of the
system will be significantly complicated. It is the high
order of the obtained characteristic polynomial that
creates significant difficulties in applying the frequency
criteria for the analysis of the stability of systems with
integer derivatives in fractional order systems. Thus,
in [7], to eliminate the problem of high orders, it is
proposed to analyze the argument of a modified
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characteristic polynomial of a system of the form
1

2 Ak A ;
aa,, *(s2) /a,x(s+1)’2, where I is a natural
k=0

number. The system will be stable if the argument of the
modified polynomial is equal to zero. In [8], the stability
criterion for a system with fractional order derivatives is
formulated as follows: “the stability of the system
requires that the hodograph, starting at the positive part
of the real axis w=0 whilew growing to ¥ should

pass sequentially through the M*P ( sectors of the

2xa)
complex plane, where m is the order of the polynomial,
a is determined from the characteristic polynomial

basis s¥2 .

It should be noted that it is possible to apply the
fractional order characteristic polynomial to describing
the processes in electromechanical systems [9, 10].
Moreover, the order of the polynomial itself is not high,

and the basis of such a polynomial can be either s¥2or
sY¥3 %3,
The purpose of this work is the formation of
1

characteristic polynomials of systems in the jE basis of

fractional values and the analysis of the stability of such
systems based on the frequency criterion.

2. Presentation of the research material.
Integer order characteristic polynomial of a closed
dynamic system of the form:

2

H(s)=ags" +ays" 1 +a,s" 2 +..+a,45 +a,

after the transition to the frequency domain by replacement
s ® jw can be written as:

H(jw) =ag(jw - pp)*(jw - pp)*
*(Jw - pg)-.(jw - pn),
where pq, py, P3...py are the roots of the characteristic
equation H(s=jw)=0.
Having moved from the Cartesian coordinate system
to the polar one, we obtain

n

_ 4 iai. &
H(jw) =20 (re”) =ae = QO ,
i=1 i=1

n

where j(w)= éji(w) is the argument (arg) of the
i=1

complex function H(jw).

In order to write similar expressions for polynomials
of fractal systems, it is necessary to solve the issue of
choosing the basis for a characteristic polynomial in its
frequency representation.

Let us consider the case of j1/3value as the basis

for a characteristic polynomial and investigate the
relationship of the roots of a fractional characteristic
polynomial in the frequency representation under the
condition of the stability of fractional systems.

It is known that the trigonometric form of a
complex number is generally represented as follows:

z=a+ jb=rx(cosj + jsinj), where r =vaZ+b? ;
J :arctgg. Representation of a complex number in
a

trigonometric form is required for the application of the
well-known Moivre formula which enables calculation
of any fractional degree d of a complex number, i.e. for

| .
d =—, where m is the degree of the root of a complex
m

number and | is the degree of a complex number (m and |
are integers) .

Then, taking into account the Moivre formula, we
can write for the case when | =1

”Q/;zn\“/ﬂucosargz;-%p + jsin argzr:2kp)’

where k=0, 1, 2,...(m-1).
For m=3 we obtain

B+2kp B+2kp
%/_':%/IX(COSZ - +jsin2 - ),

and whenk =0® 3[j = cos——+ jsin——.
\/T 243 J 243

1
Now, a polynomial in the j2 basis can be formed

which looks as follows:
1 1 1
Hn(53w) =2 (j3w)" +ag (j3w)" ™ +
1 1
+ay(j3w)"" 2+ +a,q(j3w) +a,

and, having written it as

1 1 1
Hn(§3w) =29 (j3w - py)r(j3w - py)..
1 1

(33w = o) (i 3w - pp)
we can analyze the options for the placement of roots
on the complex plane jV(w), U(w) and the resulting
1
angles of vector rotation (jgw -p;) to meet the

condition of the frequency criterion of stability given
in [8].
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It is worth noting that according to this criterion,
I
the total angle of the vector rotation H;(jmw)) at
the frequency changing from 0 to infinity must be
equal to

_=anI7
2xm

where n is the exponent of the polynomial.

3. Analysis of the influence of the location of the
1
roots of characteristic polynomial H,f(j3w) on the

system stability.

3.1. All roots are real numbers and are located in
the left half-plane.

The analysis of the displacement of the vector
1

j3w - p, for the first root under the condition =0+ is
shown in Fig.1

V()4
1
~ - -EW
~
X/ ~
/'\S\N’
~
_ ~
] 6 U(w)
pr 0 -
Fig. 1.

1
For frequency w=0, the vector (j3w- p;)

occupies the position + p;. As the frequency increases
1
tow = ¥, the angle of rotation of the vector ( j3w- p,)

will be equal to +% (counterclockwise rotation).

1
Therefore, the total angle of the vector H;(j?’w)

rotation with taking into account all n roots will be:

= _ p p__P
AJ=(n-1)—+1x—=nx—.
J=( )6 5 5

Thus, by analogy with the Mikhailov criterion and in
accordance with criterion [8] in this case for a stable

1
system, the resulting angle of the vector H;(j3w)

rotation at the frequency changing from zero to infinity

takes the value n X% .

3.2. At least one real root is placed in the right
half-plane.
For this case, the analysis of the displacement of the
1
vector j3w - p; for the first root under the condition

® =0 + oo is shown in Fig. 2.

V)4 1
N
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Fig. 2.

1
If the frequency w =0, then the vector ( j3w - p;)

takes the position “-p,”. If W® ¥, the angle

1
of the vector (j3w-p;) rotation equals BX%
clockwise, i.e. the angle is negative. Provided that
the remaining roots are located in the left half-plane,
the total angle of the vector rotation can be calculated
as follows:

- p p p
AjJ=(n-1)—-5x==nx=-p.
J=( )6 5 s P

Here Aj 1 nX% , i.e. such a value of A occurs due

to the instability of the system.

3.3. All roots are complex-conjugated numbers
with a negative real part.

For this case, the analysis of the vector displacement
for the first two complex-conjugated roots under the
condition ® = 0 + co is shown in Fig. 3.
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V()4 —

Fig. 3.

1
The resulting angle of the vector ( j3w - p;) rotation,
provided that the frequency changes from 0 to ¥, is

equal to (%+a) counterclockwise and the angle of

1
the vector ( j3w - p,) rotation is equal to (a—%)

clockwise. Thus, the resulting angle of the rotation
of vectors of the pair of complex conjugated roots
is equal to
- _p Py_, P
Dy pair =—t+ta-(@-—)=2x—.
'3 pair 6 ( 6) 5
With regard to the rest of similar roots, the angle of
1

vector H ;(jgw) rotation will be written as follows:

= _ P_.2__P
Dj=(n-2)—+—=nx—.
j=(n-2) s 6 5
Therefore, we may conclude that such a value of
Dj is associated with a stable system.

3.4. At least one pair of roots is complex-conjugated
numbers with a positive real part (the roots are in the
middle of AOB sector).

For this case, the analysis of the vector displacement
for the first two complex-conjugated roots under the
condition ® = 0 + o is shown in Fig. 4.

1

Here, the angle of the vector ( j3w - p;) rotation,

while w is changing from zero to ¥, is equal to

a +SX% clockwise (negative angle). The angle of the

1
vector ( j3w- p,) rotation, if OEwWE¥, is equal to

BX%—a, also clockwise (negative angle). Therefore,

the total angle of the vectors rotation for such a pair of
roots is as follows:

_ _ 5p 5p _ S5p
DJ pair ——a—F—?+a——2x?.
V(o)A 1
JPw
3 A
jSW' P
.~
LT
= P1 j*'w-p,
o U((D)
0 a -
~
_ — ~__
~
2
~
B
Fig. 4.

Taking into account that the remaining roots are
1

stable, the resulting angle of the vector H;(jgw)
rotation is equal to

- p_5p 5p
Dj =(n-2)=-(=+a)-(-a)=
J =(n )6 6 a) (6 a)

=an—12xB<nB.
6 6 6

With regard to the obtained result, it can be
concluded that such a system is not stable.

3.5. Complex-conjugated roots with a positive real
part (the roots are outside the AOB sector).

For this case, the analysis of the vector displacement
for the first two complex-conjugated roots under the
condition ® = 0 + o is shown in Fig. 5.

It can be seen from this figure that the angle of

1
rotation of the vector ( j3w - p;) is equal to +(7Fp -a)

(counterclockwise), and the angle of rotation of the
: 5
vector ( j3w - p, ) is equal to —(?p -a ) (clockwise).

Thus, in the case when the pair of complex-
conjugated roots is outside the AOB sector, the resulting
rotation angle of the pair of roots will be equal to

p

_ 5
DJ pair =?—a—(Fp—a)=2x%,
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Fig. 5.

Taking into account the remaining roots, the total
1

angle of rotation of the vector H;(jgw) will be equal to

= P_2p _ P
Dy=(n-2)—+—=n—.
j=(n-2) st s

By analogy with the value of A¢ for stable systems,
we can conclude that such a fractional order system is
stable even with a positive real part of complex
conjugated roots.

The latter result does not fit into the classical
understanding of the condition of root placement in
terms of the system stability when describing by the
transfer functions of the integer order. It is obvious that
for describing the model of fractional systems the
condition of a non-stable system is transformed into the
condition of finding the root in the corresponding sector
of the right plane, and not in the whole right half-plane.
Therefore, it is probably necessary to check the angles of

I
rotation of the hodograph H, (j™w) for different orders
of characteristic polynomials n under the condition of
changing the frequency within 0 £w £ ¥ . This will once
again verify the correctness of the criterion in [8], if the
I
total angle of vector Hp(j™w) hodograph rotation
|
based on the formation of the j™ basis will be equal to

X1
Ap =nx 2p , Where n is the order of the characteristic
xm

|
polynomial inthe j™ basis.

Let us investigate hodographs for the systems of
different order, which are represented by a characteristic

polynomial in the j** basis.

a. Second-order hodograph
The characteristic polynomial in the j* basis can be
written as follows:

1 1 1
H™2(j3w) = ag(j3w)? +ay(j3w) +a,.
Obviously, here n=2.

Let us move on to representing this expression in the
j basis, using the formula

1

=263+ ).

2

Then U (w) = %aow + %alw\/g +a, isareal part,

V(w) =%a0f3w2 +%a1w iS an imaginary
part.
For w=0 we have UWw)=a,, V(w)=0.
For w =¥ we have U(w) =% and V(w) =¥.

So,
wlaelaly |
tgj = " =3.
w2(7a0+7a1\/§f+a272)
W™ lwey¥

Then j =arctg+/3 = 60° = 2%. The magnitude of

I
the rotation angle of the vector H, (] 3w) obtained earlier
indicates that such a system is stable. Therefore, the
conclusion is that the analysis of the stability of fractional
systems can be performed on the hodograph of the
characteristic polynomial in the j basis, which corresponds

to the characteristic polynomial in the j** basis.

b. Third-order hodograph
Let us write the characteristic polynomial in the j*
basis for the case when n=3:

1 1 1 1
H3(j3w) = ag(j3w)® + 2, (j3w)? + 2, (j3w)! +ag).

Then we move on to the characteristic polynomial in
the j basis. Using the formula j, we write:

H3 () = 2w+~ L+ JB)w? +

+ap (3 + Jw+
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Therefore, the expressions of the real and imaginary
part of this expression are as follows:

U(W)231%W2+a2%x/_3\lv+a3,

1 1
Vw) = aow3 +a1§x/_3w2 +a2§W

For w=0 we have U(w)=a3, V(w)=0.
If w=3%, the resulting rotation angle of the vector

Hg(jw) can be determined as follows:

w3<ao+a11ﬁ3+a21%) ‘
2w =¥,

wiailia 15

tgf =

w®¥

p

Hence, Aj =arctg¥ = Bl = 3% . Taking into account

the signs of V(w) i UWw),
o)
=

the angle is in the first
quadrant,i.e. Aj =

This value of the hodograph rotation angle corresponds
to the condition of stability.

c. Fifth-order hodograph
Let us write the characteristic polynomial in the j**
basis for the case when n=5:

1 1 1 1
Hs(j3w) = ag(j3w)° +ay (j3w)* +a,(j3w)* +
1 1
+ a3(j3w)2 + a4(j3w)1 +as.

Let us move on to the characteristic polynomial in
the j basis. Considering that

1
2 =203 );
2
2= i)
3
(i3)°= ]

characteristic polynomial Hg(j3w) in j basis will have
the form:

* . 1, . 1, .
H5(1w>:a05(1—ﬁ)w5+a15(1ﬁ—1)w4+

vaju +vagZ (L WA (W3 I s,

Having grouped the real and imaginary part, we
obtain

uUw) = —aoéx/_3w5 - aléw“ + a3%w2 +

+a4%\/_3\N + ag,

V(w) =ag %WS + aléx/_Bw“ +a2W3 +
+a3%\/_3w2 +a4%w

According to these expressions, let us analyze the
hodograph in the j basis.

Ifw=0,UWw)=as, V(w)=0.

If w =2, by writing the expression for tgj as

W5(301+a11\/§i+a2i+a31\/§i+ 4£i)
tai = 2 2w w? 2 w8 2w _
a=— 1T IT  TrI 1
-w¥(ag S V3 +ay s —-ag=—-a, >3 a5 —)
2w? 25wt * e
+ a 1
-ao%ﬁ 3

Lo 1. _.p
we obtain A j = arctg(- ﬁ) = SE .
1
Therefore, the hodograph of the vector Hg(j3w) in
the representation in the j basis when changing the

frequency from 0 to ¥ will return to the angle S?p and
this corresponds to the stability condition shown above.
Thus, the obtained values of hodographs of vectors
1
H,(j3w) at w=0 and w=¥ do not contradict the
conditions of the above-mentioned criterion of stability
of the system with fractional derivatives.

4. Conclusion

The analysis of the influence of root location in the
complex plane jV(w) and U (w) on the stability of the
system and the study of the resulting rotation angles of

1

vectors H;(j3w) for n=2, 3, 5 when changing the
frequency from zero to infinity has been carried out. It
has confirmed the condition of the frequency criterion
of system stability described by fractional order
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equations for the case of characteristic polynomials
1

formed inthe j3 basis.
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3ACTOCYBAHHA YACTOTHOI'O
KPUTEPIIO CTIMKOCTI JJI51 AHAJII3Y
JUHAMIYHUX CUCTEM
3 XAPAKTEPUCTHUYHUMU
MNOJIHOMAMMH, COOPMOBAHUMU
B BA3HUCI J*®

Opecr Jlo3uncekuii, SIpocnas Mapymak,
Amnnpiit Jlosuncbkuit, bornan Komuak, Jligis Kama

B nanifi cTaTTi pO3MNISTHYTO NMTAaHHS CTIHKOCTI IWHA-
MIYHHAX CHCTEM, SIKi OMHUCYIOTBCS AuepeHIiadbHUME PiBHSIH-
HAMH 3 IpoOoBUMH moxigHumu. Ha BinMiHy Bix psay poOiT, ne
nudepeHLianbHe PIBHAHHS, SIKE ONMUCYE CHCTEMY, MOXKE MaTH
Ha0ip pIi3HUX 3HAYCHb IMOKA3HUKIB APOOOBUX MOXIMHHX, a
XapaKTepUCTUYHUH MONIHOM (POPMYETHCSI Ha OCHOBI HaiiMeH-
IIOTO CIUIBHOTO KPaTHOTO Ul 3HAMEHHHKIB LIUX ITOKA3HUKIB,
B JaHiil cTaTTi NponoHyeTbcs cHOpMyBaTH TaKMi MONIHOM B

1
KOHKpETHOMY ©0a3uci j3 1 Jajxi TPOBOIUTH JOCIIIKCHHS

CTIMKOCTI CHCTEM 3 TakuM JIpOOOBHM OIMCOM Ha OCHOBI
|

pesynbTylounx KyTiB nosopory Bekropa H,(j™W) mpu
3MiHI 9aCTOTH BiJ HYJIA IO HECKIHUEHHOCTI

Taka MeToaHKa € aHAJIOTIYHOO JI0 JOCIKEHHS CTIHKOCTI
CHCTEM 32 YaCTOTHHMHU KPHUTEPISIMH, SKi BHKOPHCTOBYIOTHCS
IUTs TIONIOHOT 3a/1avi MPH OIMHUCI CHCTeMH IudepeHIiaTbHIMU
PIBHSHHAMH B HIOYNCETBHUX TIOXiTHHX.

Came 3acTOCYBaHHs JJIS OIKCY IPOLECIB B JAUHAMIYHHX
CHCTEMax XapaKTePHCTHYHHX MOJIHOMIB c(OpMOBaHUX B Oa-

1

3uci 13 1 aHaji3 CTIMKOCTI TakMX CHCTEM Ha OCHOBI yac-

TOTHOT'O KPUTEPIIO0 CTAaHOBIATH CYyTh HAYKOBOT HOBU3HHM JIaHOTO
MaTepiany.

CraTTs MICTUTh HACTYITHI PO3IUIN: ITOCTaHOBKa IIPOOIIe-
MH, MeTa po0OTH, BHKJIAJ OCHOBHOTO MaTepially, BHCHOBKH,
CITUCOK JIiTepaTypH.
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