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Abstract

The technique for designing the optimal value of the filter time constant for analog signd is presented in the
paper. This technique is based on the objective function which takes into account the quality index of the filtration
process and the dynamic error of the filtered signal. The experimental study of the transient processes in a thermal
plant was carried out in order to analyze the influence of the filter parameters on the quality of the filtration process.
The optimal value of the filter time constant was designed on the basis of the developed technique for the obtained
experimental data. The experimental transient process was compared to the filtered one which was obtained with
application of afilter with an optimal time constant. Application of the developed technique for designing the optimal
time constant in the automated measurement and control systems will ensure high quality of the filtration process and
small dynamic error of the filtered signal.

K eywords: filter; time constant; optimization; analog signal; dynamic error; objective function.

1. Introduction

The analog signal filtration is often used in the up-to-date automated measurement and control systems. The main
purpose of the filtration process is to eliminate the disurbances (noise) and to allow the useful signa to pass.
Application of a filter in an automatic control system based on a step controller or a continuous controller provides
elimination of the undesired operation of the controller and improvement of the automatic control quality.

When designing afilter thereis often a problem of choosing thefilter structure and defining the numerical values
of its tuning parameters. Nowadays the following two types of filters are most widely applied in the industrial
automation systems based on microprocessor controllers: exponential filter and moving average filter. The structures
of these filters are known and their tuning parameters can be set in a definite range depending on the process for
which the technological parameter is measured.

Setting a too small value of the time constant for the exponential filter will lead to alow quality of the filtration
process because not all the disturbances (noises) will be filtered (removed). Setting a too big value of the filter time
constant will provide a good quality of filtration, however it will lead to a significant delay of the filtered signa
which, in turn, will cause a big value of the dynamic error in the filtered signal. That is why there is a problem of
defining such a value of the filter time constant at which a good quality of the filtration process would be ensured
together with a small dynamic error of the filtered signal. To solve this problem the technique for designing the
optimal value of the filter time constant was devel oped. This technique is based on the objective function which takes
into account the quaity index of the filtration process and the dynamic error of thefiltered signal.

Optimization of filtersis discussed in [1]-[3], however these works are mostly focused on optimization of the
filter structure and less attention is paid to defining the optimal numerical values of the filter tuning parameters.
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The goal of this work is to present the developed technique for designing the optimal value of the exponential
filter time constant taking into account the dynamic properties of the controlled plant. The technique was devel oped
on the basis of the results of experimental study of the trangent processesin athermal plant.

2. Filtersof analog signals

In the analog signal processing, thefilter is a device for passing the desired frequencies of the eectric signal and
for suppressing the undesired frequencies. In the digital signal processing, the digital filter is a hardware or software
tool for any kind of digital signal processing with the properties of a linear time-invariant system [4]-[6]. Depending
on the shape of the amplitude frequency response curve there are four types of filters:

- low-pass filters (they pass dl the frequencies below the cutoff frequency f.);

- high-passfilters (they pass al the frequencies higher than the cutoff frequency f.);
- band-pass filters (they pass all the frequencies within the range from f. to fe,);

- band-stop filters (they pass all the frequencies outside the range from f to f,).

Since it is impossible to implement the ided amplitude frequency response (AFR) in a device, various
approximation methods are applied during the filter design. There are the following types of filters depending on the
AFR approximation function:

- Butterworth filter (its main advantage is the absence of the ripple in the pass band and in the stop band,
however this filter has a slow roll-off and it is difficult and expensive to implement a highly selective filter
since ahigh order of the filter is needed);

- Chebyshev type 1 and type 2 filters (they have a steeper rall-off, however thereisripplein the pass band (type 1)
or in the stop band (type 2));

- eliptical (Cauer) filter (it has the steepest roll-off, however thereis ripple both in the pass band and in the stop
band).

There are also Bessdl, Lagrange, Gaussian and other filters known in addition to those listed above.
The main advantages of the digital filters as compared to the anal og ones are as follows:

- high accuracy (in the analog filters the accuracy is limited by the tolerance for the elements);

- stahility in time (thereis no drift of parameters depending on the environmental conditions);

- flexibility in tuning and simple change of the setting parameters,

- small dimensions.

There are also some drawbacks of the digital filtersin comparison with the analog ones:

- limited range of operation due to the Nyquist frequency;

- difficulties with operation in the real-time mode, since all the computations need to be done within the
sampling period;

- high resolution of ADC and DAC isneeded to provide high accuracy of thefilter.
The process of digital filtration consistsin summarizing a definite number of the input and previous output samples:

yn = bOXn +b1Xn-1 +"'+kan-k -
S AYn1T Yot ot &nYem

D)

where y, is the current output sample; X, is the current input sample; y,; are the previous output samples; x,; are the
previous input samples; by are the coefficients of the input samples; g are the coefficients of the output samples.

Depending on which samples take part in the computation of the output value, the following two categories of
filtersare considered:

- finite impulse response (FIR) filters (only input samples are used for computation of the output value);

- infinite impulse response (I1R) filters (both input and previous output samples are used for computation of the
output value).
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The indudtrial low-pass filters are usually based on the following two types of filters: the moving average filter
(FIR filter) and the exponential filter (1IR filter) [7].

The moving average filter with five samples used for computing the output sample can be described by the equation:
1
Yo = E(Xn-z + X1 + X, + Xoi1 + Xn+2) . (2)

In this equation, both samples before and after a given moment of time n take part in computation of the
current output sample. That iswhy thereisno delay in thefiltered signa. Thistype of thefiltration algorithm is called
non-causal. And it cannot be used for the real-time applications.

The output sample of a real-time filter is computed on the basis of the previous samples. Thereis a delay of the
output samples with respect to the input ones. Thisfilter is caled causal and it can be described by the equation:

yn:é(xn+Xn-1+Xn-2+Xn-3+Xn-4)' (3)

The moving average filter is simple, however at equal coefficients it becomesinert and there is a dow response
of thefilter to the variation of the input signal.

The exponentia filter which is aso called the autoregressive-moving-average (ARMA) filter can be described
by the equation:
h T

X +—— , 4
T+h 0 Tapm @

where histhe analog signal sampling period; T isthe filter time constant.

The current filtered sample vy, is defined by summing the previous filtered sample y,.; and the current input
sample x, with the corresponding weighting coefficients.

3. Experimental study

To evauate the influence of the filter parameters on the quality of the filtration process the results of the
experimental study were obtained. The trandgent processes in a thermal plant (electric oven) were studied. Air
temperature at the output of the oven was the output variable of the plant. Fifteen step response curves in total were
registered. The sampling period during the analog signal logging was 1 s. The experimenta facility and the data
logging processes are described in details in [8]. The normalized step response curves obtained during the
experimental study are presented in Fig. 1. The curves 19 — 10,9 Were obtained during the first day of the
experimental study and the curves 1,y — 5,9 during the second day of the study.
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Fig. 1. Normalized step response curves obtained during the experimental study
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It can be seen from Fig.1 that the registered step response curves contain both useful signal and the disturbances
(noise) which occurred during the experiment. These disturbances look like abrupt, brief deviations of the registered
points from the main current value of the signal. In order to eliminate these disturbances during operation of the
measurement system in real-time mode it is proposed to apply the exponential filter with the time constant designed
according to the technique presented below.

We can also see from Fig. 1 that the registered curves have different dynamics. For designing the optimal value
of the filter time constant the curve 55 is chosen (upper violet curve in Fig. 1). This curve has the highest rate of
signal change. Such a choice of the curve is explained by the fact that the impact of the filter time constant on the
dynamic error of measurement is the most sgnificant for the signal with the highest rate of change. And for the
signalswith a smaller rate of changethisinfluence will be less considerable.

4. Design of optimal filter

In order to design the optimal value of the time constant for the exponential filter according to the devel oped
technique the following eight steps should be accomplished.

Step 1. Computation of the smoothed analog signal by means of the non-causal moving average filter using the
following formula:

s 1 e e e e e
Yo = g (yn PR Al A yn+2)! (5)

where y® are smoothed samples; y° are experimental samples.

The example of the smoothed step response curve for the experimental curve 5y is presented in Fig. 2. The step
response curve is presented in thetime range from 0 to 20 s for a better visual demongtration.
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Fig. 2. Comparison of the smoothed (y°) and experimental (y°) step response curves

Step 2. Computation of the mean square of the experimental samples deviation from the smoothed experimental
samples according to the formula

p=—2 5 (y- v, ©)
N_4Ia:.3 yl yl-2 ]

where N is the number of registered experimental samples of the anaog signal; y° are experimental samples; * are
smoothed experimental samples obtained in step 1.
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In formula (6), the sum of squares starts from the third sample (i = 3) and ends by the third sample from the end
(N — 2) which is caused by the fact that there are no first two and last two samplesin the smoothed signal (y°). Thisis
the peculiarity of the non-causal moving average filter. Thereis (N — 4) in the denominator which is aso caused by the
absence of the first two and the last two samples in the smoothed signal.

Step 3. Fltration of the experimental anal og signa by means of the exponentid filter with thetime congtant Ti= 1 s.
The example of the model for filtration of the experimental signal in Smulink is presented in Fig. 3. The
experimental samples of the registered signa (y°) are entered in the block Signal 1. The exponentia filter is
presented by the block filter (the first-order lag element with the time constant T_f). The signal y™ will be obtained as
theresult of thefiltration. The comparison of the experimental and thefiltered analog signal is presented in Fig.4.

1
Signal 1 » pl[ ]
T_fs+1
y_= filter ¥ M
h.I
Ll

v_fl_e

Fig. 3. Example of the model for filtration of the experimental signa by means of the exponential filter in Simulink.
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Fig. 4. Comparison of the experimental analog signal (y°) and the filtered signal (y™%)
by means of the exponential filter with thetime constant T;=1s

Step 4. Computation of the smoothed filtered signal by means of the non-causal moving average filter using the
following formula:

sl

1
Ya =3 (i, + vy oy ). (7

The comparison of the filtered (y™) and the smoothed filtered signal (y™*) is presented in Fig. 5.

Step 5. Computation of the mean square of the filtered samples (y™) deviation from the smoothed filtered
samples (y*) according to the formula

D=1 By yiy @®
N- 4 ot i i-2 .
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Fig. 5. Comparison of the filtered (y™%) and the smoothed filtered analog signal (y*).

Step 6. Computation of the maximum dynamic error of the smoothed filtered samples (y*, obtained in step 4)
with respect to the smoothed experimental samples (y°, obtained in step 1). Since the normalized experimenta step
response curve varies from 0 to 1 (see Fig. 1), the maximum relative reduced error can be cal culated according to the
formula

e = Max(] y*- y° | 100). 9)

The comparison of the smoothed experimental signal (y) and the smoothed filtered signal (y™) is presented in
Fig. 6.
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Fig. 6. Comparison of the smoothed experimental signal (y®) and the smoothed filtered signa (y*)

Step 7. Accomplishment of steps 3-6 for the exponentia filter time constant Ty = 2, 3, 4, ... n's. The computation
should be done until the maximum dynamic error 8. does not exceed 10 %. At the result of the computation, the
dependence of the deviation mean square D on the filter time constant T; will be obtained as well as the dependence
of the maximum dynamic error 3,5 on the filter time constant T; will be obtained. These dependences are presented
in Table 1l and in Fig. 7, Fig. 8 for the experimental step response curve 5.

It can be seen from Table 1 that the last value of the filter time constant for which the maximum dynamic error
does not exceed 10 % isequa to 18 s.
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Table 1. Dependence of the deviation mean square D and the maximum dynamic error d,,a on the filter time constant T;

T s Dx10° | Smaw % T, s Dx10° | Smax, % T, s Dx10° | Smax, % T, s Dx10° | Smaw %
0 4528 0.00 5 0.046 3.18 10 0.012 5.95 15 0.006 8.29
1 0.720 0.67 6 0.033 3.76 11 0.010 6.45 16 0.005 8.71
2 0.240 1.33 7 0.024 4.34 12 0.009 6.94 17 0.005 9.14
3 0.118 1.96 8 0.019 4.90 13 0.008 741 18 0.004 9.57
4 0.070 259 9 0.015 5.44 14 0.007 7.86 19 0.004 10.01
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Fig. 7. Dependence of the deviation mean square D on thefilter time constant T;
10 T T T T T T T T
] g PR A S o —
8 g N —
? g g S g g S S —
B e oo m e e e T —
=
R e T et R T F T P PP PP EE PP EEPE P PEEPPEES —
o
4 g g gy g s gy S —
S -
e —
ST _______________J_____________1_____________L____________J; _____________________________________________________ _
0 i i i i i i i i
0 2 4 6 8 10 12 14 16 18
Tf_ sec

Fig. 8. Dependence of the maximum dynamic error 8 0n thefilter time constant T;

The value D represents the scattering of the filtered signal with respect to the smoothed filtered signal. This
value can serve as the index of the filtration quality. The smaler the scattering of the filtered signal, the higher the
quality of the filtration process is. As we can see from Fig. 7, the increase of the filter time constant T; leads to the
decrease of the deviation mean sguare D, i.e. to the improvement of the quality of the analog signa filtration.
However, our attention should also be paid to the influence of the filter time constant T on the dynamic error of the
filtered Sgnal 6. Theincrease of thefilter time constant Ty |eadsto theincrease of this error (see Fig. 8).

To define the optimal value of the filter time constant it is proposed to apply a combined objective function.
Computation of this objective function is presented in the next step.
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Step 8. Computation of the objective function on the basis of the obtained arrays of the deviation mean square D
and the maximum dynamic error e according to the formula

I(T) =D'(Ty) +8"max(TH) , (10)

where D'(T;) isthe reduced mean square of the deviation; &'m(Ty) isthe reduced maximum dynamic error.
The reduced mean square values of the deviation are cal culated as follows:

D(Ty)

D¢T,) = D(0) )

(11)

where D(0) isthe first value of the deviation mean square (for the filter time constant T; = 09).
The reduced maximum dynamic errors are calculated as follows:

dmax(Tf )
O (M)

dg. (To) = (12)

where 6,.¢(n) isthe last value of the maximum dynamic error (for the lagt value of the filter time constant T;=ns).

The optimal time constant of the exponential filter shall be defined on the basis of the calculated values of the
objective function. The optimal time constant is such a value of the time constant for which the objective function is
minimal:

T =T, (13)

1=min(1) ©

The curve of the objective function | versus the filter time constant T; for the experimental step response curve
5,0 ispresented in Fig. 9.
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Fig. 9. Curve of the objective function | versus the filter time constant T

As we can see from Fig. 9, the optimal filter time constant for which the objective function takes a minimum
valueisequa 2 s. At such avaue of thefilter time constant the maximum dynamic error of the filtered signal is equal
1.33 % (see Table 1). The influence of the disturbances (noise) on the useful signal after filtration becomes almost
20 times less than it was in the unfiltered experimental signal (4.528/0.240, see Table 1). The comparison of the
experimental step response curve and the filtered curve by means of the filter with the optimal time constant T" = 2's
ispresented in Fig. 10.
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The filtered signal almost coincides with the experimental one (see, Fig. 10, a) which means that the dynamic
error of the filtered signal is indgnificant. We can aso see that the filtered signal varies smoothly without abrupt
deviations (see, Fig. 10, b) which meansthat the quality of the filtration processis high.
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Fig. 10. Comparison of the experimenta step response curve and the filtered curve by means of thefilter
with the optimal time constant T = 2 s (a —whole curve; b — part of the curve in the time range from 0t0 20 s)

If there is atask of further decreasing the influence of the disturbances (noise) on the useful signal, for instance
to make it 100 times smaller, then in this case the filter time constant should be increased up to 5 s (4.528/0.046, see
Table 1). However the maximum dynamic error here would rise up to 3.18 %. One more problem to be solved might
be defining such a value of the filter time constant a which the maximum dynamic error of the filtered signal does
not exceed 3 %. In this case the filter time constant should be set equa to 4 s.

5. Conclusion

The technique for designing the optimal time constant of the exponentia filter has been developed. This
technique is based on the objective function which takes into account the quality index of the filtration process and
the dynamic error of thefiltered signal. The mean square of deviation of thefiltered signal from the smoothed filtered
signal is taken as the quaity index of the filtration process. The filtered signal was smoothed by applying the non-
causal moving averagefilter.
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Based on the experimental step response curve for a thermal plant, the optimal value of the filter time constant
was designed. This optimal value is equal to 2 s. By setting such a time constant, the influence of the disturbances
(noise) on the useful signal is reduced by 20 times after the filtration. The maximum dynamic error of the filtered
signal is equal to 1.33 %. The designed optimal value of thefilter time constant is recommended to be applied for the
analog input signal filtering in the automated system for the thermal plant control.

Application of the developed technique for designing the optimal value of the filter time constant in the
automated measurement and control systems will ensure high quaity of the filtration process and small dynamic error
of thefiltered signal.
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AHoTalisa

[pencraBneHo METOOUKY PO3paxyHKy ONTUMAIILHOTO 3HAYEHHS CTaNIol 4acy (pibTpa aHaJoroBOro CHrHANY Ha
OCHOBiI pO3pOOJICHOTO KPUTEPII0 ONTHMAIBHOCTI. 3alpONOHOBAaHMUN KPHUTEpid BpaxoBYE ITOKAa3HUK SIKOCTI TPOIECY
(GiNbTpyBaHHS Ta AWHAMIYHY MOXUOKY NMpOQiIbTPOBAHOIO CHIHANy. BHKOHaHO eKClepUMEHTalbHE JOCIIHKEHHS
MEPEXiTHUX TPOLECIB Y TEIUIOBOMY 00 €KTI 3 METOI aHaji3y BIUIMBY HapaMeTpiB (iIbTpa Ha SAKICTh MPOIECY
(iNbTpyBaHHS aHAJOrOBOTO CUrHaNy. [l OTpUMAaHUX eKCIIEPUMEHTAJIbHUX AaHUX OyJIO pO3paxOBaHO ONTHMAJbHE
3HAYEHHsI CTalloi Yacy (iabTpa Ha OCHOBI PO3pOOJIEHOI METOAMKH, IO CKIAJA€ThCs 3 BOCBMHU KPOKiB. 3iliCHEHO
MOPIBHAHHS €KCIIEPUMEHTAJIBHOTO MEePEXIAHOr0 MPOoIeCy i3 MpOoQiIETPOBAaHUM IPOIIECOM 3a JOMOMOTOK (iIbTpa 3
ONTHUMAaJbHUM 3HAYEHHSM CTaJloi 4acy. 3acToCyBaHHS pPO3pOOJIEHOI METOJMKH B aBTOMAaTH30BAaHMX CHUCTEMAax
BUMIpPIOBaHHS Ta KEPYBaHHS 3a0€3M1EUNTh BUCOKY SIKICTh ITpoliecy (ilbTpyBaHHS 32 HE3HAYHOI TUHAMIYHOI MOXUOKH
POQiTETPOBAHOTO CUTHATY.

KirouoBi cioBa: (inbTp; cTama dyacy, ONTHUMI3allis; aHAJIOTOBWH CHUTHAJ, IWHAMIYHA ITOXHOKA; KpHUTEpid
ONTUMAJIBHOCTI.



