УДК 517.958:622.276

Л.М. Журавчак, А.Є. Струк

МОДЕЛЮВАННЯ НЕУСТАЛЕНОЇ ФІЛЬТРАЦІЇ СТИСЛИВОЇ РІДИНИ У КУСКОВО-ОДНОРІДНОМУ ОБМЕЖЕНОМУ ПОРИСТОМУ ПЛАСТІ

Обгрунтовано ефективність використання непрямого методу приграничних елементів для побудови чисельно-аналітичного розв'язку задачі про неусталений рух стисливої рідини у пружному пористому обмеженому кусково-однорідному пласті з урахуванням змінної депресії тисків, заданих на його зовнішньому контурі та на межі свердловини, а також ідеального контакту на межі поділу середовищ. З використанням фундаментального розв'язку нестаціонарного рівняння теплопровідності та схеми послідовності початкових умов побудовано дискретно-континуальну модель задачі з довільними початковими умовами та граничними умовами першого роду. Здійснено ряд обчислювальних експериментів для оцінки впливу параметрів моделі на зміну пластового тиску.

Ключові слова: неусталений рух стисливої рідини; непрямий метод приграничних елементів; кусково-однорідне пористе середовище.

Bcmyn

Математичне моделювання процесу розробки нафтового родовища, змодельованого кусково-однорідним обмеженим пористим пластом, полягає у складанні та розв'язуванні системи диференціальних рівнянь у часткових похідних, яка його описує, доповненої початковими умовами (тими, що існували до початку розробки), крайовими умовами (на поверхнях, які обмежують пласт із зовнішніх сторін, і на стінках свердловини всередині пласта) та умовами контакту між зонами, що мають різні, але постійні фізичні характеристики. Припустивши, що товщина пласта та її зміна є доволі малими порівняно з його розмірами в горизонтальній площині вздовж осей x1 і x2, вертикальною складовою швидкості руху рідини можна знехтувати і розв'язувати двовимірні рівняння руху для дуже протяжних пластів зі змінною товщиною $h(x_1, x_2)$ [Бойко В., Бойко Р., 2007]. Основна поширена сьогодні модель однорідного за параметрами необмеженого пласта не завжли алекватно описує реальне середовище і процеси, що відбуваються у ньому під час розробки нафтового родовища. Для оцінки впливу зміни коефіцієнтів гідро- та п'єзопровідності різних зон необхідно розглядати модель кусково-однорідного обмеженого пласта.

Математична модель для знаходження тиску у кусково-однорідному обмеженому пласті

Розглянемо кусково-однорідний за параметрами пласт, змодельований еліптичною областю $\Omega = \Omega_1 \cup \Omega_2 \cup \Gamma_{12}$ з півосями *a*, *b*, що містить центральну свердловину радіусом R_c . Тут $\Gamma_{12} = \Gamma_1 \cap \Gamma_2 = \{(x_1, x_2) : x_1 = 0, R_c \le x_2 \le b\}$ $\cup \{(x_1, x_2) : x_1 = 0, -b \le x_2 \le -R_c\}$ – межа поділу середовищ; Ω_1, Ω_2 – однорідні зони; Γ_1, Γ_2 – межі областей Ω_1, Ω_2 . Ця модель реалізує гіпотезу про кускову однорідність пласта як по площі, так і по вертикальному розрізу покладу.

Для розрахунку зміни тиску в часі у кожній точці областей Ω_m (m=1,2) у випадку пружного

режиму розв'яжемо систему диференціальних рівнянь, що описують неусталений (нестаціонарний) рух пружної (стисливої) рідини у пружному пористому середовищі, змодельованому двовимірним кусково-однорідним пластом Ω з довільною криволінійною межею:

$$P_{0\tau}^{(m)}(p^{(m)}(x,\tau)) = \frac{\partial^2 p^{(m)}(x,\tau)}{\partial x_1^2} + \frac{\partial^2 p^{(m)}(x,\tau)}{\partial x_2^2} - \frac{1}{\kappa_m} \frac{\partial p^{(m)}(x,\tau)}{\partial \tau} = 0, (\mathbf{x},\tau) \in \Omega_m \times \mathbf{T}, m = 1, 2, (1)$$

припустивши, що треба визначити зміну пластового тиску у замкненому покладі за умов ідеального контакту між зонами:

$$p^{(1)}(\mathbf{x},\tau) = p^{(2)}(\mathbf{x},\tau), \ (\mathbf{x},\tau) \in \Gamma_{12} \times \mathbf{T}, \quad (2)$$

$$-\varepsilon_1 \frac{\partial p^{(1)}(\mathbf{x}, \tau)}{\partial \mathbf{n}^{(1)}(\mathbf{x})} = -\varepsilon_2 \frac{\partial p^{(2)}(\mathbf{x}, \tau)}{\partial \mathbf{n}^{(1)}(\mathbf{x})}, \ (\mathbf{x}, \tau) \in \Gamma_{12} \times \mathbf{T}, \ (3)$$

граничних умов першого роду на зовнішньому контурі та на межі свердловини:

$$p^{(m)}(\mathbf{x},\tau) = p_z^{(m)}(\mathbf{x},\tau), (\mathbf{x},\tau) \in \Gamma_z^{(m)} \times \mathbf{T}, m=1,2, (4)$$
$$p^{(m)}(\mathbf{x},\tau) = p_w^{(m)}(\mathbf{x},\tau), (\mathbf{x},\tau) \in \Gamma_w^{(m)} \times \mathbf{T}, (5)$$

і початкових умов

$$p^{(m)}(\mathbf{x},0) = p_0^{(m)}(\mathbf{x}), \ \mathbf{x} \in \Omega_m, \tag{6}$$

де $p^{(m)}(\mathbf{x}, \tau)$ – де тиск в області Ω_m ; $\varepsilon_m = k_m h / \mu_m$ – коефіцієнт гідропровідності породи в Ω_m ; $\kappa_m = k_m / (\mu_m \beta_m^*)$ – коефіцієнт п'єзопровідності; k_m – коефіцієнт проникності; μ_m – динамічний коефіцієнт в'язкості рідини; β_m^* – коефіцієнт пружної ємності насиченого пласта в області Ω_m ; $\Gamma_{12} \cup \Gamma_z^{(m)} \cup \Gamma_w^{(m)} = \Gamma_m$; $\Gamma_w^{(1)} \cup \Gamma_w^{(2)} = \Gamma_w$ – контур центральної свердловини; $\mathbf{x} = (x_1, x_2)$ – декартові координати; τ – час, $\mathbf{T} = \{\tau: 0 < \tau < \infty\}$, h – товщина пласта; $p_0^{(m)}(\mathbf{x})$ – початковий пластовий тиск у покладі; $\mathbf{n}^{(m)}(\mathbf{x}) = (n_1^{(m)}(\mathbf{x}), n_2^{(m)}(\mathbf{x}))$

112 © Л.М. Журавчак, А.Є. Струк, 2012

2

– однозначно визначена зовнішня нормаль до межі області Ω_m .

Побудова інтегральних зображень розв'язків початково-крайової задачі та граничних інтегральних рівнянь

Згідно з основними положеннями непрямого методу приграничних елементів (НМПГЕ) [Журавчак, Грицько, 1996] у зовнішніх приграничних до Ω_m однозв'язних областях $G_m = G_{mz} \cup G_{mcont} \cup G_{mw}$ введемо невідомі функції $\phi^{(m)}(\mathbf{x}, \tau)$, які описують розподіл фіктивних джерел тиску. Тут G_{mz} , $G_{1cont}, G_{2cont}, G_{mw}$ – приграничні області товщиною h_z, h_{12}, h_{21}, h_w відповідно. Розширивши область визначення функції $p^{(m)}(\mathbf{x}, \tau)$ на всю площину \mathbf{R}^{2m} , рівняння (1) перепишемо у вигляді

$$\mathbf{P}_{0\tau}^{(m)}(p^{(m)}(\mathbf{x},\tau)) = -\boldsymbol{\varphi}^{(m)}(\mathbf{x},\tau)\boldsymbol{\chi}_{Gm} - p_0^{(m)}(\mathbf{x})\boldsymbol{\delta}(\tau),$$
$$(\mathbf{x},\tau) \in \mathbf{R}^{2m} \times \mathbf{T}, \qquad (7)$$

де χ_{Gm} – характеристична функція області G_m , тобто $\chi_{Gm} = 1$, якщо $\mathbf{x} \in G_m$, $\chi_{Gm} = 0$, якщо $\mathbf{x} \notin G_m$, $\delta(z)$ – дельта-функція Дірака.

Оскільки для оператора $\mathbf{P}_{0\tau}^{(m)}(p^{(m)}(\mathbf{x},\tau))$ існує і відомий фундаментальний розв'язок $U^{(m)}(\mathbf{x},\tau,\boldsymbol{\xi},\boldsymbol{\xi}_4)$ [Владимиров, 1971], то інтегральне зображення розв'язку рівняння (7) та його похідних за нормалями з урахуванням початкового розподілу (6) мають вигляд:

$$p^{(m)}(\mathbf{x}, \tau) = \mathbf{F}_{\tau}^{(m)}(\mathbf{x}, \tau, U^{(m)}) + b_{\tau}^{(m)}(\mathbf{x}, \tau, U^{(m)}),$$

$$(\mathbf{x}, \tau) \in \mathbf{R}^{2m} \times \mathbf{T}, (8)$$

$$-\varepsilon_{m} \frac{\partial p^{(m)}(\mathbf{x}, \tau)}{\partial \mathbf{n}^{(m)}(\mathbf{x})} = \mathbf{F}_{\tau}^{(m)}(\mathbf{x}, \tau, Q^{(m)}) + b_{\tau}^{(m)}(\mathbf{x}, \tau, Q^{(m)}),$$

$$(\mathbf{x}, \tau) \in \Gamma_{m} \times \mathbf{T}, (9)$$

$$-\varepsilon_{2} \frac{\partial p^{(2)}(\mathbf{x}, \tau)}{\partial \mathbf{n}^{(1)}(\mathbf{x})} = \mathbf{F}_{\tau}^{(2)}(\mathbf{x}, \tau, Q^{(1,2)}) + b_{\tau}^{(2)}(\mathbf{x}, \tau, Q^{(1,2)}),$$

$$(\mathbf{x}, \tau) \in \Gamma_{12} \times \mathbf{T}, (10)$$

де

$$\begin{aligned} \mathbf{F}_{\tau}^{(m)}(\mathbf{x},\tau,\Phi) &= \int_{0}^{\tau} \int_{G_m} \Phi(\mathbf{x},\tau,\xi,\xi_4) \phi^{(m)}(\xi,\xi_4) dG_m(\xi) d\xi_4, \\ \Phi &\in \{U^{(m)}, Q^{(m)}, Q^{(1,2)}\}, \\ b_{\tau}^{(m)}(\mathbf{x},\tau,\Phi) &= \int_{\Omega_{m0}} \Phi(\mathbf{x},\tau,\xi,0) p_0^{(m)}(\xi) d\Omega_{m0}(\xi), \end{aligned}$$

$$\begin{split} U^{(m)}(\mathbf{x}, \tau, \xi, \xi_4) &= \frac{1}{4\pi\kappa_m(\tau - \xi_4)} \exp(-\frac{r^2}{4\kappa_m(\tau - \xi_4)}), \\ \xi &= (\xi_1, \xi_2) \in \mathbf{R}^2, \ \xi_4 \in T, \ r^2 = \sum_{i=1}^2 y_i^2, \ y_i = x_i - \xi_i, \\ Q^{(m)}(\mathbf{x}, \tau, \xi, \xi_4) &= \varepsilon_m \sum_{i=1}^2 \ Q_i^{(m)}(\mathbf{x}, \tau, \xi, \xi_4) \mathbf{n}_i^{(m)}(\mathbf{x}), \\ Q_i^{(m)}(\mathbf{x}, \tau, \xi, \xi_4) &= -\frac{\partial U^{(m)}(\mathbf{x}, \tau, \xi, \xi_4)}{\partial x_i} = \\ &= \frac{U^{(m)}(\mathbf{x}, \tau, \xi, \xi_4) y_i}{2\kappa_m(\tau - \xi_4)} = \frac{\exp(-\frac{r^2}{4\kappa_m(\tau - \xi_4)^2}) y_i}{8\pi\kappa_m^2(\tau - \xi_4)^2}, \\ Q^{(1,2)}(\mathbf{x}, \tau, \xi, \xi_4) &= \varepsilon_2 \sum_{i=1}^2 \ Q_i^{(2)}(\mathbf{x}, \tau, \xi, \xi_4) \mathbf{n}_i^{(1)}(\mathbf{x}), \\ \Omega_{m0} &= \Omega_m \cup \Omega_{mp}, \Omega_{mp} = \Omega_{mpz} \cup \Omega_{mpcont} \cup \Omega_{mpw} \\ &- \ \text{однозв'язна область продовженої початкової умови [Журавчак, Грицько, 1996], у якій початкової умови [Журавчак, Грицько, 1996], у якій початкової умови [Журавчак, Грицько, 1996], у якій початкової умови Гм до нульового, де \ \Omega_{mpz}, \Omega_{1pcont}, \\ \Omega_{2pcont}, \ \Omega_{mpw} &- \ \text{області завтовшки} \end{split}$$

 $h_{pz}, h_{p12}, h_{p21}, h_{pw}$ відповідно. Зауважимо, що Ω_{mp} та G_m не повинні збігатись, хоч і можуть.

Спрямувавши у (8)–(10) x з середини областей Ω_m до меж Γ_m для задоволення умов (2)–(6), одержимо граничні інтегральні рівняння (ГІР), які зв'язують невідомі $\varphi_m(\xi, \xi_4)$ з відомими $p_0^{(m)}(\xi)$ та заданими на контурі свердловин функціями:

$$\mathbf{F}_{\tau}^{(1)}(\mathbf{x},\tau,U^{(1)}) - \mathbf{F}_{\tau}^{(2)}(\mathbf{x},\tau,U^{(2)}) = b_{\tau}^{(2)}(\mathbf{x},\tau,U^{(2)}) - b_{\tau}^{(1)}(\mathbf{x},\tau,U^{(1)}), \ (\mathbf{x},\tau) \in \Gamma_{12} \times \mathbf{T},$$
(11)

$$\mathbf{F}_{\tau}^{(1)}(\mathbf{x},\tau,Q^{(1)}) - \mathbf{F}_{\tau}^{(2)}(\mathbf{x},\tau,Q^{(1,2)}) = b_{\tau}^{(2)}(\mathbf{x},\tau,Q^{(1,2)}) - b_{\tau}^{(1)}(\mathbf{x},\tau,Q^{(1)}), \quad (\mathbf{x},\tau) \in \Gamma_{12} \times \mathbf{T}, \quad (12)$$
$$\mathbf{F}_{\tau}^{(m)}(\mathbf{x},\tau,U^{(m)}) = p_{z}^{(m)}(\mathbf{x},\tau) - b_{\tau}^{(m)}(\mathbf{x},\tau,U^{(m)})$$

$$(\mathbf{x}, \tau) \in \Gamma_z^{(m)} \times \mathbf{T}, \qquad (13)$$

$$\mathbf{F}_{\tau}^{(m)}(\mathbf{x},\tau,U^{(m)}) = p_{w}^{(m)}(\mathbf{x},\tau) - b_{\tau}^{(m)}(\mathbf{x},\tau,U^{(m)}),$$
$$(\mathbf{x},\tau) \in \Gamma_{w}^{(m)} \times \mathbf{T}.$$
(14)

Просторово-часова дискретизація математичної моделі

Оскільки виконати аналітичне інтегрування у рівняннях (11)–(14) для прикладних задач внаслідок довільності областей Ω_m практично неможливо, здійснимо просторово-часову дискретизацію за допомогою таких кроків. Межі Γ_m та

області G_m дискретизуємо відповідно на V_m граничних Γ_{mv} та приграничних G_{mv} елементів, причому ділянки, що належать зовнішньому контуру, на V_{mz} , контур центральної свердловини – на V_w , межу поділу середовищ – на V_{12} , граничні елементи між собою не перетинаються, тобто: $\bigcup_{v=1}^{V_m} \Gamma_{mv} = \Gamma_m$, $\bigcup_{v=1}^{V_{mz}} \Gamma_{mv} = \Gamma_z^{(m)}$,

$$\bigcup_{v=V_{mz}+V_{12}}^{V_{mz}+V_{12}} \Gamma_{mv} = \Gamma_{12}, \quad \bigcup_{v=V_{mz}+V_{12}+1}^{V_m} \Gamma_{mv} = \Gamma_w^{(m)},$$

$$V_m = V_{mz} + V_{12} + V_w / 2, \quad \bigcup_{v=1}^{V_m} G_{mv} = G_m.$$
To an equation of the equation of t

Тоді невідомі функції, які описують розподіл фіктивних джерел тиску в межах приграничних елементів G_{mv} , позначимо через $\phi_v^{(m)}(\mathbf{x}, \tau)$. Області Ω_m та Ω_{mp} дискретизуємо на криволінійні елементи другого порядку з вісьмома вузлами [Бреббия, Теллес, Вроубел, 1987] Ω_{mq} $(q = 1,...,Q_m)$, Ω_{mpq} $(q = 1,...,Q_{mp})$.

Для зручності опису залежності функцій $\phi_v^{(m)}(\mathbf{x}, \tau)$ від часу часовий промінь **T** розділимо на однакові інтервали **T**_l=] τ_{l-1} , τ_l] (l=1,2,..., τ_0 =0) і в межах кожного **T**_l ці функції апроксимуємо сталими d_v^{ml} . Дискретно-континуальну модель побудуємо для покрокової часової схеми – схеми послідовності початкових умов (СППУ) [Бенерджи, Баттерфилд, 1984; Журавчак, Грицько, 1996].

Кожний крок за часом \mathbf{T}_l розглянуто як нову задачу, тобто введено локальний час $\tilde{\tau} = \tau - (l-1)\Delta \tau$ ($\Delta \tau$ – величина часового приросту на кожному кроці) і обчислені в кінці (*l*-1)-го часового інтервалу значення $p^{(m)}(\mathbf{x}, (l-1)\Delta \tau)$ у внутрішніх точках використаємо як початкові для наступного *l*-го кроку.

Оператори $\mathbf{F}_{\tau}^{(m)}(\mathbf{x}, \tau, \Phi^{(m)})$ та $b_{\tau}^{(m)}(\mathbf{x}, \tau, \Phi^{(m)})$ після просторово-часової дискретизації для *l*-го кроку ($(l-1)\Delta \tau < \tau \leq l\Delta \tau$, $0 < \tilde{\tau} \leq \Delta \tau$) отримаємо у вигляді [Журавчак, Струк, 2012а]

$$\mathbf{F}^{ml}(\mathbf{x},\tilde{\tau},\Phi_{\tau}^{(m)}) = \sum_{\nu=1}^{V_m} A_{\nu}^{(m)}(\mathbf{x},\tilde{\tau},\Phi_{\tau}^{(m)})d_{\nu}^{ml},$$
$$b^{ml}(\mathbf{x},\tilde{\tau},\Phi^{(m)}) =$$
$$= \sum_{q=1}^{Q_m+Q_{mp}} \int_{\Omega_{m0q}} \Phi^{(m)}(\mathbf{x},\tilde{\tau},\xi,0) p_0^{(ml)}(\xi) d\Omega_{m0q}(\xi),$$

де

 $p_0^{(m1)}(\mathbf{x}) = p_0^{(m)}(\mathbf{x}), \ p_0^{(ml)}(\mathbf{x}) = p^{(m)}(\mathbf{x}, (l-1)\Delta \tau),$ $l > 1, x \in \Omega_m, \text{ а в } \Omega_{mp}$ лінійно зменшується від значення на межі Γ_m до нульового;

$$\begin{split} A_{\nu}^{(m)}(\mathbf{x},\widetilde{\tau},\Phi_{\tau}^{(m)}) &= \int_{G_{m\nu}} \Phi_{\tau}^{(m)}(\mathbf{x},\widetilde{\tau},\xi) dG_{m\nu}(\xi) ;\\ \Phi_{\tau}^{(m)}(\mathbf{x},\widetilde{\tau},\xi) &= \int_{0}^{\widetilde{\tau}} \Phi^{(m)}(\mathbf{x},\widetilde{\tau},\xi,\xi_{4}) d\xi_{4} ;\\ U_{\tau}^{(m)}(\mathbf{x},\widetilde{\tau},\xi) &= \frac{1}{4\kappa_{m}\pi} E_{1}(\beta_{2m}) , \ \beta_{2m} = \frac{r^{2}}{4\kappa_{m}\widetilde{\tau}} ;\\ E_{1}(\beta) &= \int_{\beta}^{\infty} \frac{\exp(-z)}{z} dz \ - \ \text{interponokashukoba } \phi \text{yn-} \end{split}$$

кція;

$$Q_{\tau}^{(m)}(\mathbf{x},\tilde{\tau},\boldsymbol{\xi}) = \varepsilon_m \sum_{i=1}^{2} Q_{i\tau}^{(m)}(\mathbf{x},\tilde{\tau},\boldsymbol{\xi}) \mathbf{n}_{i}^{(m)}(\mathbf{x});$$
$$Q_{\tau i}^{(m)}(\mathbf{x},\tilde{\tau},\boldsymbol{\xi}) = \frac{y_i}{2\kappa_m \pi r^2} \exp(-\beta_{2m});$$
$$Q_{\tau}^{(1,2)}(\mathbf{x},\tilde{\tau},\boldsymbol{\xi}) = \varepsilon_2 \sum_{i=1}^{2} Q_{i\tau}^{(2)}(\mathbf{x},\tilde{\tau},\boldsymbol{\xi}) \mathbf{n}_{i}^{(1)}(\mathbf{x}).$$

Дискретно-континуальна модель для знаходження невідомих інтенсивностей джерел тиску, введених у приграничних елементах

Для задоволення умов контакту (2), (3) та граничних умов (4), (5) використано колокаційну методику. Точки колокації вибрано у кінцевий момент часу $\Delta \tau$ у середині кожного граничного елемента Γ_{mw} , $w = 1, ..., V_m$. З ГІР (11)–(14) після просторово-часової дискретизації для *l*-го кроку одержимо таку СЛАР:

$$\begin{split} \sum_{\nu=1}^{V_{1}} & A_{\nu}^{(1)}(x^{1w}, \Delta \tau, U_{\tau}^{(1)}) d_{\nu}^{ul} - \sum_{\nu=1}^{V_{2}} A_{\nu}^{(2)}(x^{1w}, \Delta \tau, U_{\tau}^{(2)}) d_{\nu}^{2l} = \\ &= -b^{1l}(x^{1w}, \Delta \tau, U^{(1)}) + b^{2l}(x^{1w}, \Delta \tau, U^{(2)}), \\ & x^{1w} \in \Gamma_{1w} \subset \Gamma_{12}, w = V_{1z} + 1, ..., V_{1z} + V_{12}, (15) \\ & \sum_{\nu=1}^{V_{1}} A_{\nu}^{(1)}(x^{1w}, \Delta \tau, Q_{\tau}^{(1)}) d_{\nu}^{ul} - \sum_{\nu=1}^{V_{2}} A_{\nu}^{(2)}(x^{1w}, \Delta \tau, Q_{\tau}^{(1,2)}) d_{\nu}^{2l} = \\ &= -b^{1l}(x^{1w}, \Delta \tau, Q^{(1)}) + b^{2l}(x^{1w}, \Delta \tau, Q_{\tau}^{(1,2)}), \\ & x^{1w} \in \Gamma_{1w} \subset \Gamma_{12}, w = V_{1z} + 1, ..., V_{1z} + V_{12}, (16) \\ & \sum_{\nu=1}^{V_{m}} A_{\nu}^{(m)}(\mathbf{x}^{mw}, \Delta \tau, U_{\tau}^{(m)}) d_{\nu}^{ml} = \\ &= p_{z}^{(m)}(\mathbf{x}^{mw}, l\Delta \tau) - b^{ml}(\mathbf{x}^{mw}, \Delta \tau, U^{(m)}), \\ & \sum_{\nu=1}^{V_{m}} A_{\nu}^{(m)}(\mathbf{x}^{mw}, \Delta \tau, U_{\tau}^{(m)}) d_{\nu}^{ml} = \\ &= p_{z}^{(m)}(\mathbf{x}^{mw}, \Delta \tau) - b^{ml}(\mathbf{x}^{mw}, \Delta \tau, U^{(m)}), \end{split}$$

$$x^{mw} \in \Gamma_{mw} \subset \Gamma_{w}^{(m)}, \ w = V_{mz} + V_{12} + 1, ..., V_{m}, (18)$$

Зрозуміло, що для постійного кроку за часом матрицю системи (15)–(18) обчислено один раз і збережено у пам'яті комп'ютера.

Знайшовши невідомі d_v^{ml} , застосуємо формули, аналогічні (8)–(10) для обчислення шуканих тисків у вузлах, що описують внутрішні елементи $\Omega_{mq} \in \Omega_m$, у момент часу $l\Delta \tau$:

$$p^{(m)}(\mathbf{x}^{mqs}, l\Delta \tau) = \sum_{\nu=1}^{V_m} A_{\nu}^{(m)}(\mathbf{x}^{mqs}, \Delta \tau, U_{\tau}^{(m)}) d_{\nu}^{ml} + b^{ml}(\mathbf{x}^{mqs}, \Delta \tau, U^{(m)}), \ \mathbf{x}^{mqs} \in \Omega_{ma}, s=1,...,8,$$

ці значення використано в операторі $b^{m(l+1)}(\mathbf{x}, \tilde{\tau}, \Phi^{(m)})$ для формування правої частини СЛАР на наступному часовому кроці.

Числові дослідження

Числові дослідження проведено для області Ω , вибраної у вигляді еліпса з півосями *a*=200 м, *b*=150 м, що містить круглу центральну свердловину радіуса $R_c = 0,1$ м, допустивши, що товщина пласта *h*=18 м.

Зовнішній контур рівномірно розбивали на 16 граничних елементів (тобто на кожну $\Gamma_{z}^{(m)}$ припадало по V_{mz} =8 елементів), межу свердловини – на $V_w = 4$, межу контакту – на $V_{12} = 8$. Товщини приграничних областей та областей продовжених початкових умов були такими: $h_z = h_{pz} = 20$ (для зовнішнього контуру), $h_{w} = h_{pw} = 0,05$ (для свердловини) та $h_{12cont} = h_{21cont} = h_{p12cont} = h_{p21cont} =$ =20 (для межі контакту), тобто СЛАР (15)-(18) складалась з 36 рівнянь. Кількість внутрішніх елементів, на які дискретизували області Ω_m та $\Omega_{mpz}, \Omega_{mpcont},$ Ω_{mpw} , була відповідно $Q_m = 16, 8, 8, 2$ (тобто $Q_{mp} = 18$). Зрозуміло, що вона ніяк не впливала на розмірність матриці, оскільки інтеграл від початкової умови входить у праву частину вказаної СЛАР (15)-(18).

Часовий інтервал $\mathbf{T} = \{\tau: 0 < \tau < 864000\}$ с (10 діб) рівномірно розділено на 40 проміжків з кроком $\Delta \tau = 21600$ с. На зовнішньому контурі та на межі свердловини тиск знижувався з часом:

$$p_w^{(m)}(\mathbf{x}, \tau) = P_w(\tau) = P_{w0} - 0.05 \cdot l \cdot 10^6 \,\Pi \mathrm{a},$$

$$p_z^{(m)}(\mathbf{x}, \tau) = P_z(\tau) = P_{z0} - 0.001 \cdot l \cdot 10^6 \,\Pi \mathrm{a};$$

$$P_{w0} = 16 \cdot 10^6 \,\Pi \mathrm{a}; \ P_{z0} = 20 \cdot 10^6 \,\Pi \mathrm{a}.$$

Початковий розподіл тиску у пласті моделювали у вигляді лінійної функції:

$$p_0^{(m)}(\mathbf{x}) = P_{z0} - \frac{(P_{z0} - P_{w0})(r - r_{el})}{(R_c - r_{el})}$$

де *r*, *r*_{el} – відстані в полярних координатах до точки **х** та до відповідної їй на зовнішній межі еліпса.

Числові значення фізичних характеристик кусково-однорідного середовища подано в табл. 1.

Таблиця 1

Фізичні характеристики кусково-однорідного пласта

Ω_1	Ω_2
$k_1 = 0,16 \times 10^{-12} \text{ m}^2$	$k_2 = 0.08 \times 10^{-12} \text{ m}^2$
$\mu_1 = 0,707 \times 10^{-3} \Pi a \bullet c$	$\mu_2 = 1,232 \times 10^{-3} \Pi a \cdot c$
$\beta_1^* = 7,07 \times 10^{-10} \Pi a^{-1}$	$\beta_2^* = 4,06 \times 10^{-10} \Pi a^{-1}$
$\kappa_1 = 0,32 \text{ m}^2/\text{c}$	$\kappa_2 = 0.16 \text{ m}^2/\text{c}$

Оскільки похибки, що виникають під час застосування непрямого методу приграничних елементів, зумовлені тільки процедурами апроксимації, дискретизації та числового інтегрування [Журавчак, Струк, 2012б], спочатку досліджували точність задоволення граничних умов та умов ідеального контакту в різні моменти часу:

$$\delta p_{zm}(\mathbf{x}^{mw}, l\Delta \tau) = \frac{p^{(m)}(\mathbf{x}^{mw}, l\Delta \tau) - P_z(l\Delta \tau)}{P_z(l\Delta \tau)},$$
$$\mathbf{x}^{mw} \in \Gamma_{mw} \subset \Gamma_z^{(m)}, \tag{19}$$

$$\delta p_{wm}(\mathbf{x}^{mw}, l\Delta \tau) = \frac{p^{(m)}(\mathbf{x}^{mw}, l\Delta \tau) - P_w(l\Delta \tau)}{P_w(l\Delta \tau)},$$
$$\mathbf{x}^{mw} \in \Gamma_{mw} \subset \Gamma_w^{(m)}, \qquad (20)$$

$$\delta p_{12}(\mathbf{x}^{1w}, l\Delta \tau) = \frac{p^{(1)}(\mathbf{x}^{mw}, l\Delta \tau) - p^{(2)}(\mathbf{x}^{mw}, l\Delta \tau)}{p^{(1)}(\mathbf{x}^{mw}, l\Delta \tau)},$$

$$\mathbf{x}^{1w} \in \Gamma_{1w} \subset \Gamma_{12}, \qquad (21)$$
$$\varepsilon_1 \frac{\partial \rho^{(1)}(\mathbf{x}^{mw}, l\Delta t)}{\partial \mathbf{n}^{(1)}(\mathbf{x})} - \varepsilon_2 \frac{\partial \rho^{(2)}(\mathbf{x}^{mw}, l\Delta t)}{\partial \mathbf{n}^{(1)}(\mathbf{x})}$$

$$\delta q_{12}(\mathbf{x}^{lw}, l\Delta \mathbf{t}) = \frac{\partial \mathbf{n}^{(\mathbf{x})}(\mathbf{x})}{\varepsilon_{1} \frac{\partial p^{(l)}(\mathbf{x}^{mw}, l\Delta \mathbf{t})}{\partial \mathbf{n}^{(l)}(\mathbf{x})}},$$
$$\mathbf{x}^{1w} \in \Gamma_{1w} \subset \Gamma_{12}.$$
(22)

На рис. 1 зображено відносні похибки задоволення граничних умов у момент часу $\Delta \tau = 21600$ с на першій чверті зовнішнього контуру, на половині межі свердловини та на межі контакту, обчислені відповідно за формулами (21), (22), (19), (20). Зазначимо, що у точках колокації похибка відсутня, найбільша спостерігається з наближенням до кінців граничних елементів та кінців межі контакту. У середині області похибки будуть меншими внаслідок виконання принципу максимуму. На рис. 2 подано отриманий непрямим методом приграничних елементів розподіл тиску в пласті з центральною свердловиною у різні моменти часу.

Рис. 1. Точність задоволення граничних умов на частині зовнішнього контуру та на межі свердловини (а) та умов ідеального контакту на межі поділу середовищ (б) непрямим методом приграничних елементів

Рис. 2. Розподіл тиску в кусково-однорідному пласті з центральною свердловиною, отриманий непрямим методом приграничних елементів у різні моменти часу: 0.25 доби (а), 0.5 доби (б), 0.75 доби (в), 1 доба (г)

Рис. 3. Вплив коефіцієнта п'єзопровідності на тиск у внутрішніх точках кусково-однорідного пласта (а) та розподіл тиску у внутрішніх точках однорідного пласта (б), розміщених на лінії $x_2=0$ у момент часу 2 доби ($\Delta \tau = 86400$ с)

Досліджено сумарний вплив зміни коефіцієнтів проникності, пружної ємності насиченого пласта та динамічного коефіцієнта в'язкості рідини середовища в Ω_1 (табл. 2) на значення пластового тиску, частина з яких подана на рис. 3, а. Криві без символів відповідають характеристикам пласта з табл. 1. На рис. 3, б для порівняння подано результати обчислень в однорідних пластах з коефіцієнтами, наведеними в табл. 1 (суцільні криві відповідають середовищу з характеристиками Ω_1 , штрихові – Ω_2).

Таблиця 2

Фізичні характеристики середовищ в Ω_1

Криві з символами "о"	Криві з символами "+"
$k_1 = 0,12 \times 10^{-12} \text{ м}^2$	$k_1 = 0,04 \times 10^{-12} \text{ м}^2$
$\mu_1 = 0.898 \times 10^{-3} \Pi a \cdot c$	$\mu_1 = 1,232 \times 10^{-3} \Pi a \cdot c$
$\beta_1^* = =5,56 \times 10^{-10} \Pi a^{-1}$	$\beta_1^* = 4,06 \times 10^{-10} \Pi a^{-1}$
$\kappa_1 = 0,24 \text{ m}^2/\text{c}$	$\kappa_1 = 0.16 \text{ m}^2/\text{c}$

Як бачимо, зменшення коефіцієнта п'єзопровідності в Ω_1 веде до зменшення тиску в точках пласта, що належать Ω_1 та Ω_2 (рис. 3, а). Аналогічний висновок можна зробити і щодо однорідних середовищ (рис. 3, б), водночас у разі зменшення коефіцієнта п'єзопровідності тиск у пласті знижується різкіше.

Висновки

Побудовано математичну модель зміни в часі тиску в двовимірному кусково-однорідному пористому пласті з криволінійною межею з урахуванням ідеального контакту на межі поділу середовищ. Для знаходження розв'язку задачі використано непрямий метод приграничних елементів спільно з часовою схемою послідовності початкових умов, що дало змогу точно задовольнити рівняння в усій досліджуваній області та контролювати похибку задоволення граничних умов на її межах та на границях поділу середовищ (оскільки можна вибрати кількість приграничних елементів, товщин приграничних областей та областей продовжених початкових умов). Здійснено програмну реалізацію запропонованого числовоаналітичного підходу з використанням системи MATLAB та проведено низку досліджень впливу фізичних та часових параметрів на розподіл тиску у пласті.

Розроблену методику можна розширити для врахування залежності фізичних характеристик від координат, що ми і плануємо здійснити в наступних дослідженнях.

Література

- Бенерджи П., Баттерфилд Р. Метод граничных элементов в прикладных науках. М.: Мир, 1984. 494 с.
- Бойко В.С., Бойко Р.В. Підземна гідрогазомеханіка. – Львів: Апріорі, 2007. – 452 с.
- Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. – М.: Мир, 1987. – 524 с.
- Владимиров В.С. Уравнения математической физики. М.: Наука, 1971. 512 с.
- Журавчак Л.М., Грицько Є.Г. Метод приграничних елементів у прикладних задачах математичної фізики. – Львів: Карпатське відділення Інституту геофізики НАН України, 1996.– 220 с.
- Журавчак Л.М., Струк А.Є. Порівняння методів граничних та приграничних елементів при знаходженні неусталеного тиску у пружному пористому замкненому пласті // Вісник Нац. унту "Львівська політехніка". Сер. "Комп'ютерні науки та інформаційні технології". – 2012. – № 732. – С. 198–206.
- Журавчак Л.М., Струк А.Є. Розв'язування задач неусталеної фільтрації пружної рідини в неде-

формівному пористому пласті методом приграничних елементів // Матеріали наукової конференції-семінару "Сейсмологічні та геофізичні дослідження в сейсмоактивних регіонах" (29–30 травня 2012 р.) – Львів: Сполом, 2012. – С. 45–49.

МОДЕЛИРОВАНИЕ НЕУСТАНОВИВШЕЙСЯ ФИЛЬТРАЦИИ СЖИМАЕМОЙ ЖИДКОСТИ В КУСОЧНО-ОДНОРОДНОМ ОГРАНИЧЕННОМ ПОРИСТОМ ПЛАСТЕ

Л.М. Журавчак, А.Е. Струк

Обоснована эффективность использования непрямого метода приграничных элементов для построения численно-аналитического решения задачи о неустановившемся движении сжимаемой жидкости в упругом пористом ограниченном кусочно-однородном пласте с учетом переменной депрессии давлений, заданных на его внешнем контуре и на границе скважины, а также идеального контакта на границе раздела сред. С использованием фундаментального решения нестационарного уравнения теплопроводности и схемы последовательности начальных условий построена дискретно-континуальная модель задачи с произвольными начальными условиями и граничными условиями первого рода. Выполнен ряд вычислительных экспериментов для оценки влияния параметров модели на изменение пластового давления.

Ключевые слова: неустановившееся движение сжимаемой жидкости; непрямой метод приграничных элементов; кусочно-однородная пористая среда.

MODELING OF UNSTEADY FLOW OF COMPRESSIBLE FLUID IN PIECEWISE HOMOGENEOUS POROUS CLOSED RESERVOIR

L.M. Zhuravchak, A.Ye. Struk

The efficiency of using the indirect near-boundary element technique for the construction of numericalanalytical solution of the problem of unsettled motion of compressible fluid in porous, closed, piecewise homogeneous reservoir, including variable depression of pressures given on its external border and on the border of the well and ideal contact at the interface media, was proved. Using the fundamental solution of the nonstationary thermal conductivity equation and sequence diagram of initial conditions the discrete-continual model of the problem with arbitrary initial conditions and boundary conditions of the first kind, was constructed. Series of computational experiments were carried out to assess the influence of characteristics of environment on reservoir pressure change.

Key words: unsteady flow of a compressible fluid, an indirect near-boundary elements technique, piecewise homogeneous porous reservoir.

Карпатське відділення Інституту геофізики ім. С.І. Субботіна НАН України, м. Львів Надійшла 01.12.2012