1. Мичуда З.Р. Логарифмічні аналого-цифрові перетворювачі — АЦП майбутнього. — Львів, 2002. 2. А.с. 1429136 СССР, МПК G06G 7/24. Логарифмический аналого-цифровой преобразователь / З.Р. Мычуда, Н.В. Яворский. — Опубл. 07.10.1988. Бюл. №37. — 5 с. 3. Мичуда З.Р. Порозрядний логарифмічний аналого-цифровий перетворювач// Вимірювальна техніка та метрологія. — 1998. — №53. — С.114—118. 4. 3. Мичуда, К. Ільканич, Л. Мичуда. Новий метод логарифмічного аналого-цифрового перетворення // Комп'ютерні технології друкарства. — Л., 2004. — № 12. — С.220—225. 5. С.С.Lefas. Successive approximation logarithmic A/D conversion using charge redistribution technigues // Int. Journal of Circuit Theory and Applications. — Vol.15. — №1. — 1987. — Р.61—69.

УДК 621.317

О.В. Бойко, П.Г. Столярчук, Г.І. Барило, В.І. Матвіїв Національний університет "Львівська політехніка", кафедра метрології, стандартизації та сертифікації

МЕТОДИ ПОСЛАБЛЕННЯ ЗАВАД НОРМАЛЬНОГО ВИДУ В АКТИВНИХ ІМІТАТОРАХ ОПОРУ

© Бойко О.В., Столярчук П.Г., Барило Г.І., Матвіїв В.І., 2005

Запропоновано методи послаблення завад нормального виду в чотирипровідних активних імітаторах опору. Проаналізовано вплив додаткових елементів на коефіцієнт послаблення завад і динамічні характеристики імітатора опору.

The methods of compensation influence of the normal mode noise in four-terminal codecontrol resistance measures are proposed. Influence of the additional elements on the noise suppression and dynamic characteristics in the resistance measures are analyzed.

Вступ

Під час метрологічної перевірки резистивних перетворювачів в промислових умовах доволі часто кодокеровані міри опору повинні забезпечувати можливість неспотвореного передавання значення зразкового опору на віддаль. На вимірювальні кола діють різні впливні чинники. Одним з основних чинників на промислових об'єктах, що впливає на точність передачі одиниць зразкового опору на віддаль, є завади промислових мереж [1, 2]. В [3] показано, що для зменшення впливу завад нормального виду в чотирипровідних активних імітаторах опору необхідно намагатися вирівняти завади в лініях зв'язку. Рівність завад в усіх лініях зв'язку можна отримати у разі рівності параметрів гальванічних зв'язків між джерелом завад і окремими лініями зв'язку. Для вирівнювання параметрів гальванічних зв'язку, заземлення та інші), однак це не дає змоги повністю усунути вплив завад на сигнали у вимірювальних колах [4, 5]. Для зменшення впливу завад застосовують також структурні методи [2, 6]. Відомі методи послаблення завад при вимірюванні напруги неможливо використати в активних імітаторах опору. Тому необхідно розробляти спеціальні напруги неможливо використати в активних імітаторах опору.

Підвищення завадостійкості активних імітаторів опору

На рис.1 наведено структурну схему активного імітатора опору з компенсацією впливу завад нормального виду в усіх лініях зв'язку.

Для вирівнювання завад у першій і другій лініях зв'язку введено схему формування компенсаційного струму, побудовану на операційному підсилювачі DA2 з резисторами R₁, R₂, R₃ у зворотних зв'язках. Функція перетворення активного імітатора опору описується виразом

$$R_{iM} = R_0 \mu + \frac{e_{34} - e_{32}}{I_{BX}} + \left(\frac{e_{32} - e_{31}}{I_{BX}} + \frac{I_k R_0}{I_{BX}}\right) \mu + \frac{e_{33}}{k I_{BX}},$$
(1)

де e_{31} , e_{32} , e_{33} , e_{34} – значення напруги завад у відповідних лініях; μ – коефіцієнт передачі кодокерованого подільника напруги КПН; I_{BX} – значення вхідного струму; I_{κ} – значення компенсаційного струму; R_0 – значення опору зразкового резистора; k – коефіцієнт підсилення операційного підсилювача DA3.

Рис. 1. Еквівалентна структурна схема активного імітатора опору з компенсацією впливу завад нормального виду

Схема формування компенсаційного струму формує струм

$$I_k = \frac{e_{31} - e_{32}}{R_0},$$
 (2)

що досягається у разі виконання умови

$$R_0R_2 = R_1R_3.$$
 (3)

У разі нехтування похибкою формування компенсаційного струму функція перетворення має вигляд

$$R_{iM} = R_0 \mu + \frac{e_{34} - e_{32}}{I_{BX}} + \frac{e_{33}}{kI_{BX}}.$$
 (4)

Для забезпечення стійкості схеми формування компенсаційного струму необхідно, щоб коефіцієнт додатного зворотного зв'язку не перевищував коефіцієнта від'ємного зв'язку, тобто

$$\frac{R_1 + R_0}{R_0} \le \frac{R_2 + R_3}{R_3}$$

Умова стійкості автоматично забезпечується у разі виконання умови компенсації (3).

Вирівнювання завад у другій і четвертій лініях зв'язку досягається за рахунок введення додаткових ємнісних зв'язків, які забезпечують однакові потенціали за змінною складовою у другій і четвертій лініях. Послаблення завад у третій лінії відбувається за рахунок зворотного зв'язку вихідного підсилювача, в колі якого знаходиться ця лінія і ефективність послаблення завад залежить лише від коефіцієнта підсилення операційного підсилювача DA3. Для можливості зменшення ємності конденсаторів послідовно з опором лінії R_{L2} введено резистор R.

Еквівалентне значення завади між точками 1 і 2 при нехтуванні похибок, спричинених обмеженістю коефіцієнта підсилення ОП і формуванням І_к, визначається з формули

$$U_{12_{3}} = \left(e_{34} - e_{32}\right) \left(1 - \frac{R_{0}(R_{L2} + R)}{R_{0}(R_{L2} + R) - \frac{1}{\omega C_{1}} \frac{1}{\omega C_{2}} - j\frac{R_{0}}{\omega C_{1}}}\right),$$
(5)

де ω – кругова частота завади; R_{L2} – значення опору другої лінії зв'язку.

Максимальне значення завади між точками 1 і 2 становить

$$U_{12_{\text{max}}} = e_{34} - e_{32} \tag{6}$$

Коефіцієнт послаблення завад дорівнює

$$K_{\Pi} = 20 \lg \left| \frac{U_{12_{\text{max}}}}{U_{12_{3}}} \right|$$
(7)

Після відповідної підстановки отримаємо

$$K_{\Pi} = 20 \lg \frac{\left(R_{0}(R_{L2} + R) - \frac{1}{\omega^{2}C_{1}C_{2}}\right)^{2} + \left(\frac{R_{0}}{\omega C_{1}}\right)^{2}}{\frac{1}{\omega C_{1}} \sqrt{\left(\frac{1}{\omega^{3}C_{1}C_{2}}^{2} + \frac{R_{0}^{2}}{\omega C_{1}} - \frac{R_{0}(R_{L2} + R)}{\omega C_{2}}\right)^{2} + \left(R_{0}^{2}(R_{L2} + R)\right)^{2}}}.$$
(8)

З аналізу виразу (8) видно, що коефіцієнт послаблення завад залежить від значень R₀, R, C₁ і C₂.

На рис.2 наведено графічні коефіцієнти послаблення завад від C_1 , R і C_2 . Як видно, коефіцієнт послаблення зростає на 20 дБ при збільшенні на порядок значення ємності конденсатора C_1 або значення опору додаткового резистора R. Збільшення значень C_1 і R обмежується насамперед часом встановлення вихідного сигналу, вхідним опором ОП, а також габаритами і внутрішнім опором конденсатора. Оптимальне значення ємності другого конденсатора становить $C_2=10 \ \mu \Phi$.

Дослідження динамічних характеристик активного імітатора опору

Для аналізу впливу частотно-залежних елементів на динамічні похибки імітації опору визначено залежність значення імітованого опору від частоти:

$$R_{iM}(\omega) = \frac{\sqrt{\frac{1}{\omega^2 C_1^{2}} \left(R_0 R_2 + \frac{\mu}{\omega^2 C_2^{2}}\right)^2 + \left(R_0 R_2 + \frac{R_0 \mu - R_2}{\omega^2 C_1 C_2} - \frac{R_0 \mu^2}{\omega^2 C_2^{2}}\right)^2}}{\left[R_0^2 \left(\frac{1}{\omega C_1} + \frac{\mu}{\omega C_2}\right)^2 + \left(R_0 R_2 - \frac{1}{\omega^2 C_1 C_2}\right)^2\right] \frac{\omega C_1}{R_0}},$$
(9)

де R₂=R_{L2}+R.

На похибку імітації опору впливають значення ємності конденсаторів C_1 і C_2 , а також значення опору додаткового резистора R. З графічної залежності (рис. З) видно, що зменшення C_2 та R розширяє частотний діапазон імітації опору. Значення ємності C_1 на частотний діапазон не впливає.

Під час роботи AIO з комутаторами важливішою характеристикою є час встановлення вихідного сигналу. Для цього скористаємося операторним методом розрахунку перехідних процесів.

У разі під'єднання AIO з нульовими початковими умовами в момент t=0 до джерела одиничної напруги з вихідним опором R_{вих} напруга в точках імітації опору в операторній формі описується виразом:

$$U(p) = \frac{R_{iM}(p)}{p[R_{BHX} + R_{iM}(p)]},$$
(10)

$$ge R_{iM}(p) = \frac{R_0(R_{L2} + R)C_2p + R_0\mu}{R_0(R_{L2} + R)C_1C_2p^2 + R_0(C_1\mu + C_2)p + 1}.$$

Рис. 2. Залежності коефіцієнта послаблення завад від С₁, R і С₂

Рис.3. Залежність значення імітованого опору від частоти: 1. $-R=10^4 \text{ Ом}, C_1=10^{-5} \Phi, C_2=10^{-4} \Phi; R=10^5 \text{ Ом}, C_1=10^{-5} \Phi, C_2=10^{-5} \Phi;$ 2. $-R=10^4 \text{ Ом}, C_1=10^{-5} \Phi, C_2=10^{-5} \Phi; R=10^5 \text{ Ом}, C_1=10^{-5} \Phi, C_2=10^{-6} \Phi;$ 3. $-R=10^4 \text{ Ом}, C_1=10^{-4} \Phi, C_2=10^{-5} \Phi; 4. -R=10^4 \text{ Ом}, C_1=10^{-5} \Phi, C_2=10^{-6} \Phi;$ 5. $-R=10^3 \text{ Ом}, C_1=10^{-5} \Phi, C_2=10^{-5} \Phi.$

Для переходу до функції часу використовуємо зворотне перетворення Лапласа: $U(t) = L^{-1} [U(p)].$

Рис. 4. Динамічна відносна похибка імітації опору

Рис. 5. Залежності часу встановлення вихідного сигналу : а) від значення опору додаткового резистора R (1. – C₁=10⁻⁵ Ф, C₂=10⁻⁴ Ф; 2. – C₁=10⁻⁵ Φ, C₂=10⁻⁵ Φ; 3. – C₁=10⁻⁴ Φ, C₂=10⁻⁵ Φ; 4. – C₁=10⁻⁵ Φ, C₂=10⁻⁶ Φ); б) від значення ємності C₁ (1. – R=10⁴ OM, C₂=10⁻⁴ Φ; 2. – R=10⁵ OM, C₂=10⁻⁵ Φ; 3. – R=10⁴ OM, C₂=10⁻⁵ Φ; 4. – R=10³ OM, C₂=10⁻⁵ Φ; 5. – R=10⁴ OM, C₂=10⁻⁶ Φ); 6) від значення ємності C₂ (1. – R=10⁵ OM, C₁=10⁻⁵ Φ; 2. – R=10⁴ OM, C₁=10⁻⁴ Φ; 3. – R=10⁴ OM, C₁=10⁻⁶ Φ; R=10⁴ OM, C₁=10⁻⁵ Φ; 4. – R=10³ OM, C₁=10⁻⁵ Φ)

Часова динамічна відносна похибка імітації опору описується виразом:

$$\delta Z(t) = \frac{U(t) / I_{BX} - U_{H}(t) / I_{BX}}{U_{H}(t) / I_{BX}} = \frac{U(t) - U_{H}(t)}{U_{H}(t)},$$
(11)

де U_н(t) – номінальне значення вихідної напруги в точках імітації опору.

За допомогою програмного пакета MathCAD 2000 отримано графічні залежності часової динамічної похибки імітації опору (рис.4), а також залежності часу встановлення вихідного сигналу від значень R, C₁, C₂ з точністю до 0.01% (рис. 5).

З аналізу графічних залежностей видно, що час встановлення залежить від значень R, C₂ і практично не залежить від C₁. Час встановлення не перевищує 1 с, якщо значення R і C₂ не перевищують 10 кОм і 10 μ Ф, відповідно. При збільшенні R або C₂ на порядок час встановлення буде більшим від 4 с.

Висновки

Застосування компенсаційної схеми за струмом і додаткових ємнісних зв'язків дає змогу підвищити завадостійкість активних імітаторів опору. Вибором значень ємностей конденсаторів C₁, C₂ і додаткового резистора R можна досягти компромісу між послабленням завад і динамічними характеристиками активного імітатора опору в конкретних промислових умовах.

Використання запропонованого AIO в промислових умовах забезпечить необхідну точність перевірки перетворювачів, вхідним сигналом яких є опір.

1. Электрические измерения электрических и неэлектрических величин / Под ред. Е.С. Полищука. – К., 1984. 2. Михайлов Е.В. Помехозащищенность информационно – измерительных систем. – М., 1975. 3. Бойко О. Вплив завад у чотирипровідних активних імітаторах опору // Вимірювальна техніка та метрологія. – 2003. – №62. – С. 28–31. 4. Серьезнов А.Н., Цапенко М.П. Методы уменьшения влияния помех в термометрических цепях. – М., 1968. 5. Швецкий Б.И. Электронные цифровые приборы. – К., 1981. 6. Малиновский В.И. Цифровые вольтметры интегрирующего типа (Обзор) // Приборы и системы управления, 1973. – №2. – С.10–13.

УДК 621.374

А.Я. Горпенюк, В.Б. Дудикевич, Н.М. Лужецька Національний університет "Львівська політехніка", кафедра автоматики і телемеханіки

ІМІТАЦІЙНЕ МОДЕЛЮВАННЯ КОНВЕЄРНИХ ЧИСЛО-ІМПУЛЬСНИХ ФУНКЦІОНАЛЬНИХ ПЕРЕТВОРЮВАЧІВ

© Горпенюк А.Я., Дудикевич В.Б., Лужецька Н.М., 2005

Розглянуто способи імітаційного моделювання конвеєрних число-імпульсних функціональних перетворювачів. Запропоновано моделі базових конвеєрних числоімпульсних вузлів і алгоритми моделювання конвеєрних число-імпульсних структур загалом.

The methods of imitation design of convejor pulse-number functional converters are considered in the article. The models of base convejor pulse-number nodes and algorithms of convejor pulse-number structures design are offered.

Постановка проблеми

Нехай перед нами стоїть задача функціонального перетворення деякої змінної фізичної величини. Будь-яка фізична величина може бути перетворена в імпульсну послідовність (порівнянням із зразковою мірою). Інформативними параметрами імпульсної послідовності, зокре-