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We consider Maxwell equations with the null one-way condition in the Kerr space-time.
For each ODE equation, which is obtained by using the method of separable variables, we
impose some boundary conditions. This is resulting in the boundedness of the separation
constant ω and in fixing the azimuthal number m by the values ±1. The problem consid-
ered demonstrates physical applicability of singular solutions and presents an interest for
astrophysics.
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1. Introduction

Main features of electromagnetic perturbations in the Kerr space-time are described by Teukolsky
master equation (TME) [1]. Analytical, numerical and astrophysical problems of great complexity
that arises have been being actively investigated for last few decades. By using Teukolsky ansatz
e−iωt+imφRT (r)ST (θ) [1], the equations for extreme components ϕ2 and ϕ0 is reduced to two ordinary
differential equations (ODE) — Teukolsky radial equation (TRE) and Teukolsky angular equation
(TAE). Asymptotic, boundary, periodic conditions, boundedness of solutions formulate the physically
meaningful problems of interest. “Time” part of the Teukolsky ansatz can be considered with ω ∈ C

(quasinormal mode solution) or with ω ∈ R (pure wave solution). “Azimuthal” part of the solution eimφ

with m ∈ Z defines 2π-periodic field. On the radial function RT (r) there were imposed the asymptotic
conditions. For example, the radial function must behave as outgoing wave at infinity and ingoing
one at the horizon r+. Regularity conditions of TAE at points θ = 0, θ = π states Sturm-Liouville
eigenvalue problem and gives the solution in terms of spin-weighted spheroidal (SWS) functions. SWS
functions are computed by using numerical methods with arbitrary precision.

In 2010 Fiziev [2] proposed an approach to solving TRE and TAE that uses confluent Heun func-
tions. Besides the regular solutions to TAE, there were also considered singular ones, and a possibility
of their application in astrophysics was discussed [3].

In this article we consider a solution of Maxwell equations — an outgoing null one-way (NOW)
Maxwell field, and for a solution with separate variables for the first order system of partial differential
equations (PDE) we will apply some of above mentioned conditions. We also suggest a condition that
defines a behaviour of an angular part of the solution. From the general solution that we have obtained
in [4], follows that all algebraically special solutions of Maxwell equations (not only in Minkowski
space-time as in [5]) possess singularities at points θ = 0 and θ = π. At these points, the quadratic
curvature invariant RabcdR

abcd has not singularities [6], and the Kerr metric is well defined on axes
±p × R2(r, t) [7, p. 63]. Due to the singularities on polar axes have coordinate character, we expect
that a solution to the equation is physically meaningful [8]. Note that radial and angular functions in
our approach differ from those proposed by Teukolsky.
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2. System of Maxwell equations for null one-way field in the Kerr space-time

System of Maxwell equations in a spinor approach has the following form [9]

∇AA′
ϕAB = 0, (1)

∇AA′
is covariant derivative, ϕAB is Maxwell spinor, which in spin basis oA and ιA has three complex

components ϕ2, ϕ1 and ϕ0

ϕAB = ϕ2oAoB − ϕ1(oAιB + ιAoB) + ϕ0ιAιB . (2)

The Kerr metric in Boyer-Lindquist coordinates is given by squared line element

ds2 =

(
1− 2Mr

Σ

)
dt2+

4Mra sin2 θ

Σ
dt dφ− Σ

∆
dr2−Σ dθ2−

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2θ dφ2, (3)

where M is the mass of rotating body (M > 0), a is its specific angular momentum (0 < a < M),
Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, r+ = M +

√
M2 − a2 and r− = M −

√
M2 − a2 are roots of

equation ∆ = 0. We choose the Kinnersley null tetrad in our consideration [10]

la =

(
r2 + a2

∆
, 1, 0,

a

∆

)
,

na =
1

2Σ

(
r2 + a2,−∆, 0, a

)
,

ma =
1√

2(r + ia cos θ)

(
ia sin θ, 0, 1,

i

sin θ

)

m̄a =
1√

2(r − ia cos θ)

(
−ia sin θ, 0, 1,

−i
sin θ

)
.

(4)

Let us consider outgoing null-one way Maxwell fields (NOWf) [4, 8, 11], which is distinguished by
the condition that the two principal spinors of Maxwell spinor are aligned with one of the multiple
principal spinors of Weyl spinor ψABCD. In such choice, a Maxwell field is described only by one
component

ϕAB = ϕ2oAoB , (5)

and is algebraically special of type N [12].
Then the system of Maxwell equations (1) in Boyer–Linquist coordinates has the following form





r2 + a2

∆

∂ψ

∂t
+
∂ψ

∂r
+
a

∆

∂ψ

∂φ
= 0,

ia sin θ
∂ψ

∂t
+
∂ψ

∂θ
+

i

sin θ

∂ψ

∂φ
= 0;

(6)

where ψ is defined by the equation

ϕ2(t, r, θ, φ) =
ψ(t, r, θ, φ)

(r − ia cos θ) sin θ
. (7)

Such definition of the function ψ is motivated by recording the system of PDE in a universal form
for the fields of another spin-weight (Maxwell field spin-weight s = ±1). Spin of the field will not
be present in the system (6), only a sign of spin-weight will be. Spin of the field is included in the
definition of ψ [8].
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3. NOW solution and boundary value conditions

Solution with separable variables to the system (6) was found in works [8, 13]. In [8] there was used
general separation of variables

ψ(t, r, θ, φ) = T (t)R(r)S(θ)Φ(φ), (8)

which leads us to the following system of ODEs




T ′(t)− λT (t) = 0,

Φ′(φ)− νΦ(φ) = 0,

R′(r) +

(
λ(r2 + a2)

∆
+
νa

∆

)
R(r) = 0,

S′(θ) +

(
iaλ sin θ + ν

i

sin θ

)
S(θ) = 0;

(9)

λ ∈ C, ν ∈ C are the separation constants.
For the “time” (equation for T (t)) and “azimuthal” (equation for Φ(φ)) equations, we demand

boundedness of T (t) solution
|T (t)| < H, ∀t, (10)

where H is a real constant, and 2π-periodicity of Φ(φ) solution

Φ(φ) = Φ(φ+ 2π). (11)

This specifies the separation constants λ and ν: λ = iω and ν = im, ω ∈ R, m ∈ Z [13].
We have not already stated conditions for the radial R(r) and angular S(θ) functions. Radial

equation on the interval r+ < r <∞ has the solution

R(r) = C1e
−iωr∗ , (12)

where

r∗ = r +M ln |∆|+ 2ωM2 +ma

2ω
√
M2 − a2

ln

∣∣∣∣
r − r+
r − r−

∣∣∣∣ , (13)

C1 ∈ C. In [13] we have found that there exists a critical point rcr.1,2 = ±
√
−am/ω − a2 that depends

on Kerr field parameters M and a and Maxwell field parameters ω and m. At these points the
increasing-decreasing character of r∗ changes, what means that the wave changes its outgoing-ingoing
behavior.

When the condition rcr.1 > r+ is fulfilled, we obtain the wave, which is ingoing for r+ < r < rcr.1,
standing on surface r = rcr.1, and outgoing for r > rcr.1. Superradiation condition mω+/ω > 1,
established by Teukolsky [1] and Starobinski, Churilov [14], is equivalent to condition of existence of
point rcr.1 outside the horizon: rcr.1 > r+. See also [15, §72 a].

The correct boundary condition for radial equation can be formulated in a number of different
ways [1]. One of them is demanding that the group velocity of a wave packet, as measured physically
well-behaved observer, be negative (signals can travel into the hole, but cannot come out).

Thus, we are stating the condition rcr.1 > r+ on the radial equation of the system (9). This
condition is rewritten in terms of Kerr parameters M , a and separation constants ω, m. There can
be seen that this condition splits in two parts, for ω > 0 and ω < 0. For each of the cases ω and m
must have different signs, and ω becomes restricted by m with the coefficient depending on Kerr field
parameters:

ω > 0, ω < 0,

ω <− am

2Mr+
, −ω < am

2Mr+
, (14)

m < 0, m > 0.
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Let us remind a Teukolsky approach to separation of variables [1]:

ψT (t, r, θ, φ) = e−iωT teimφRT (r)ST (θ), (15)

ϕ2(t, r, θ, φ) =
ψT (t, r, θ, φ)

(r − ia cos θ)2
. (16)

For the function ST (θ) there was formulated Sturm-Liouville eigenvalue problem with regularity con-
ditions at the points θ = 0 and θ = π. The solution to this problem is expressed by spin-weighted
spheroidal harmonics.

Because of the presence of the sine function in denominator of (7) and the second power of r−ia cos θ
in (16), there exists a difference between radial (R(r), RT (r)) and angular functions (S(θ), ST (θ)).

The general solution to the angular equation (9) on the interval 0 < θ < π is

S(θ) = C2
(1− cos θ)m

sinm θ
e−aω cos θ, (17)

C2 is a complex constant. Stating regular conditions at points θ = 0 and θ = π on the function S(θ)
is possible only for m = 0. For m = −1,−2, . . . S(θ) becomes infinite at the point θ = 0, and for
m = 1, 2, . . . — at the point θ = π. If we are going to state the conditions of regularity for function ϕ2,
solution, which is regular at both θ = 0 and θ = π, does not exist. Regularity can be achieved only at
one of the points, singularity arises at θ = 0 for m = 0,−1,−2, . . ., and at θ = π — for m = 0, 1, 2, . . ..

Let us consider the energy-momentum tensor for outgoing NOWf [8]

Tab =
|ϕ2|2
2π




1 −Σ
∆ 0 −a sin2θ

−Σ
∆

Σ2

∆2 0 a sin2θ Σ
∆

0 0 0 0

−a sin2θ a sin2θ Σ
∆ 0 a2 sin4θ



, (18)

|ϕ2|2 =
|C|2e−2aω cos θ

sin2θΣ

(
1− cos θ

sin θ

)2m

. (19)

The Tφφ component of tensor Tab is a pressure in φ direction

Tφφ =
a2|C|2

2π

e−2aω cos θ

Σ

(
1− cos θ

sin θ

)2m

sin2θ. (20)

We are ready to state the fourth condition, which should ϕ2 component satisfy. Let the Tφφ
component of energy-momentum tensor for outgoing NOWf is now being regular at the points θ = 0
and θ = π

Tφφ

∣∣∣
θ=0
θ=π

<∞. (21)

It is possible, when m = −1 for ω > 0 and m = 1 for ω < 0. The physical meaning of condition (21)
may be referred as regularity of Maxwell field pressure in φ direction.

The final result is the following. Solutions to the system (6), which satisfy the boundedness con-
dition (10), the 2π-periodicity condition (11), the asymptotic condition (14) and the boundedness of
the Tφφ condition (21) are

ϕ2 = Ceiω(t−r∗)−iφ
e−aω cos θ

(r − ia cos θ)(1− cos θ)
, ω > 0, ω <

a

2Mr+
, m = −1, (22)

ϕ2 = Ceiω(t−r∗)+iφ
e−aω cos θ

(r − ia cos θ)(1 + cos θ)
, ω < 0, −ω < a

2Mr+
, m = 1. (23)
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In accordance to noninvariant character of singularities, that we have discussed above, solutions
with singularities can give physically meaningful values to some of characteristics of electromagnetic
waves [16]. For example, 1) rotation of the plane of polarization is well defined for all θ, 2) dispersion
of rotation of the plane of polarization does not exist, 3) among many results about rotation of the
plane of polarization formula, correct formula belongs to Gnedin and Dymnikova [17].

4. Conclusions

We have considered an outgoing NOW Maxwell field with conditions for each first order ODE, obtained
by using the method of separation of variables for the function ψ. The definition of this function differs
from the known in literature approach. The boundedness condition (10) selects free traveling wave.
There can be also considered the damped waves by another condition |T (t)| < H, ∀t > 0. This demands
that λ = ωR + iωI , ωR < 0. The 2π-periodicity condition (11) expresses azimuthal symmetry of the
solution.

The ingoing wave condition on the horizon restricts the value of ω by the value of azimuthal number
m and Kerr field parameters. The restricted value is proportional to specific angular momentum a,
azimuthal number m, and inversely proportional to the square of mass parameter M . Notice, that we
cannot state such conditions to find a nontrivial solution for the radial function R(r) in Schwarzschild
case.

The consideration of the problem in Boyer-Lindquist coordinates, which have singularities on the
axes, raises the questions: do only regular at θ = 0 and θ = π solutions to ϕ2 (or ST (θ)) have physical
meaning? Is it possible to have solutions with singularities of some order at these points, for which
some physical quantities, for example, components of energy-momentum tensor, are bounded? We
have tried to answer to these questions by establishing the condition (21). The solution (22) has a
pole of the first order at θ = 0, and is regular at θ = π, the solution (23) is regular at θ = 0, and has
a pole of the first order at θ = π. There are no ingoing on horizon waves with m = 0. Thus, if other
conditions on angular equation require another physically meaningful condition, possibly, it will affect
the restriction for the azimuthal number m.

An approach that considers NOW Maxwell field gives a solution in analytical form. The boundary
value problem considered is a mathematical model for the description of electromagnetic waves that
are outgoing at infinity and ingoing at the horizon. The condition, that selects such waves is related to
superradiant condition, which is considered in the problem of scattering of electromagnetic waves. As
we have only outgoing at infinity wave, we see that the condition rcr.1 > r+ has another interpretation.
Waves go from the point rcr.1 to infinity and to the horizon. We expect that such model can be wave
analog of Penrose process.

Partial support of this work was provided by the “Grid-infrastructure and grid technologies for
science and applications” program of NAS of Ukraine, registration number 0118U004780.
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Про однонапрямлений iзотропний розв’язок рiвнянь Максвелла у
просторi Керра

Пелих В.1, ТайстраЮ.1,2

1Iнститут прикладних проблем механiки i математики iм.Я.С.Пiдстригача НАН України,
вул. Наукова, 3-б, Львiв, 79060, Україна

2Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, Львiв, 79013, Україна

Розглянуто рiвняння Максвелла з умовою однонапрямленого iзотропного поля в про-
сторi Керра. Для кожного ЗДР, отриманого пiсля застосування методу вiдокремлення
змiнних, накладено деякi граничнi умови. Це приводить до обмеженостi константи
вiдокремлення ω та до фiксованостi азимутального числа m значеннями ±1. Розгля-
нута задача показує фiзичну застосовнiсть особливих розв’язкiв i становить iнтерес
для астрофiзики.

Ключовi слова: алгебраїчно спецiальне поле, рiвняння Максвелла, простiр-час Кер-
ра.
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