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1. Introduction

Surface plasmon polaritons (SPPs) are collective excitations of electrons, propagating at the interface
between a metal and a dielectric [1,2]. They are used to manipulate electromagnetic energy at the
subwavelength scales, which necessitates the study of their characteristics.

A considerable amount of research on the study of SPPs spectrum in heterogeneous dielec-
tric/metal /dielectric structures has been published for today (see bibliography in [1,3]), in which
a metal layer is mainly considered as 2D metal or metallic graphene using the corresponding charac-
teristic expressions for the dielectric function e(q,w) (g = (kg, ky) is 2D vector, w is frequency) of a
metal.

In the case when a metal layer is a 3D structure, the Drude model is widely used to describe
SPPs [1,4] in which the dielectric permittivity of a metal is expressed by the formula:

(g, 2,7 ,w) =eP(w)d(z — 2),
2 )

D —_——_—
( w2 +iyw’

w)=1
Unfortunately, this approach to the description of SPPs does not allow taking into account the influence
of the thickness of a metal layer and size effects on their properties.

Recently, in the paper [5] there has been presented the results of experimental studies on the
influence of a thickness of a metal film on the spectrum Aw (% is the reduced Planck constant [6])
of SPPs, where it has been demonstrated that such a dependence is significant in the area of small
(~ 1—5nm) thicknesses. In this paper, a mathematical model for £(q,w, z, 2’) is proposed and studied
and it is shown that taking into account the thickness of a metal layer can be described by such a
model; and the obtained results qualitatively coincide with the experimental results.

2. Problem formulation

Consider a heterogeneous structure (whose geometry is depicted in Fig.1) formed by two non-
conducting media with dielectric permittivities €1 and €3 between which a metal nanofilm with thickness
L is sandwiched. We assume that dielectric permittivities €; and €3 are functions of the time variable,

Le. g1 = 61(t), £3 = 63(t). (2)
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Dielectric permittivity of metal is eo(r,7’',t) and for the geometry of a dielectric/metal/dielectric
heterostructure has the form

g2 = e2(r)| — r‘/‘,z,z’,t), T = (7,y). (3)

Let us consider a problem of describing the propagation
of electromagnetic waves, which are localized at the interface
between a dielectric (z > L) and a metal (0 < z < L). These
waves are called surface plasmons [1]. A mathematical model
describing the propagation of surface plasmons is based on the
Maxwell’s equations system [1,2]:

V.-D=p, V-B=0,

oD (4)
VxE=p, VxXH=J+—,
ot
Fig. 1. Schematic representation of di-  where D is electric flux density, B is magnetic flux density,
electric/metal /dielectric structure. E is electric field strength, H is magnetic field strength, p is

electric charge density and J is electric current density. We assume that external charges p in the area
of contact between dielectrics and metal are absent, namely V - D = (0. Here “+” is the dot product,
“x” is the cross product.

We assume that interconnection between the vectors E and D [2]|, namely

D(r, 2,t) = // dr"‘ dz' dt' e;(r)| — rh,z,z’,t - t’)E(rh,z',t’), i=1,2,3. (5)

Let us write the system of Maxwell’s equations (4) in Fourier variables. We will define the Fourier
transform with respect to time as

1 * iw r > —iw
ft) = %/ flw)e“dw, flw)= / f(t) e “tat. (6)
And g;(r)| — 'r"‘, 2,2, t —t') is expressed by the following equation:
Q > —i(g,r) =7 —iw(t—t'
sr) = rfa it —t) = oo /_w dw/qu i(g, 2,7\ w) e @M, (7)

where €2 is the domain of the 2D vector q = (k,, ky).
We will assume that

er(r) — rh,z, it —t) =ei(t—t")o(r) — rh) 5z —2'),
e2(r) — rh,z, 2t —t) = eg(r — rh,z,z,t —t) (2 — 2, (8)
e3(r) — rh,z, 2t —t) =es(t—t")o(r) — rh) §(z —2),

where §(z — 2’) is the Dirac delta function [6].
The polarization of the waves corresponds to the transverse magnetic (TM) mode for the vectors

E and H, that is
E = (Ew,any)7 H = (O,Hy,O). (9)
Consequently [1], the magnetic field propagates along the axis OX and is homogeneous along the
is OY ,
. H(r.w) = H(z,w) e, (10)

k. is a wave vector in the direction of propagation.
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For H we obtain a system of wave equations for all the domains of the heterogeneous structure [1]:

2
81%7;5’&}) + (ké e1(w) — k::%)Hy(z,w) =0, (11)
82Hy(zaw) 2 2
T + (k(] 62(q,Z,Z,W) - kx)Hy(sz) = 07 (12)
2
TRED | (1 esfeo) ~ )y z,0) =0, (13)

where kg = w/c. In order to solve the system (11)—(13), we need to find out expressions for dielectric
permittivities £1(w), €2(q, 2, z,w), and e3(w).

3. Model of dielectric permittivity of a metal layer

Here and subsequently, we will use a high-frequency approximation for dielectric layers, this implies
that in (8) the first and the last expressions can be rewritten as follows
g1(w) = €1(00) = €1 = const,
1(w) = €1(00) = &1 (14)
e3(w) = e3(—00) = 3 = const.
As a model for the dielectric function e3(q, 2, 2’,w) of the metal layer, we will use the diagonal
component of the dielectric permittivity tensor of a metal film which is obtained in [7],

w2
e(r,r,\w) = (1 — nei’ﬁ an|wn(r')|2>5(r —r). (15)

Here w, = y/4mnee?/m, is the plasma frequency [1,4], n. is an electron density in a metal, f, =
©(en, — €r) is the Fermi-Dirac function [7,8], O(z) is the Heaviside step function [8|, er is the Fermi
energy [4,8], r = (7|, 2).

The function

Un(z,y,2) = \E eI, (2) (16)

is a wave function [6] of an electron in the metal layer and ¢,(z) is the solution of equation
h? d?

o
2m dz

which is the Schrodinger equation [3| that describes behaviour of an electron in a metal film [6,9, 10].
Potential U(z) that simulates surfaces bounding the film has the form

(2) + U(2)n(z) = Wen(2), (17)

U if z<0,
U(z) =<0 if 0<z<L, (18)
U, if z>1L1,

where L is the film thickness. The solutions of the equation (17) that satisfies the conditions
¢(z — £00) — 0 can be presented as follows

AeXtz xq = 2,5—7?(% - W) if z<0,
Pn(z) = Creth + Che 2, k= /22W if 0<z<lL, (19)
Be™2  xo=,/2(Uy—W) if z>L.

Constants A, C, C, and B we will determine using continuity conditions for ¢, (z) and 49n(2) o the

dz
boundaries z = 0 and z = L and a normalization condition
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/ |6n(2)]* = 1, (20)
which, actually, yields the condition ¢(z — +o00) — 0. Hence, the expressions for constants have the
form

_ 1 ix . I ixa
Cl—A<2 2k>’ CQ—A<2+2k>. (21)
_ X1 . x2L
B= A(cos(k:L) + ya s1n(l<:L)) X2 (22)
1 1 X1 . 2
AP = — + — kL) + 2= sin(kL
AP = (5t 5 (costin) + X sin(er) )
Lxi X1 Lol gy -
t3 (ﬁ + 1) + o2 (1 - cos(2k:L)> +t1 <E - ﬁ) sin(2kL) ) . (23)

In order to find &, we need to solve the following equation [3,9,10]

kL =mn — (arcsin _kh_ + arcsin il > (24)
N vV 2mU1 vV QTTLUQ ’
the roots of (24) will determine a value of
k2
W, = n 25
o (25)
which is discrete.
The maximum number of energy levels ny.x we determine from the condition
Nmax = l Lmin(Sy, S2) + arcsin M + arcsin M ,
T S1 So
(26)
2m .
SZ' = ﬁUZ’ 121,2.

Square brackets indicate taking the integer part.
Expression for ¢(q,z,2',w) (7) for the

ea(2w) model (15) has the form (for details see [7])
094 62(0,2,2/,(,0) 282(2,(,0) 5(25—2/)
w2 T'max
_ P 2 2 2
0.92 = <1 T 2:1 (k7 — k3)|on(2)] >
n=
x 6(z—2"). (27)
0.90
The results of numerical calculations of
e9(z,w) for specific values U; = 4.2¢V and U =
0.88 5eV, which correspond to the dielectrics (1 —
polyethylene, 2 — SiO3), are shown in Fig. 2.
0.86 | The results obtained have shown that the di-
0 1 2 5 4 - nm Clectric function es(z,w) is different from con-
’ stant only near the contact areas (z = L and

Fig. 2. The dielectric permittivity of the metal layer

(L = 5nm) when 4 z =0) (Fig.2). This allows making some simpli-
= onm) when — = 4.

fications when studying the system (11)—(13).
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4. Investigation of the influence of the thickness of metal film on the wave spectrum

To solve the system of wave equations (11)—(13), Eq. (27) will be assumed that

£9(z, 7', w) = (e2(L,w) + alea(z,w))6(z — 2'), (28)
where
1 L W2 Tmax

er(Lyw) = f/o otz =1 5 s> (- LG (29)
_ 1 L
5@ = [ lon()a:

1/x3 1 /1 3

— AP <§ (% + 1) + 2;‘21L (1 - cos(2k:L)> + <E - %) sin(2kL)>. (30)

Substitution of (29) into (12) yields

82Hy(z,w)

942 + (k:g(z-:g(L,w) + aleg(z,w)) — k?c)Hy(z, w) = 0. (31)

The solution of the equation (31) for Hy(z,w) can be found as expansion into a series in increasing
powers of «

Hy(z,w) = Z a"Hy m(z,w). (32)

m=0

In particular, the first two equations Hy o(2,w) and Hy 1(z,w) are following:

82Hy,0(z, w)

G2 T (k§e(L,w) — k2)Hy o(z,w) = 0, (33)
0%H,1(z,w
% + (k‘gs(L,w) — k‘i)Hy,l(z,w) = —kgaAsg(z,w)H%o(z,w). (34)
When modeling the influence of the thickness of a . oV
metal film L on SPPs spectrum, we will limit ourselves 40’76
to the case Hy(z,w) =~ Hyo(2,w). In this case, the disper- '
sion relation has the form
35r
L kifer+kofeskz/er 4 k3/ea
e "2 = ,  (39)
kl/El + kg/&‘g k‘g/&‘g + k2/€2
3.0
K= k2 — ke, i=1,2,3; ko=, (36)
c
which coincides with the results obtained in Ref. [1]. Here 251
g1 = e(w), 2 = e(L,w), and e3 = e(w).
Similarly as in our previous work [11], for the upper 201
layer we took a polyethylene with a permittivity constant 0 0.05 0.10 015 ky, nm~!

€1 = 2.3 and the electron work function U; = 4.24¢€V;
SiOs for the lower dielectric substrate with a permittivity
constant €1 = 4 and the electron work function Uy = 5¢eV.
The dielectric function of the metal layer (gold) is described by the function (16)

Fig. 3. SPPs spectrum for the Drude model
eP(w) (dotted line) and e5(L,w) (solid line).

w2 T'max 9

pwg Z (k% - kfz)’¢n(z)’ : (37)
€ n=1

EQ(L,U.)) =1- omn
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Fig. 3 shows the result of spectrum calculations obtained from (35) using (29), (30). These results
we compared to the data obtained for the Drude model with negligible damping [1]

in which the plasmon frequency spectrum does not depend on the thickness L.

(38)

In Table 1 the results of numerical calculations of the dependence of frequency w* = wip, and a wave

vector k) = %}C on the number of levels of dimensional quantization np.y are provided [12].
Table 1. The data in the table show that difference be-
e2(L,w") eP(w*) tween spectra w(k,) for both models increases
L (nm) w* w Tmax with increasing of the wave vector k;. Also, it
by =1 should be noted that with increasing of L, w(k;)
100 0.33992328 | 0.34237082 335 is steadily approaching from below the values ob-
1000 0.34016832 | 0.34237082 3357 .
5000 | 0.34010295 | 0.34237082 | 16780 tained for the Drude model
10000 | 0.34019603 | 0.34237082 | 33579
30000 | 0.34019749 | 0.34237082 | 100737 hw, eV
=2 25
100 0.40974355 | 0.41421356 335
1000 0.41021317 | 0.41421356 3357 2.0
5000 0.41025793 | 0.41421356 | 16789 ’
10000 0.41026353 | 0.41421356 | 33579
30000 | 0.41026618 | 0.41421356 | 100737 1.5 the Drude model
k=3 model (29), 2ML
100 | 0.42679347 | 0.43187178 | 335 model (29), 5 ML
1000 | 0.42732626 | 0.43187178 | 3357 10 moge} (§9>’ 10 ﬁlﬂ
5000 | 0.42737706 | 0.43187178 | 16789 model (29), 15
10000 | 0.42738341 | 0.43187178 | 33579 05 experiment, 10 ML [5]
30000 | 0.42738642 | 0.43187178 | 100737 experiment, 12 ML [5]
k*¥=4 _
= ks, nm
100 0.43313236 | 0.43844718 335 0.05 0.10 0.15 0.20 ’
1000 0.43368968 | 0.43844718 3357 . D
5000 043374282 | 043844718 | 16739 Fig. 4. SPPS spectrum for the D.rude mod.el e”(w)
10000 1043374947 | 0.43344718 | 33579 (dotted line) and e5(L, w) f'or the different thicknesses
30000 1 0.43375261 | 0.43844718 | 100737 of a metal layer (solid lines), 1 ML ~ 0.24 nm.

In Fig. 4, the results of calculations for the structure “Si—silver—-SiOs” are shown. The dielectrics
were simulated for the following parameters: Uy = 5¢eV, ¢y = 2.4 and U; = 4.8¢eV, g1 = 11.7 for Si and
SiOy correspondingly [1].

The same figure shows the experimental results for the structure “Si—silver—SiOy” published in [5].
These results demonstrate that the spectrum of plasmons strongly depends on the thickness of a
metal layer when L ~ 50ML. As can be seen from Fig. 4, the proposed approach gives a qualitative
explanation of the influence of a metal film on the SPPs spectrum.

Note that the results obtained in [5] for the SPPs spectrum were obtained for structures that consist
of 2-15 monolayers, thus simulation of e5(q, 2, z’, w) should be carried out for such thicknesses. In such
metal structures, quantum effects become significant [9,10,13] and they should be taken into account.
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MoBepxHeBi NJ1a3MOH—NONSAPNTOHN B CTPYKTypax
“nienekTpnk—merTan—aienekTpuk’: BNAMB TOBUIMHW MeTaNeBOro
npoLuapky

KoctTpobiitI1., ITomrosmii B.

Havionarvruti ynisepcumem “JIvsiscora nosimexnixa’,
eyn. C. Bandepu, 12, Jlvsis, 79013, Yxpaina

3aponoHOBAHO Ta JIOCIIZKEHO MOJIEIIb, KA JIA€ 3MOTY MOSICHUTH €KCIIEPUMEHTAJIbHI JaHi
IO/I0 BILUIMBY TOBIIWHU METAJEBOTO IpOMmAapkKy Ha crektp SPP xBmib y rereporennmx
CTPYKTYPax “IieleKTPUK—MeTa—TieJIeKTPUK .
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