ОСОБЛИВОСТІ МАГНІТООПОРУ МІКРОКРИСТАЛІВ InSb ЗА КРІОГЕННИХ ТЕМПЕРАТУР

А. О. Дружинін, І. А.Большакова, І. П. Островський, Ю. М. Ховерко, Н. С. Лях-Кагуй

Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки

Ó Дружинін А. О., Большакова І. А., Островський І. П., Ховерко Ю. М., Лях-Кагуй Н. С., 2014

Проведено дослідження магнітоопору ниткоподібних кристалів InSb з концентрацією домішки поблизу переходу метал-діелектрик в інтервалі низьких температур 4,2 – 77 К в полях з індукцією до 14 Тл. Встановлено наявність осциляцій Шубнікова-де-Гааза як в поперечному, так і в поздовжньому магнітоопорі, визначено період осциляцій 0,1 Тл⁻¹, ефективну циклотронну масу електронів $m_c \approx 0,14m_{o}$, концентрацію носіїв заряду 2,3×10¹⁷ см⁻³, фактор $g^* \approx 30$ та температуру Дінгла $T_D = 14,5$ К.

Ключові слова: ниткоподібні кристали, осциляції, поперечний і поздовжній магнітоопір, перехід метал-діелектрик, InSb.

Вступ

Вивченню магнітотранспортних властивостей у кристалах InSb, зокрема спостереженню осциляцій кінетичних параметрів у магнітному полі присвячено чимало робіт [1–4]. Так у роботах [1, 2] було виявлено і грунтовно описано осциляції магнітоопору, які можна поділити на дві групи: осциляції Шубнікова-де-Гааза, що спостерігаються у сильнолегованих кристалах за низьких температур [2]; та магнітофононні осциляції, що спостерігаються у більш високоомних зразках і широкому температурному інтервалі та добре описуються теорією Гуревича-Фірсова [3–4]. Автори роботи [5] спостерігали осциляції Шубнікова-де-Гааза у польових залежностях коефіцієнта термо-ЕРС та коефіцієнта Холла. Запроновані Ефросом та Гуревичем теоретичні положення добре описували експериментальні результати для масивних зразків. Останнім часом дослідження осциляцій магнітоопору знову стає актуальним з погляду їх виявлення у системах з квантовими ямами [6], гетероструктурах InSb/AlInSb [7], розбавлених магнетиках InSb<Mn> [8]. У цьому зв'язку цікавим є вивчення магніто-транспортних властивостей ниткоподібних кристалів InSb.

Метою роботи є уточнення поведінки магнетоопору НК InSb n-типу провідності з концентрацією домішки поблизу переходу метал-діелектрик в інтервалі низьких температур 4,2–77 К і у полях до 14 Тл, де помічено появу осциляційних максимумів у повздовжньому та поперечному магнітному полі, для встановлення типу осциляцій і визначення електрофізичних параметрів кристалів.

Методика експерименту

Об'єктом дослідження були вибрані мікрокристали InSb n-типу провідності отримані методом хімічних транспортних реакцій; легування досліджуваних НК проводилось оловом у процесі вирощування. Мікрокристали InSb мали поперечні розміри 30–40 мкм і довжину 2–3 мм. Для формування електричних контактів до досліджуваних зразків НК використовувались дротини Au діаметром 10 мкм, які утворюють евтектику з кристалом при імпульсному зварюванні. Ця методика була апробована і описана в попередніх дослідженнях [9] і дозволяє вимірювати опір кристала за чотириконтактною схемою вздовж кристала (поздовжній опір). Для дослідження гальваномагнітних властивостей кристалів були створені додаткові контакти за тією ж методикою.

Дослідження низькотемпературної провідності НК InSb проводилось в інтервалі температур 4,2–300 К. Для дослідження низькотемпературної провідності кристали встановлювались у гелієвий

кріостат, де відбувалось їх охолодження до температури 4,2 К. Дослідження впливу магнітного поля на властивості НК проводились на біттерівському магніті з індукцією до 14 Тл та часом розгортки по полю 1,75 Тл/хв в інтервалі температур 4,2–77 К. Стабілізований електричний струм в межах 1–10 мА через кристал задавався джерелом струму Keithley 224 залежно від опору досліджуваного кристала. Температура вимірювалась за допомогою термопари Cu-CuFe. Електрична напруга на контактах кристалів, вихідний сигнал термопари та сенсора магнітного поля вимірювались цифровими вольтметрами типу Keithley 199 та Keithley 2000 з точністю до 1×10^{-6} В з одночасною автоматичною реєстрацією показів.

Експериментальні результати та їх аналіз

Результати дослідження польових залежностей магнітоопору за низьких температур наведені на рис. 1. 3 рис. 1 видно, що характер зміни магнітоопору в магнітному полі істотно залежить від орієнтації зразка (напрямку поширення струму *I*) та магнітного поля *B*. Так, для випадку $B \perp I$ (поперечний магнітоопір) спостерігається квадратична зміна магнетоопору в магнітному полі (рис. 1). Для випадку $B \parallel I$ (поздовжній магнітоопір) магнітоопір із збільшенням величини магнітного поля до 3–4 Тл залишається позитивним, а у більших полях змінює знак (рис. 2). В обох випадках спостерігаються осциляції магнітоопору, які більше виражені у поздовжньому магнітоопорі, як і в попередніх дослідженнях осциляцій магнітоопору в НК германію [10].

Рис. 1. Поперечний магнітоопір ниткоподібних кристалів InSb за кріогенних температур: 1 – 4,2 К; 2 – 13 К; 3 – 29 К; 4 – 42 К. На вставці: 1–4,2К

Рис. 2. Поздовжній магнітоопір ниткоподібних кристалів InSb за кріогенних температур. На вставці: крива 1 за T=4,2 К

На залежностях поперечного магнітоопору за T = 4,2 К виявлено піки з максимумами при індукції магнітного поля 1,05; 1,2; 1,3; 1,5; 1,8; 2,2; 2,7; 3,6 і широкий максимум при 6,0 Тл. На залежностях поздовжнього магнітоопору за T = 4,2 К виявлено піки з максимумами при індукції магнітного поля 1,0; 1,17; 1,3; 1,5; 1,8; 2,1; 2,6; 3,6 і 5,5 Тл. Подання залежностей магнітоопору (рис. 1, 2) в координатах $R_B = f(1/B)$ дає значення періода осциляцій 0,1 Тл⁻¹, що відповідає переходам носіїв заряду між еквідистантними рівнями Ландау. Похибка вимірювань при визначенні періоду осциляцій Шубнікова-де-Гааза залежить від кількості екстремумів і на осциляційних кривих оцінювалась за розкидом точок на залежностях поздовжнього і поперечного магнетоопору (рис. 1 і 2) за низьких температур; середня похибка становить ≈ 5 %.

Висока концентрація домішки у кристалах та швидке загасання осциляцій при підвищенні температури понад 20 К вказує, що осциляції магнітоопору описуються теорією Шубнікова-де-Гааза. Тоді виявленим експериментальним пікам можна приписати відповідні переходи між рівнями Ландау, що наведено у таблиці.

Visnyk of Lviv Polytechnic National University, Electronics, № 798, 2014

N⁰	1	2	3	4	5	6	7	8	9
Максимум В, Тл	6,0	3,6	2,6	2,1	1,8	1,5	1,5	1,17	1,05
Перехід між N та N+1 рівнями	1-2	2–3	3–4	4–5	5–6	6–7	7–8	8–9	9–10

Перехід 0–1 відповідає величині індукції магнітного поля 15 – 15,5 Тл і не реєструється у даних умовах експерименту.

На підставі аналізу рис. 1, 2 варто відзначити дві характерні ознаки:

1) наявність від'ємного магнітоопору в польових залежностях поздовжнього магнітоопору;

2) розширення піка 1 поперечного магнітоопору (що відповідає індукції магнітоопору B = 6,0-6,5 Тл) внаслідок розщеплення на дві складових за рахунок спін-орбітальної взаємодії і відсутність такого розщеплення для поздовжнього магнітоопору (B = 5,5 Тл).

Розщеплення піка 1 наочніше у польових залежностях холлівської напруги при зміні напрямку магнітного поля (рис. 3). На залежностях холлівської напруги осциляції малопомітні і спостерігаються лише для піка поблизу 5,5 Тл. Виявлений гістерезис холлівської напруги (рис. 3) пов'язаний з похибкою експерименту за рахунок неповної компенсації напруги на холлівських контактах.

Рис. 3. Залежність холлівської напруги від магнітного поля

Рис. 4. Схематичний вигляд енергетичних діаграм для електронних переходів між підрівнями Ландау для поперечного магнітоопору (a): $N \downarrow \leftrightarrow (N-1) \downarrow$, $N \uparrow \leftrightarrow (N-1) \uparrow$, $N \uparrow \leftrightarrow (N-1) \downarrow$ і повздовжнього магнітоопору (б) $N \uparrow \leftrightarrow (N-1) \downarrow$

Нижче проаналізуємо виявлені магнітні осциляції у кристалах. Передусім проаналізуємо розщеплення піка 1 у поперечному магнітному полі і його відсутність у поздовжньому полі. Ці закономірності пояснюються виконанням правил відбору для переходів між рівнями Ландау, які ілюструються рис. 4 [11].

Враховуючи рис. 4, *a*, бачимо, що для прямого включення магнітного поля реалізується перехід $N \downarrow \rightarrow (N-1) \downarrow$, а для оберненого включення більшість носіїв знаходяться у положенні $(N-1) \downarrow$ по спіну, тому реалізується перехід $(N-1) \downarrow \rightarrow N^{\uparrow}$, що відповідає експериментальним даним рис. 3 – уширення максимуму, що відповідає розщепленню смуги на два піки. У випадку поздовжнього магнітоопору розщеплення піка 1 відсутнє завдяки виконанню правила відбору, в результаті чого реалізується перехід $N^{\uparrow} \rightarrow (N-1) \downarrow$ (рис. 4, б).

Період осциляцій магнітоопору *P* у зворотному полі для квадратичного закону дисперсії описується виразом:

$$P = \Delta \left(\frac{1}{H}\right) = \frac{\mathbf{h}|e|}{E_F m_c c}.$$
(1)

З отриманих експериментальних даних видно, що періоди осциляцій повздовжнього і поперечного магнітоопору збігаються і становлять 0,1 Тл⁻¹.

Для довільного закону дисперсії і форми поверхні Фермі частота осциляцій $F = P^{-1}$ описується співвідношенням:

$$F = \frac{cS}{|e|h},\tag{2}$$

У випадку еліпсоїдальних ізоенергетичних поверхонь для довільного напрямку поля [12]:

$$F = \frac{\pi^2 \mathbf{h}}{2|e|} \left(\frac{3N}{\pi l}\right)^{\frac{2}{3}} \eta^{\frac{1}{6}} (\eta \cos^2 \varphi + \sin^2 \varphi)^{\frac{1}{2}}, \tag{3}$$

де N – концентрація носіїв, l – кількість "еліпсоїдів" поверхні Фермі, η – анізотропія "еліпсоїдів", ϕ – кут між напрямком і головною віссю "еліпсоїда". Вираз (3) дозволяє за відомою частотою осциляцій визначити концентрацію носіїв. З одержаних експериментальних результатів було оцінено концентрацію носіїв заряду, яка становила $2,3 \times 10^{17}$ см⁻³, що добре узгоджується з результатами, отриманими з холлівських вимірювань $2,9 \times 10^{17}$ см⁻³.

За відносною зміною з температурою амплітуди осциляцій визначалось значення ефективної циклотронної маси [12]:

$$\frac{A(T_1)}{A(T_2)} = \frac{T_1}{T_2} \frac{\operatorname{sh}\left(\frac{2\pi^2 m_c ckT_1}{|e|\mathbf{h}H}\right)}{\operatorname{sh}\left(\frac{2\pi^2 m_c ckT_2}{|e|\mathbf{h}H}\right)},\tag{4}$$

Звідки за $T_2 = 2T_1$:

$$m_c = \frac{\left|e\right|\mathbf{h}H}{2\mathbf{p}^2 k T_1 c} \operatorname{Ar} \cosh \frac{A(T_1, H)}{A(T_2, H)},\tag{5}$$

Цей вираз застосуємо у квазікласичній області полів за припущення, що не змінюється з температурою і магнітним полем. Для невеликих магнітних полів $m_c \approx 0,14m_o$, що узгоджується з літературними даними для кристалів n-InSb.

У випадку квадратичного закону дисперсії, енергія Фермі $E_F = \frac{S}{2pm_c}$, тобто значення

екстремального перерізу і відповідні ефективні циклотронні маси дозволяють визначити енергію Фермі. $E_F \approx 0.1$ eB.

Знаючи m_c , визначаємо величину температури Дінгла T_D з відношення амплітуд Шубнікова– де-Гааза осциляцій двох послідовних значень H_n і H_{n+1} , за яких мають місце мінімуми (максимуми) магнітоопору.

$$\frac{A(T,H_n)}{A(T,H_{n+1})} = \left(\frac{H_{n+1}}{H_n}\right)^{\frac{1}{2}} \frac{\operatorname{sh}\left(\frac{2\pi^2 k T m_c c}{|e|\mathbf{h}H_{n+1}}\right)}{\operatorname{sh}\left(\frac{2\pi^2 k T m_c c}{|e|\mathbf{h}H_n}\right)} \cdot \exp\left[\frac{2\pi^2 k T_D m_c c}{|e|\mathbf{h}}\left(\frac{1}{H_{n+1}} - \frac{1}{H_n}\right)\right], \quad (6)$$

Температура Дінгла, що визначалася із залежності амплітуди Шубніковських осциляцій (піків 2 і 3 на рис. 2) від магнітного поля згідно з виразом (6), становила 14,5 К. Високі значення температури Дінгла, порівняно з отриманими в роботі [13] для структурно досконалих НК вісмуту ($T_D \gg 2K$), пояснюються розсіюванням електронів на іонізованих домішках в сильнолегованих НК InSb n-типу провідності.

Результати розщеплення піка 1 на рис. З дозволяють оцінити *g*-фактор. Спінове розщеплення максимумів Шубнікова-де-Гааза проявляється в магнітному полі B_2 , коли $g^* m_B B$ перевищує величину домішкового розщеплення рівнів Ландау Γ . Отже, можна записати $\Gamma = \mathbf{h}eB_1 / m_c = g^* m_B B_2$. Оскільки $m_B = e\mathbf{h}/2m_0$, тоді отримаємо $g^* = 2(B_1m_0 / B_2m_c)$. Розрахунки за цією формулою дали значення $g^* \approx 30$, що узгоджується з даними $g^* \approx 36$ [2].

Висновки

Досліджено магнітоопір ниткоподібних кристалів InSb з концентрацією домішки поблизу переходу метал-діелектрик в магнітних полях з індукцією 0 ÷ 14 Тл в інтервалі температур 4,2–77 К. Встановлено, що поздовжній магнітоопір із підвищенням значення індукції магнітного поля до 3–4 Тл залишається позитивним, а у вищих полях змінює знак, проте для поперечного магнітоопору спостерігається квадратична зміна магнітопору.

На залежностях як поперечного, так і поздовжнього магнітоопору за температури 4,2 К виявлено 9 піків з максимумами при індукції магнітного поля 1,05; 1,2; 1,3; 1,5; 1,8; 2,2; 2,7; 3,6 і широкий максимум при 6,0 Тл. Встановлено, що в сильнолегованих НК InSb спостерігаються осциляції Шубнікова-де-Гааза, період яких становить 0,1 Тл⁻¹. Виявлено розщеплення піка 1 у польових залежностях холлівської напруги за індукції магнітного поля 5,75 Тл та 6,05 Тл. За цими результатами оцінено g-фактор: $g^* \approx 30$, що узгоджується з літературними даними. Розраховано основні параметри НК InSb: ефективну циклотронну масу електронів $m_c \approx 0,14m_o$, концентрацію носіїв заряду 2,3×10¹⁷ см⁻³, енергію Фермі. $E_F \approx 0,1$ еВ та температуру Дінгла $T_D = 14,5$ К. Порівняно високе значення температури Дінгла, пояснюється розсіюванням електронів на іонізованих домішках в сильнолегованих НК InSb n-типу провідності.

- Parfen'ev R.V., Shalyt S.S., Muzhdaba V.M. An experimental confirmation of magnetophonon resonance in n-type InSb // Soviet physics JETP, 20(2) (1965) 294-298.
- [2] Парфеньев Р.В., Фарбштейн И.И., Шалыт С.С. Сложная осцилляция фотомагнитного эффекта в n-InSb в сильном магнитном поле // ЖЕТФ, 49 (1967) 253-256.
- [3] Hamaguchi Ch., Shirakawa Ts., Yamashita T., Nakai Ju. Magnetophonon resonance of hot electrons in n-InSb at 77 °K // Phys. Rev. Lett. 28 (1972) 1129.
- [4] Fujisawa I. Oscillatory amplitude and damping of transverse magnetophonon resonance for n-type InSb // Jpn. J. Appl. Phys. 17(4) (1978) 667.
- [5] Shalyt S.S., Parfen'ev R.V., Bresler M.S. Quantum oscillation of the thermal EMF in n-type InSb // JETP 48 (1965) 212-214.

- [6] Faugeras C., Maude D.K., Martinez G. Magnetophonon resonance in high-density high mobility quantum well systems // Phys. Rev. B. 69 (2004) 073405-1 – 073405-4.
- [7] Васильев Ю.Б., Gouider F., Nachtwei G., Buckle P.D. Циклотронный резонанс в гетероструктурах с квантовыми ямами InSb/AlInSb // ФТП, 44 (11) (2010).
- [8] Kochura A.V., Aronzon B.A., Alam M., et.al., Magnetoresistance and anomalous Hall effect of InSb doped with Mn // J. Nano and Electronic Physics, 5(4) (2013) 04015-1 – 04015-6.
- [9] Дружинін А.О., Островський І.П., Когут Ю.Р. Ниткоподібні кристали кремнію, германію та їх твердих розчинів у сенсорній електроніці: монографія. Львів: Вид-во Нац. ун-ту "Львівська політехніка", 2010.
- [10] Дружинін А.О., Мар'ямова І.Й., Павловський І.В., Ховерко Ю.М. Осциляції магнітоопору ниткоподібних кристалів германію при кріогенних температурах // Вісниик Нац. ун-ту "Львівська політехніка". Електроніка, 532 (2005) 112-117.
- [11] Narita S., Suizu K. Influence of spin on quantum oscillations of magnetoresistance in HgCdTe // Supl.Prog, Theor.Phys. 57 (1975) 187-198.
- [12] Пару Г.И. Термомагнитные и термоэлектрические свойства нано- и микронитей ви смута / Дисс. ... д-ра физ-мат. наук., Кишенев, 2012.
- [13] Nikolaeva A.A., Konopko L.A., Gutsu D.V., et.al. Effect of magnetic field, elastic stretch and dimensions on thermoelectric properties of bismuth nanowires. // Journal of Thermoelectricity, 2 (2008) 21-36.

FEATURES OF MAGNETORESISTANCE IN INSB MICROCRYSTALS AT CRYOGENIC TEMPERATURES

A. A. Druzhinin, I. A. Bolshakova, I. P. Ostrovskii, Yu. M. Khoverko, N. S. Liakh-Kaguy

Lviv Polytechnic National University,

Department of Semiconductor Electronics

© Druzhinin A. A., Bolshakova I. A., Ostrovskii I. P., Khoverko Yu. M., Liakh-Kaguy N. S., 2014

The study of the magnetoresistance in InSb whiskers with impurity concentration in the vicinity to the metal-insulator transition at low temperature range 4.2 – 77 K in fields with induction up to 14 T was conducted. The presence of Shubnikov-de Haas oscillations in both transverse and longitudinal magnetoresistance was observed. The following parameters of InSb whiskers were defined: period of oscillations 0,1 T⁻¹, cyclotron effective mass of electrons $m_c \approx 0,14m_{o_c}$ concentration of charge carriers 2,3×10¹⁷ cm⁻³, g-factor g^{*} \approx 30 and Dingle temperature T_D = 14.5K.

Key words: whiskers, oscillations, transverse and longitudinal magnetoresistance, metal-insulator transition, InSb.