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[ToxubOka BUMIipIOBaHHS TOBIIMHU JIbOJIB 3aJICKUTh BiJ anpiopHoi iHdopMmaii. [Ipu BuMmi-
pIOBaHHI TOBIIMH HA MeEXi PO3AUTBHOI 34aTHOCTI BUKOPHCTaHHS anpiopHOi iHpOpMarii JOCHTH
HE3HAYHO MIABHINYE PIBEHb MpaIe3qaTHOCTI METOAY B YMOBaX IIYMY, IPOTE CYTTEBO 3MEHIIYy€
BITHOCHY CHCTeMaTHyHy MOXHOKy (B 1—1.5 pa3iB mjist TOHKMX mIapiB), BBOISYM HOTO B Jiama3oH
BUMIPIOBaHb 32 3aJaHUMHU KpHUTEpissMH. Y OUIbIIid Mipi BUKOpUCTaHHS anpiopHOi iHdopmarii
BITMBA€ HAa TOYHICTh BUMIpPIOBaHs MPICHUX Jb0IB. CITi1 OYiKyBaTH 3HAYHOTO BIUIMBY HA TOYHICTh
BUMIPIOBaHHS TOBIIMHHU MOPCHKHX JIBOJIB 3a 3alMCaMU PEAbHUX CHUTHAJIB IMOJbOTHHUX EKCIle-
PUMEHTIB, 0COOIUBO Tpac 3 TOHKMMH Ta TIEPBUHHUMHU (OpMaMu JIbOAY (IIyTa, HiJIac TOIIO).

JocnipkeHHsT 3a IMITAIHHUMUA MOJENSIMH CUTHAJIIB, BIIOMTHX BiJl TJIAJKUX TOBEPXOHBb
(JTBOJTIB), O3BOIMIIA BUPOOUTH METOIMUKY IMOPIBHSIIBHOI OIIHKK TOYHOCTI BUMIPIOBAHHS TOBIIWHU
Ta TOpPOry Tpame3gaTHOCTI METOAIB B yMoBax IuyMmy. [lepcreKTHBHUMU MeETOJaMU s
HOJANIBIIMX JIOCTIJUKEHb 3 peaJbHUMU CUTHAJIAMH CIIiJ] BBXKaTH KOPENALIWHUHN, PI3HULIEBUU Ta
mudposuii PJICII3 “AxBamapun”, siki 30epiraroTb Ipyu KOHTAaKTHOMY CIIOCO01 BUMIipIOBaHHS Ipa-
[E3JaTHICTh B PI3HUX yMOBax 10 piBHA Imymy B cepenubomy —20ab. Lli meroau wmaroTh
MNOTEHLIWHY MOKJIHUBICTh 3aCTOCYBaHHS iX IJIsl JUCTAHIIMHOTO 30HYBaHHS 3€MHHX IIapiB /0
opOiTaIbHOTO BapiaHTy BKIIIOYHO.

{00 BUKOPHUCTAHHS KETCTPAIBbHOTO Ta iHBEPCHOTO METOMIB /Il 30HAYBAaHHS LIapiB, TO
3aCTOCYBaHHS IX MOJKJIMBE JIMIIE MPU KOHTAKTHOMY METOJII BUMIPIOBAHHS, OCKUIBKU PiBEHBb
mpare31aTHOCTI B ymMoBax myMy € B Mexax —80 ab —100 ab, i Tiabku 3 qyke KOPOTKHUMH
30HIYIOUMMH CUTHAaJaMH, sIKi B O1IBIIOCTI BUIAJKIB € Ba)XKKO peajizoBaHi HAa MPAKTHIl Ta SKi
BCTYNAIOTh y MPOTHUPIYYS 3 TAaKUM TapaMeTpoM, sSK TIUOMHA MPOHUKHEHHS 30HIYIOYOTO
CUTHAJy JI0 CepeIOBHUIIIA.
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IIs1 poGoTa npucBsiueHAa HOBOMY AJrOpuTMY po3B'si3yBaHHs KBagparuunoi 3axaui
npo [pusnavenns (K3II). AsuropuTm iMmiTaniiiHoro Biana.y, o BUKOPHCTOBYE MPABUJIO
""30,10TOr0 MepeTuHy'', 0yJ10 BUKOPUCTAHO SIK AJITOPUTM IN100aJILHOIO MOIIYKY JJIsl TOrO,
1100 OTPUMATH SIKiCHI pe3yJbTaTH. 3aNIPONOHOBAaHMI MiaXiA 0y/10 MepeBipeHo Ha 3HAYHIN
KUIBKOCTI TecTOBHX 3a/a4 Ta OyJI0 OTPMMAHO Ppe3yJbTaTH Kpall, HiK micas
3aCTOCYBAHHS iHIIMX BIIOMHMX TE€XHIK MOLIYKY.

I ntroduction

Among different models of combinatorial optimization the Quadratic Assignment Problem
(QAP) received the wide distribution. Enormous amount of economic, industrial and many other
problems can be solved using this discrete model. At the same time QAP, alongside with the
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Traveling Salesman Problem (TSP), is well known as a target field for effective methods design.
In spite of the fact that these problems have been explored for a long time, it's hard to get an
acceptable solution even using supercomputers. Only moderately sized QAPs can be solved to
optimality with exact algorithms within reasonable time limits. Also it must be noted that finding
of & -close solution is an NP-hard problem too.

Formally, the QAP is stated as following: Given a set X ={l...n}, and real matrix

C= (c,.j )m, D= (d,j. )m, ¢; 20,d, >0, i j=1,...,n; find a permutation X ¢ X which minimizes
result function f(x):

=¥ Ye, d,. 1)

i=l j=l
In other words, x =argmin{f (x):x =(X,...,X,)€ X .
Also, we have to make a supposition that a certain system of neighborhoods is entered on
space X, that is for any solution x € X the set of the neighbours L (x)c 2" is determined.

For effective solving of practical combinatorial optimization problems was found so-called
methods of simulated annealing. In these algorithms process of searching for a global optimum is
imitated by mechanical system relaxation process, and we take average value of hamiltonian as a
result function. From a course of statistical mechanics it is known, that such systems at some
temperature aim at an equilibrium state. Fluctuations arising at high temperatures, have
probabilistic nature and can cause temporary increases of system energy, but, in general, at gradual
temperature fall this thermodynamic system passes in an equilibrium state, that corresponds to
minimum value of generalized system energy. These algorithms are the extension of the local
search methods class because of new features like probability conditions of transition in a
neighbourhood of current solution and so on.

Simulated annealing algorithms have a number of advantages. First of all, this class methods
are easy to realize on multiprocessor computer. Secondly, there are no essential expenditures of
computer time during searching for an optimal solution. The goal of our researches was to design
algorithms performing more stable results then common algorithms. That’s why we decided to use
well-known class of simulated annealing algorithms — G-algorithms, using different probabilistic
model.

The computing scheme of our algorithm

Let G : [0,1] — [0,1] — some strictly monotonous function (result function), m — counter
(m>1), and &,y — real numbers. All of this quantities must be set as parametrs for our
algorithms. We have to define function G to construct concrete G-algorithm.

begin
X .= basic solution,
u:=0; h:=0; u, :=0;
Mile (neighbourhood L(x) of our current solution is not checked completely) d_O
begin
Mile (Equilibrium condition is not true) d_O
begin
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Y = next neighbour from L(x), obtained by a transposition of two componentsi i j;
A=A>,j),
Ax100 } )
yxfx)"
&= u + random[0,1]x (1 - u )
if(p>¢) then x:=y;
end:
n==G ( u );

u,,,, -=left "golden section" point of segment [ u, , 1];
h:=h+1,
end;
Printing best result;

end;

As You can understand random[0,1] — random values indicatior on segment [0,1].

It means, that we have to define only a few rules and parameters to construct a G-algorithm,
and these important features are:

Set of solutions;

Rule of neighborhood element construction;
Result function G;

Equilibrium condition.

In our case, the neighborhood of the current candidate solution is created by all swaps, which
differ from x on one transposition. Using (1), it's easy to show that

A(Z’J) = Z(Cjk _cik ) '(d,\'/x/c _al.\’/)r/C ) .
k#ik#]

The values u,, which are arguments of the function G, are formed thus: we take "golden
section" of a segment [«, , 1], receive two points, and choose that cross point which is closer to u,
as the following point u,,,. Function G will be stated as following:

G(U) = u*-H . @)

When G-algorithm makes m steps toward the intermediate solution, it is called crossover. If s
crossovers have been done according to fixed value of u, and values f£,...., £, have been received,

p:=min{l11-

equilibrium condition will be achieved if |f_/.—f

s+l

<¢ after the s+1 crossover for any

j€{L....s}. Algorithm finishes its work if no crossovers in neighborhood of some point have been
made.

Conclusion

The analytical proof of computing complexity ratings will be difficult enough without few
serious simplifying assumptions. That's why we decided to choose computing experiments as
preliminary approbation.

This G-algorithm was used to solve some test problems sized from 15 to 50 facilities/layouts
and some computer hardware design problems. Basic solution was founded using Monte-Karlo
method. The computing experiment has shown that the degrees higher then 2 in formula (2) are
ineffective. Also we defined, that parameters ranges, where results were especially high, are about
1.3<y <15, 0.01<e<0.06.
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Finally, it must be noted that according to our results usage of “golden section” rule allowed
us to receive outstanding results and saved a lot of computer time. Thus, simulated annealing
algorithms can be adapted to solve different combinatorial problems, among them QAP and TSP.

Experimentel results

Gradient method G-algorithm A3Y G-algorithm GS

N | MCM(/,) | Num

£ t,sec £ t,sec £ t,sec
10 2711 6 2268 0,05 2268 0,06 2268 0,06
15 13098 7 10994 0,05 10916 0,06 10896 0,06
20 40655 8 33944 0,06 33786 0,06 33266 0,06
25 98602 10 87292 0,06 85766 0,08 84612 0,10
30 202480 10 176226 0,22 175790 0,28 172958 0,27
40 629642 12 561072 1,38 554324 0,82 550258 1,21
50 1566602 14 1396492 3,25 1387696 2,58 1383584 3,02

Results are avaible in Table 1, where MCM - Monte Carlo method, Num — number of MCM
iterations, A3Y — G-algorithm A3Y, our algorithm has an index " G-algorithm GS", f. - result
function (1) on best solutions, and ¢ - computer time wasted on calculations.
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