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Abstract: The calculation of the spatial changes of 

the amplitude and phase of the order parameter was 
performed in the Python environment with the use of the 
Skipy and JiTCODE libraries. 

In [N(CH3)4]2CuCl4 crystals, there is an incommen-
surate phase I1 at the small values of the magnitude of 
long-range interaction (T<0.6) and an incommensurate 
phase I2 at T≥1.0. This is the same incommensurate 
phase, although the behavior of the amplitude and phase 
functions in it is different under the different conditions 
mentioned above. At T = 0.6 ÷ 1.0, the coexistence of 
these two phases is observed which is manifested in the 
absence of anomalous changes of q during the transition 
from the sinusoidal mode of IC modulation to the soliton 
regime. 
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In the group of [N(CH3)4]2MeCl4 crystals, the 
[N(CH3)4]2CuCl4 crystals deserve special attention, since 
the results of theoretical studies [1] and experimental 
studies [2] indicate the appearance of a commensurate 
ferroelectric region in an incommensurate phase (IC). 
The density of the thermodynamic potential of the 
[N(CΗ3)4]2CuCl4 crystals can be written as follows: 
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where ρ and φ are the amplitude and phase of a two-
component parameter of order η, ξ; σ = σxz is shear 
stress; E=Ex is an electric field. The shear deformation   
u = uxz and the polarization P=Px are determined from 
(1) with the use of the relations u=-∂Φ/∂σ, Ρ=-∂Φ/∂Ε. In 
addition to the initial phase C0, potential (1) corresponds 
to two other commensurate phases: C1 being stable at  
γ′> 0, with spontaneous value of u, and C2 which is 
stable at γ′ <0, with spontaneous value of Ρ (σ=0, Ε=0). 

The IC phase is described by the constant amplitude 
approximation ∂ρ/∂z=0. It is assumed that only one 
coefficient α depends on T: α=αТ(T – Θ), and the coefficients 
β, γ′, δ, c, χ> 0. 

Under normal conditions, only the ferroelastic 
commensurate phase is observed in the crystal 
[N(CΗ3)4]2CuCl4 with the following sequence of phases: 
initial – paraphase – (Ti=297K) – IC – (Tc = 291K) – 
commensurate-ferroelastic phase. 

The result corresponding to the potential (1) for the 
phase diagram in the T – Ex plane was described in [1] 
and is shown in Fig. 1. The field Ex induces a new 
commensurate C2 polar phase C2ν

9 – P21cn. The IC phase 
(indicated by the letter I in the figure) is the same, but its 
structure is different (I1 and I2) in different areas of the 
phase diagram. To analyze the solutions of expression 
(1), let us introduce the following notation: 
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The value of E0 is chosen so that |E| = E0 at the point 
O (see Fig. 1a).  

At α = α0, there is a phase transition C0 – I of the 
second order. The transition temperature Ti=Θ + α0/αr 
does not depend on E. The dimensionless parameter ε 
characterizes the anisotropy in the space η, ξ. 

The question arises as to whether the appearance of 
ferroelectricity is already inherent in the peculiarities of 
the structure of a given crystal, and hence in the peculiarities 
of the processes of nucleation of an incommensurate 
superstructure. For this purpose, the magnitude of the 
wave vector (q) of the incommensurate superstructure 
was calculated from the spatial modulation of the amplitude 
of the order parameter and Lyapunov’s exponents. 

In these systems (expression (1)), the incommen-
surate superstructure appears due to the presence of the 
Lifshitz invariant in the thermodynamic potential. For 
these systems, the amplitude and phase of the order 
parameter in polar coordinates are described by two second-
order differential equations [3]: 
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a) 

 

b) 

Fig. 1. Phase diagram on the T – Ex coordinates,  
where C0 is an output phase, C1 and C2 are commensurate 

phases in dimensionless coordinates αε/α0 and |Ε|/Ε0, obtained 
in [1] (a); phase diagram in T – Ex coordinates  obtained 

experimentally (b) [2]. 
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The calculation of the spatial changes of the amplitude 
and phase of the order parameter was performed in the 
Python environment using the Skipy and JiTCODE libraries 

according to the method described in [4]. According to 
expressions (3) and (4), as noted in [5], the parameter T 
describes a long-range interaction and the parameter K is 
anisotropic, which is determined by the Dzyaloshinski 
invariant. 

The obtained spectrum of Lyapunov’s exponents is 
shown in Fig. 2 when changing the parameters T and K 
in the interval 0.0–1.0. 

According to Fig. 1, the first Lyapunov’s exponent 
is the positive one, the second takes both negative and 
positive values with a slight deviation of its value. The 
third and fourth indicators are negative. It should be 
noted that the first, second and fourth Lyapunov’s exponents 
are abnormal in nature with a pronounced periodicity. At 
K and T <1, this system is characterized by one positive 
value of the Lyapunov’s exponent and three negative 
ones. The third exponent takes a negative value, the modulo 
of which significantly exceeds other exponents. Therefore, 
the sum of all Lyapunov’s exponents is a negative value, 
so the system has an attractor.  

It should also be noted that the third Lyapunov’s 
exponent is anomalous at T <0.6 and K <1. This is indicated 
in particular by the spectrum of λ3. The presence of an 
anomalous periodic nature of the behavior of λ1, λ2 is 
indicated by the spectra of their quantities (Fig. 2). 

The map of the spectrum of Lyapunov’s exponents 
is characterized by an implicit line, which divides it into 
two regions with different behavior of the values of the 
exponents. This is especially evident for amplitude and 
phase function. The nature of the behavior of the Lyapunov’s 
exponents (especially λ3 and λ4) indicate that structurally 
these regions of the IC superstructure are different, although 
they belong to the same IC phase. That is, the amplitude 
and the phase functions in these two areas are different. 

Let us consider the change of the incommensurate 
wave vector in the range from 0 to 1.2. This range was 
chosen for T and K changes according to [6], where the 
dependence of Lyapunov’s exponents showed a transition to 
a chaotic state (K ≥ 1.2). It should also be noted that in 
[7], the value of the parameter T for the phase IC was 
chosen equal to 1 for reasons of realizing the minimum 
effective potential. At small values of the parameters T 
and K, as noted in [8], the transition to an undeveloped 
chaotic state was observed. This range of parameters T 
and K was associated with the origin of the superstructure. 
The phase diagram of the dependence of the magnitude 
of the IC modulation wave vector on the parameters T 
and K is shown in Fig.3. In the process of nucleation of 
the superstructure caused by the growth of long-range 
interaction (parameter T) there is an increase in the 
magnitude of the wave vector of the superstructure due 
to a decrease in the wavelength of the modulation. 
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Fig. 2. Dependence of Lyapunov’s exponents (a),  
the spectrum of their values (b) when the parameters T and K 

were changed in the interval 0.0÷1.0. 

Such behavior of q indicates that in the spatial 
regions of the correlated motion of tetrahedral groups the 
modulation wavelength is smaller than in the formation 
of the IC superstructure. Under these conditions, considering 
the increase in the value of the anisotropic interaction 
(parameter K), the region of occurring the chaotic 
undeveloped state with sharp peaks of the q value exists 
in a rather narrow range of parameters T, K (Fig. 4). 

A further change of T and K is characterized by a 
monotonic increase in q at constant K and increasing T, 
and a monotonic decrease in q at a constant T and 
increasing K. As it is known [9], in the IC phase anisotropic 
interaction K decreases, indicating the increase in the 
modulation wavelength. In our case, there is also an 

increase in the wavelength of IC modulation (decrease in 
the value of q) (Fig. 3, Fig. 4). 

 
n=3 

Fig. 3. Dependence of the wave vector (q) of incommensurate 
modulation on the magnitude of the long-range interaction T 
and the anisotropic interaction K, which is described by the 

Dzyaloshinsky invariant. 

 
T=1.0 

Fig. 4. Evolution of the wave vector of the incommensurate 
superstructure from the value of the anisotropic interaction K 
at a constant value of T=1.0, n=3, where Ti is the temperature 
of transition to the incommensurate phase; T1 is the transition 
to the soliton mode of the superstructure; T2 is the transition to 
stochastic mode of the superstructure; Ts  is a phase transition 

to the commensurate phase. 

According to Fig. 3, it should be noted that under the 
condition of a linear increase in the values of T and K, a 
range of their values at which an increase in the value of T 
is accompanied by a decrease in the value of the wave 
vector of the superstructure can be traced. That is, according 
to the authors, the IC superstructure changes from sinusoidal 
to soliton mode due to the increase in the number of IC 
modulation harmonics, which causes a decrease in T and an 
increase in K. Further changes in K and T cause chaotic 
behavior of q, indicating the transition to the stochastic 
mode of the IC superstructure with the emergence of a 
chaotic phase. Therefore, summarizing the results mentioned 
above, the parameters T and K responsible for the long-range 
and anisotropic interaction, respectively, well describe the 
behavior of the wave vector of IC modulation and its modes. 
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T=0.6 

 
T=0.3 

Fig. 5. Evolution of the wave vector of incommensurate 
superstructure from the K value and constant value of T, n = 3, 
where Ti is the temperature of transition to the incommensurate 

phase; T1 is the transition to the soliton mode of the super-
structure; T2 is the transition to stochastic mode of the super-
structure; Ts is a phase transition to the commensurate phase. 

In the first approximation, we can assume that according 
to Fig. 3 the range of changing T from 0 to 0.6 corresponds to 
the first incommensurate phase I1, where chaotic states 
are manifested, namely, a sharp change in the value of q. 
With increasing long-range interaction and, hence, 
the parameter T>0.6, the existence of the second 
incommensurate phase I2 is observed, being characterized by 
all modes of the incommensurate superstructure. This 
fact is confirmed in particular by studies of harmonics of 
the IC modulation. Figure 5 shows the evolution of the 
wave vector of the incommensurate superstructure from 
the value of the anisotropic interaction K at a constant 
value of T, which corresponds to the condition of 
coexistence of two phases (T=0.6) and only phase I1 
(T=0.3). In contrast to phase I2, phase I1 does not show a 
change in the mode of existence of the incommensurate 
superstructure with increasing anisotropic interaction. 

Therefore, in [N(CH3)4]2CuCl4 crystals at small values 
of the magnitude of the long-range interaction (T<0.6) 
there is the incommensurate phase I1 at the small values 
of the magnitude of long-range interaction (T<0.6) and 
the incommensurate phase I2 at T≥1.0. This is the same 
incommensurate phase, although the behavior of the 

amplitude and phase functions in it is different under the 
different conditions mentioned above. At T = 0.6 ÷ 1.0, 
the coexistence of these two phases is observed which is 
manifested in the absence of anomalous changes of q 
during the transition from the sinusoidal mode of IC 
modulation to the soliton regime. 
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РОЗРАХУНОК ФАЗНИХ СТАНІВ  
КРИСТАЛІВ [N(CH3)4]2CUCL4  

Сергій Свелеба, Іван Катеринчук,  
Іван Куньо, Іван Карпа, Остап Семотюк,  

Володимир Бригілевич 

Розрахунок просторових змін станів амплітуди й фази 
параметрів було виконано у середовищі Python з викорис-
танням бібліотек Skipy та JiTCODE. 

У криталах [N(CH3)4]2CuCl4 існує неспіврозмірна фаза 
I1 при малих значеннях величини дальньої взаємодії (T<0.6) та 
неспіврозмірна фаза I2 при T≥1.0. Це та  ж сама неспів-
розмірна фаза, хоча поведінка амплітудних та фазових 
функцій у ней відрізняється за різних умов, згаданих вище. 
При T = 0.6 ÷ 1.0, спостерігається співіснування цих двох 
фаз, що проявляється у відсутності аномальних змін q під 
час переходу від синусоїдного режиму модуляції неспів-
розмірної фази до режиму солітона.  
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