ХІМІЧНА ТЕХНОЛОГІЯ СИЛІКАТІВ

УДК 544.7; 546.28

І.Ю. Євчук¹, О.І. Демчина¹, Г.В. Романюк², І.І. Цюпко², Ю.Г. Медведевських¹ ¹Відділення фізико-хімії горючих копалин ІнФОВ ім. Л.М. Литвиненка НАН України, ²Національний університет "Львівська політехніка"

СИНТЕЗ ТА ДОСЛІДЖЕННЯ ВЛАСТИВОСТЕЙ ГІБРИДНИХ НАНОКОМПОЗИТІВ НА ОСНОВІ ТЕТРАЕТОКСИСИЛАНУ

© Євчук І.Ю., Демчина О.І., Романюк Г.В., Цюпко І.І., Медведевських Ю.Г., 2011

Методом віскозиметрії встановлено вплив температури, концентрації вихідних речовин і каталізатора на динаміку процесу гелеутворення в системі тетраетоксисилан (TEOC) – етанол – вода. Досліджено кінетику фотоініційованої полімеризації композиції на основі диакрилатних мономерів у присутності золь-гель систем на основі ТЕОС. Синтезовані золь-гель методом гібридні полімер-кремнеземні нанокомпозиційні матеріали мають протонну провідність, що підтверджено імпедансними спектрами.

Ключові слова: золь-гель процес, тетраетоксисилан, наокомпозит, гібридний органо-неорганічний матеріал, фотополімеризація.

The influence of temperature, initial substances and initiator concentrations on gelation process dynamics in the system tetraethoxysilane (TEOS) – ethanol – water has been established by viscosimetry. Kinetics of photoinitiated polymerization of diacrylate based composition in the presence of TEOS based sol-gel system has been investigated. Proton conductivity of synthesized hybrid polymer-silicate materials has been confirmed by impedance spectra.

Key words: sol-gel process, tetraethoxysilane, nanocomposite, hybrid organic-inorganic material, photopolymerization.

Вступ. Створення нанокомпозиційних матеріалів на основі гібридних органо-неорганічних систем є одним з перспективних напрямів полімерного матеріалознавства. Нанокомпозиційні матеріали знаходять чимраз ширше застосування у техніці, медицині, біотехнології тощо, оскільки завдяки взаємодії неорганічних частинок з полімерною матрицею на нанорівні синтезований матеріал часто набуває унікальних властивостей [1, 2].

Серед багатьох способів одержання таких матеріалів на особливу увагу заслуговує золь-гельтехнологія. До переваг цього методу належать гомогенне диспергування неорганічного компонента у полімерній матриці, енергоощадність (процеси відбуваються за низьких температур), екологічність (переважно застосовуються водно-спиртові розчини прекурсорів золь-гель-процесу), можливість цілеспрямованого введення модифікаторів на стадії синтезу і проведення темплатного синтезу. Золь-гель-методом одержують матеріали різноманітного призначення: термочутливі, магнітні, нелінійно-оптичні, електрохромні, ізолювальні композити, матеріали з іонною провідністю, газодифузійні електроди, мембрани, нанокаталізатори, біологічно активні сполуки тощо [3, 4].

Вихідними компонентами для синтезу матеріалів золь-гель-методом слугують алкоксиди Si, Ti, Al, B, W, Zr, Mo та ін. з функціональністю 3 або 4, які гідролізуються під час додавання води з подальшою поліконденсацією, що веде до утворення гелю. Якщо проводити золь-гель-перетворення в середовищі органічного полімера, то неорганічна структура формуватиметься *in situ* в полімерній матриці. Одержувати органо-неорганічні матеріали можна і за одночасного проведення процесів полімеризації органічних мономерів та формування нанорозмірних частинок неорганічної фази у результаті золь-гель-процесу.

Аналіз численних публікацій, що розглядають одержання органо-неорганічних композитів, показує, що основна тенденція у цій області досліджень – накопичення експериментальних даних і встановлення залежностей між способом синтезу, структурою і властивостями матеріалу. Однак проблема одержання матеріалів із заданими характеристиками шляхом керованого синтезу далека від свого вирішення. Тому актуальним залишається завдання дослідження впливу різних чинників на процеси синтезу гібридних матеріалів з метою одержання продуктів з певними властивостями.

Експериментальна частина. Для досліджень використовувались такі матеріали: тетраетоксисилан Si(OC₂H₅)₄ (ЗАТ "ЕКОС-1", Росія, ТУ 2637-059-444493179-04), етанол ("х.ч."), ортофосфорна кислота ("х.ч."), дистильована вода, полівініліденфторид (ПВДФ) .М_w 175000 (Aldrich).

Полімеризаційна композиція "Дискофот-1" (виробник ПЯ М-5676) була складу (% мас.): тетраметилендиакрилат (ТМДА) – 62; епоксиакрилатний олігомер (ЕА) на основі продукту етерифікації резорцину епіхлоргідрином – 32; монофункційний вініловий мономер N-вінілпіролідон – 5. Фотоініціатором полімеризації був 2,2-диметокси-2-фенілацетофенон (ТУ 6-09-14-2424-83). Такий склад композиції забезпечував незначне усадження під час тверднення.

Кінетика фотоініційованої полімеризації досліджуваних систем вивчалась методом лазерної інтерферометрії. Фотозатвердження композиції проводили в тонкому шарі за дії УФ-опромінення ртутно-кварцової лампи ДРТ-400. Інтенсивність опромінення становила 14 Вт/м². Для уникнення контакту з киснем повітря шар композиції поміщався під покрівельне скло завтовшки 0,15 см. Зміна інтенсивності інтерференційної картини у ході контракції композиції, яка полімеризується, реєструвалася послідовно в часі фотоприймачем і записувалась на діаграмній стрічці потенціометром у вигляді інтерферограми. Відносний інтегральний ступінь перетворення мономера або конверсію Р розраховували як

$$\mathbf{P} = \mathbf{H}_{\mathrm{t}} / \mathbf{H}_{\mathrm{o}},\tag{1}$$

де H_t – контракція шару в момент часу t; H_o – гранично досяжна контракція, визначена за кількістю піків на інтерферограмі.

Реологічні вимірювання проводили на ротаційному віскозиметрі "RHEOTEST 2.1"(VEB MLW, НДР). Для золь-гель-систем знімали залежність між напругою зсуву і швидкістю зсуву; остання регулювалась швидкістю обертання вимірювального циліндра чи конуса. Для підтримування сталої температури робочий циліндр/конус з досліджуваною системою поміщався у термостатуючу ємкість. Динамічну в'язкість визначали за співвідношенням

$$\eta = \tau_r / D_r, \tag{2}$$

де η – динамічна в'язкість (Па·с); τ_r – напруга зсуву (Па); D_r – швидкість зсуву (с⁻¹).

Протонну провідність зразків вимірювали на імпедансному спектрометрі "AUTOLAB" (Есосhem, Нідерланди) з програмним забезпеченням FRA. Досліджувані зразки затискали між двома платиновими електродами діаметром 1 см. Товщина зразків становила ~ 1 мм.

Результати та обговорення. Як зазначалось вище, для можливості проведення золь-гельсинтезу з метою одержання продуктів з певними властивостями важливо знати кінетичні закономірності проходження процесів, які при цьому відбуваються. Слід сказати, що питання кінетики золь-гель-синтезів ще достатньо не досліджене. Силікатні гелі найчастіше синтезують гідролізом мономерних тетрафункціональних алкоксидних прекурсорів з використанням мінеральної кислоти (наприклад, HCl) або основи (наприклад, NH₃) як каталізатора. На рівні функціональних груп переважно застосовують три реакції для описання золь-гель-процесу: гідроліз \leftrightarrow етерифікація (рівн. (3)), водна конденсація \leftrightarrow гідроліз (рівн. (4)), спиртова конденсація \leftrightarrow алкоголіз (рівн. (5)):

$$(RO)_{3}Si-OR + HOH \leftrightarrow (RO)_{3}Si-OH + ROH;$$
(3)
$$\equiv Si-OH + HO-Si \equiv \leftrightarrow \equiv Si-O-Si \equiv + HOH;$$
(4)

$$=SI-OH + HO-SI = \leftrightarrow =SI-O-SI = + HOH;$$
(4)
$$\equiv SI-OH + RO-SI \equiv \leftrightarrow \equiv SI-O-SI \equiv + ROH.$$
(5)

Реакція гідролізу (рівн. (3)) заміщає алкоксидні групи –OR гідроксильними –OH. Наступні реакції конденсації, в яких беруть участь силанольні групи, утворюють силоксанові зв'язки (Si–O–Si) плюс побічний продукт – спирт (ROH) (рівн. (5)) або воду (рівн. (4)). Нанорозмірні продукти поліконденсації органосиланів загальної формули $SiO_x(OH)_y(OR)_z$, сполучаючись між собою, утворюють кремнеземний каркас. Структурування золь-гель-системи починається в так званій точці перколяції, якій відповідає така концентрація макромолекул і такий їхній конформаційний розмір, за яких починають перекриватись конформаційні об'єми макромолекул. Це призводить до різкого зростання в'язкості золь-гель-системи. Отже, вивчаючи динаміку в'язкості золь-гель-систем, можна оцінити характеристичні часи досягнення перколяційної точки і вплив на них таких параметрів, як вихідний склад золь-гель-системи, концентрація каталізатора і температура.

Відомо, що розчини макромолекул є неньютонівськими рідинами, їхня в'язкість залежить не тільки від сил тертя між шарами рухомої рідини, а й від зсувної деформації макромолекул. Це зумовлює залежність в'язкості від величини градієнта швидкості гідродинамічного потоку, яка визначається кутовою швидкістю обертання робочого циліндра.

В'язкість досліджуваних золь-гель-систем TEOC:H₂O:C₂H₅OH: вимірювалась залежно від температури, концентрації каталізатора (ортофосфорна кислота) і вихідного складу системи у діапазоні швидкостей обертання робочого циліндра 0,5 – 243 об/хв. Залежність вимірюваної в'язкості від кутової швидкості ю обертання робочого циліндра описується виразом:

$$h = h_o + h_s \frac{1 - \exp\{-b/w\}}{1 + \exp\{-b/w\}},$$
(6)

де η_o – фрикційна складова в'язкості; η_s – пружна складова в'язкості; b – коефіцієнт, який характеризує градієнтну залежність в'язкості.

Параметри η_o , η_s і *b* визначались методом оптимізації в програмі ORIGIN 5.0. Зміну цих параметрів в часі для досліджуваних систем показано на рис. 1–3.

Як бачимо з цих рисунків, усі криві мають дві ділянки. Пологій ділянці відповідає поступове зростання в'язкості системи, зумовлене реакціями поліконденсації продуктів гідролізу ТЕОС. Різка зміна нахилу кривих $\eta_s - t$ і $\eta_o - t$ відповідає початку гелеутворення. За точкою перетину дотичних до цих ділянок знайшли час досягнення перколяційної точки, який відповідає початку перекривання конформаційних об'ємів макромолекул, яке структурує золь-гель-систему. Встановлено, що час досягнення перколяційної точки зменшується із збільшенням вмісту ТЕОС, ортофосфорної кислоти в системі, а також із збільшенням температури (рис. 4). При цьому різко зменшується значення параметра *b*, що свідчить про перекривання конформаційних об'ємів макромолекул, цо утворюються в результаті гелеутворення (табл. 1–3).

Рис. 1. Залежність $\eta_s(a)$ і $\eta_o(b)$ системи ТЕОС:С₂H₅OH:H₃PO₄:H₂O від часу за різних концентрацій H₃PO₄ (40 °C)

303

Таблиця 1

8 мл H ₃ PO ₄		7 мл H ₃ PO ₄		6 мл	H ₃ PO ₄	5 мл H ₃ PO ₄		
t, год	b×10 ⁴ ,c ⁻¹	t, год.	b×10 ⁴ ,c ⁻¹	t, год.	b×10 ⁻⁴ ,c ⁻¹	t, год.	b×10 ⁴ ,c ⁻¹	
19.5	15.5	4.5	18.7	23.5	16.5	47.5	16.6	
24	15	23.5	15.8	47.5	14.5	54.5	15.8	
42	3.73	28	15.7	50.5	14.2	71.5	19.6	
43	3.78	30.5	14.9	53.5	3.39	74	3.26	
44	4.07	47	4.14	54.5	3.51	75.5	3.27	
48	4.27	48	4.13	71.5	4.11	77	3.31	
49	4.01	49	4.01	72.5	3.9	79	3.46	
50	3.76	50	3.99	75	3.73	96	4.09	
52	3.39	51.5	3.86	77	3.71	101	4.02	
53	3.28							
73	2.49							

Залежність коефіцієнта b системи TEOC:C₂H₅OH:H₃PO₄:H₂O від часу за різних концентраци́х H₃PO₄ (40°C)

Рис. 2. Залежність η_s (a) і η_o (б) системи *TEOC*:*C*₂*H*₅*OH*:*H*₃*PO*₄:*H*₂*O* від часу за різних концентрацій *TEOC* (45 °C)

Таблиця 2

Залежність	коефіцієнта в системи ТЕОС:С2H5OH:H3PO4:H2O
від	часу за різних концентрацій ТЕОС (45°С)

17 TH	⁷ мл EOC	16 Ti	б мл ЕОС	15 TH	б мл ЕОС	12 Ti	2 мл EOC	11 TI	мл ЕОС	10 TI) мл EOC	7 мл	TEOC	5 мл	TEOC
t, год	$b \times 10^4, c^{-1}$	t, год	$ \begin{array}{c} \mathbf{B} \times \\ 10^{4}, \\ \mathbf{c}^{-1} \end{array} $	t, год	$b \times 10^4, c^{-1}$										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3	17.8	23	16	4,5	18.8	26	16.8	27	16.4	5,5	18	91	19.6	95	17.8
20	18.8	26	14.1	22	17.1	48	17.7	49	16	24	16.5	114	17.8	119	18
23	20	28	2.61	26	16.5	50	18.1	65	3.06	48	16.2	138	17.2	143	18.4

Продовження табл. 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
23	20	28	2.61	26	16.5	50	18.1	65	3.06	48	16.2	138	17.2	143	18.4
24	3.28	29	2.74	44	3.3	51	3.13	66	3.13	53	16.1	139	17.6	172	17.4
25	3.07	48	3.59	47	3.15	52	3.17	69	3.15	72	16.8	145	17.3	193	17.1
26	3			49	3.12	53	3.26	89	2.97	74	16.9	162	3.61	267	16.5
27	3.03			51	3.14	54	3.28	92	3.06	77	17.3	163	3.31		
45	4.42			69	3.73	55	3.51	94	3.22	89	2.83	186	2.89		
						65	2.93	113	3.36	91	2.84	191	2.76		
						67	2.96			94	2.92				
						70	2.84			96	3.08				
						90	3.19			113	3.1				
						114	3.2			119	3.12				
										138	3.32				

Рис. 3. Залежність $\eta_s(a)$ і $\eta_o(b)$ системи ТЕОС: $C_2H_5OH:H_3PO_4:H_2O$ від часу за різних температур

Таблиця З

Залежність коефіцієнта b системи TEOC:C₂H₅OH:H₃PO₄:H₂O від часу за різних температур

	35°C		40^{0} C	$45^{0}C$			
Т, год	b×10 ⁴ ,c ⁻¹	t, год	b×10 ⁴ ,c ⁻¹	t, год	b×10 ⁴ ,c ⁻¹		
23	17.1	19.5	15.5	23.5	16		
29.5	16.9	24	15	26.5	14,1		
47	14.1	42	3.73	28	2.61		
72.5	3.85	43	3.78	29	2.74		
73.5	3.89	44	4.07	48.5	3.59		
75	3.08	48	4.27				
76.5	2.98	49	4.01				
78	2.94	50	3.76				
96.5	2.9	52	3.39				
		53	3.28				
		73	2.49				

Рис. 4. Час досягнення перколяційної точки у системах ТЕОС:C₂H₅OH:H₃PO₄:H₂O за різних температур залежно від концентрації H₃PO₄

Гібридні органо-неорганічні композити були синтезовані утворенням нанорозмірної фази в результаті золь-гель-процесу систем на основі ТЕОС *in situ* в полімерній матриці ПВДФ. Цей полімер був вибраний завдяки добрим експлуатаційним характеристикам – високій термічній та хімічній стійкості. ПВДФ попередньо розчиняли в диметилформаміді (10 % ваг.). Золь-гельсистеми (зразок 1: TEOC:C₂H₅OH:H₃PO₄:H₂O = 2,2:7,34:0,1:0,36 об. ч., зразок 2: TEOC:C₂H₅OH:H₃PO₄:H₂O = 2,2:7,24:0,2:0,36 об. ч.) додавали до розчину ПВДФ для одержання сумішей із ваговим співвідношенням ПВДФ/ТЕОС 70/30. Одержані суміші перемішували на магнітній мішалці протягом 2 год за температури 40 °C і залишали для формування плівок.

Протонну провідність полімерних нанокомпозитних плівок зручно визначати вимірюванням повного комплексного опору – імпедансу; активна (дійсна) та реактивна (уявна) складові вектора імпедансу дають змогу визначати провідні характеристики матерілу. На рис. 5 показано годографи імпедансу комірок Pt – зразок – Pt для зразків з різним вмістом H₃PO₄.

Рис. 5. Годографи імпедансу для зразків 1 (а) і 2 (б)

Протонну провідність матеріалу визначали аналізом годографів імпедансу в інтервалі частот $10 - 10^5$ Гц. За велиину протонної провідності приймали значення $1/R_F$; $R_F - відсічка на осі дійсного опору [5]. Питома протонна провідність визначалась як обернена величина до питомого опору, що розраховувався за формулою$

$$\rho = \mathbf{R} \cdot \boldsymbol{\pi} \cdot \mathbf{d}^2 / 4\mathbf{l} \,, \tag{7}$$

де R – опір матеріалу, Ом; l – товщина зразка, см; d – діаметр зразка, см.

Виміряна протонна провідність має значення порядку 10⁻⁴См/см і залежить від вмісту ортофосфорної кислоти у зразку. Очевидно, вона забезпечується силанольними групами і групами Р-ОН.

Альтернативним методом синтезу гібридних органо-неорганічних матеріалів є полімеризація мономерів з одночасним проведенням золь-гель-синтезу, що веде до структурування усієї системи. Для одержання полімерних нанокомпозитів за цим методом проводили фотоініційовану полімеризацію диакрилатної композиції "Дискофот-1" в присутності золь-гель-систем на основі ТЕОС. Золь-гель-систему вводили у полімеризаційну композицію до початку гелеутворення у різних співвідношеннях. Експериментальні кінетичні криві у формі залежності конверсії від часу показано на рис. 6, а розраховані кінетичні параметри – в табл. 4.

Вибрані композиції характеризуються високою швидкістю полімеризації – час досягнення максимальної швидкості t_{max} становить 5–10 с. Максимальна швидкість фотоініційованої полімеризації композицій w_{max} із зростанням вмісту неорганічної складової падає з одночасним зростанням конверсії P_{max} , за якої відбувається максимальна швидкість полімеризації. Плівки, одержані під час введення в полімеризаційну композицію до 50 % об. золь-гель-системи, є еластичними. Протонна провідність їх виявилась нижчою, ніж у випадку плівок, одержаних на основі полівініліденфториду (порядку $10^{-5} - 10^{-6}$ См/см).

Таблиця 4

N⁰	"Дискофот-1": ЗГС, % об.	t _{max,} C	P _{max}	W_{max}, c^{-1}
1	100 : 0	5.2	0.34	0.203
2	70:30	7.3	0.38	0.124
3	50 : 50	9.1	0.41	0.108
4	30:70	10.4	0.43	0.102

Кінетичні параметри процесу фотоініційованої полімеризації

Рис. 6. Кінетичні криві фотоініційованої полімеризації "Дискофот-1" + ЗГС

Висновки. Проведені дослідження дають змогу запропонувати синтез гібридних органонеорганічних матеріалів шляхом введення золь-гель-системи ТЕОС в матрицю полівініліденфториду і фотоініційованою полімеризацією композиції диакрилатного мономера і золь-гельсистеми ТЕОС. Одержані нанокомпозити мають протонну провідність. Подальші дослідження будуть спрямовані на забезпечення підвищення протонної провідності нанокомпозитів з метою одержання матеріалів для протонпровідних мембран паливних елементів та газових сенсорів.

1. Бучаченко А.Л. Нанохімія – прямий шлях до високих технологій нового століття // Успехи химии. – 2003. – 72(5). – С. 419 – 436. 2. Помогайло А.Д. Гібридні полімер-неорганічні нанокомпозити // Успехи химии. – 2000.– 69(1). – С. 60 – 89. 3. Шилова О.А., Шилов А.А. Нанокомпозиційні оксидні і гібридні о-неорганічні матеріали, одержувані золь-гель-методом. Синтез. Властивості. Застосування // Наносистеми, наноматеріали, нанотехнології. – 2003. – 1(1). – С. 9 – 83. 4. Ролдугін В.І. Самоорганізація наночастинок на міжфазних поверхнях // Успехи химии. – 2004. – 73(2). – С. 123 – 156. 5. Добровольський Ю.А., Писарева А.В., Ленова Л.С., Карелін А.І. Новые протонпроводящие мембраны для топливных элементов и газовых сенсоров // "Альтернативная энергетика и экология". – 2004. – 12(20). – С. 36 – 41.