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In the frame of non-relativistic approximation, a compact approximate solution of the
Schrédinger equation for the ion of H~ has been obtained in the form of product for
Legendre polynomials and variational functions of the Schull-Léwdin type. The accu-
racy of calculation of ion energy is of the same order that the results obtained using the
multiparametric functions of Hylleraas and Pekeris.

Keywords: negative hydrogen ion, reference system approach, variation method, enerqgy
of ionization.

2000 MSC: 70F05

UDC: 523.9, 523.9-7, 523.9-47 DOI: 10.23939/mmc2019.01.144

1. Introduction

The negative hydrogen ion is an example of the simplest quantum-mechanical object with the strong
inter-electron correlations, which determines the independence and importance of the problem which
we consider. The relevance of this problem for astrophysics is due to the fact that the negative hydrogen
ions are one of the main factors of the formation of continuous absorption coefficient in the photospheres
of Solar-like stars [1-5]. For the calculations of spectral dependence of the photoionization cross-section
for H~ ions it is useful to have a compact wave function which differs from the cumbersome variational
functions of Hylleraas [6] or function of Pekeris 7], which have tens or hundreds of terms. Such functions
are based on the principle — the more variational parameters they have, the better they are. But the
construction of such functions does not take into account the specificity of inter-electron correlations in
atomic systems what causes a self-consistent distribution of electron density. Unreasonable complexity
of such wave functions make it difficult to analyze the role of inter-electron correlations in the two-
electron systems, as well as their use in applied problems, in particular in astrophysics, solid state
physics and in nanostructural systems.

The description of the quantum state of the H~ ion in the non-relativistic approximation is reduced
to finding solution of the Schrodinger equation for the motion of two electrons in the field of static

proton
{h(r) + h(rs) + o(r1,r2) | € (r1,72) = E_¥_(r1,12), &
where N )
A Y e R _
h(r) = — 5 T o(ry,rp) = €%r; —rp| 7L (2)

There are known only approximate solutions for this problem. Because of strong inter-electron
correlations the Hartree—Fock approximation is not applicable here (in the self-consistent approach
E_ > —0.945...Ry) [8]. The simplest variational function, which approximately take into account
only radial correlations of electrons is the function of Schull-Lowdin [9]

W(py, po) = Nap {expl—aps — bpa] + expl—bpy — apa]}, Nap= {1+ (4ab)3(a +b)6} "> (3)
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The shell model of electron structure of negative hydrogen ion 145

where p; = rjay 1 a4y is the Bohr radius, a and b are the variational parameters. At a = 1.0392,

b = 0.2832 the function (3) yields the energy E_ = —1.0266. .. Ry. The function (3) is the symmetrical

combination of two 1s-type orbits. The maximum probability of the one-particle density distribution

for first of them corresponds to p ~ a~!, and for the second one — p ~ b~!, which provides within this

approximation a minimum of matrix element for the potential energy of inter-electron repulsion. The

function (3) corresponds to the dual-shell model of the electron density distribution in the H~ ion.
The three-parametric variational Chandrasekar’s function [2]

U (py, p2) = M {exp[—ap1 — bpa] + exp[—bp1 — apa]} {1 + c|p; — pol} (4)

generalizes the expression (3) and gives the energy F_ = —1.05184...Ry at o = 1.077758, 8 =
0.47758, ¢ = 0.31214 approximately accounting also for the angular correlations in the electron charge
distribution. As follows from the calculations based on simple wave functions with the small number
of variational parameters, the contributions of radial and angular correlations to the ionization energy
are almost of the same order (= 0.0275...Ry).

In the works of Hylleraas [6], Kinoshita [10], Hart and Herzberg [11], Schwartz (see [3]) and
Pekeris [7] the variational calculations of wave functions and energies of ground state of the H~ ion,
the helium atom and helium-like positive ions were done with high accuracy by using trial functions
with large number of variation parameters. In particular, Hart and Herzberg [11] were calculated the
wave function and energy of ground state of the helium and helium-like ions based on 20-parametric
Hylleraas function

1
\If(rl, I‘Q) = Nexp {_iks} {1 + x1u + X2t2 + X3S + X482 + X5u2
+ xesu + x7t2u + xsud + xot?u? + x105t2 + x115° + x12t2ut + x13u? (5)
+ x14u” + x15t7u? + 16522 + x178T + 185Ut + X19t4}7

s=p1+p2, t=p1—p2, u=|p;—psl

in which k, x1, ..., x19 are the variational parameters and p;, p and their absolute values are expressed
in units ag. This function leads to the value of energy F_ = —1.055289... Ry. The Schwartz’s 70-
parametric function has the same structure and gives the energy F_ = —1.055495... Ry [3]:

70
1
w(rr.ra) = exp {355 | Y Xm0 (©
1

In his work Pekeris [7] used the parametric coordinates
u=-¢e(p2—p1 —p12), v=¢e(p1—p2+pi2), w=2e(p1+ p2—p12), (7)

which are independent and vary within the limits (0 + c0) and ¢ = {—2mE}?qoh~!. The wave
function is expressed in the form

U(ry,re) = exp{—[ut+v+wl} > A(l,n,m)Li(v)Lm(w)Ln(w), (8)

I,m,n=0

where Lg(x) is the normalized Laguerre polynomials, A(l,n,m) are unknown parameters. According
to its structure the function (8) belongs to Hylleraas type functions. During the numerical calculations
444 terms of series were taken into account with [ +m + n < 16, although the spectroscopic accuracy
(when the error has the order 107°Ry) is achieved already with 100 terms of series (8). The ion energy
is in the limits

—1.055502028... Ry < E_ < —1.055502000... Ry.
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146 Vavrukh M., DzikovskyiD., Stelmakh O.

Although the expression (8) is the series of orthogonal functions, however the Laguerre polynomials

determine the wave functions of electron in the neutral hydrogen atom and do not take into account

the electron correlations. Therefore it is necessary to take into account the huge number series terms.
In the work [12] is used the variational function

k
U(ry,r2) = eXP{_E(Pl + /72)} > " Pi(cos 012) Fi(p1, p2); 9)
l
where P, is the Legendre’s polynomial of I-th order, 6;2 is the angle between vectors p;, ps,
Filprsp2) = 3 A { 5 + o1} (10)

1 >0, m>n2>0, kand Ay, are the variational parameters. The function (9) with 41 parameters
gives the ion energy £ = —1.0526 Ry.

It was shown from the following examples that the increase of the number of variational param-
eters improve description accuracy of quantum state of the H~ ion. However, with small number of
parameters, the description is inaccurate, and wave functions with the large number of parameters are
very cumbersome and inconvenient for following use. The aesthetic side of the case also plays a role.

2. The basis-variational approach

The construction of optimal wave function, which is compact and gives a fairly accurate descrip-
tion of the H™ ion, can be done using the reference system approach generalizing the Schull-Léwdin
function [9]. As follows from the formula (3), this function is the symmetric combination of 1s-type
one-electron functions in the neutral hydrogen atom,
1 3/2 _
(Pls(P) = —315(0)7 Rls(p) = 2a1/ € a1p7
VA (11)
1 3/2 _
/ = —Ris(p), Rig = 2a, “eT 2P,
P1s (P) \/E 1s (P) 1s (p) 2

This basis can be extended including in it the functions which are analogues of 2p, 3d, 4 f-functions of
electron in the hydrogen atom, namely
2 512 _
apm(p) = Y1im(0, ) Rop(p),  Raop(p) = %51/ pe Bw;
2
P2 .m(P) = Yi,m(0,0)Rop (p), Raop(p) = 7
2v2 779 (12)

_ 2 ,—71p.
= e ;
3\/5'71 1Y

2V2 779
Paan(P) = Yem(0: ) Rsa (), Raa(p) = 2203
etc., where Y] ,,,(6, ) are the spherical functions and 1, 82, 71, 72, . . . are the variational parameters.
Due to the presence of factors Y} ,,(6, ) the functions which belong to different shells are orthogonal

to each other.

Considering the addition rule of the spherical functions
l

Z Yim (01, 01) Y, —m (02, 02) =

m=-—I

Bg’/?p e—ﬁzp;

©3d.m(P) = Yom(0,9)R3a(p), Raq(p)

p2e—vzp

20+1
7'('

Fi(t), (13)

where t is the cosine of the angle between vectors p; and p,, let us create set of the two-electron
functions from (11), (12)
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Y1(p1, p2) = %{RIS(PI)Rls’(p2) + Rls(p2)Rls’(p1)}%P0(t);
Ya(p1, p2) = %{3217(/?1)32;;/ (p2) + R2p(p2)R2p’(pl)}EP1 (t); (14)

Y3(p1,p2) = %{de(Pl)Rf‘)d’ (p2) + R3a(p2) Raa (Pl)}gfb(t)

etc. The functions (14) are normalized,

{1 N ((4a1a2)36 }—1/2 |

Ny =
o1 + Oéz)
_ (461 52)° }‘1/2 15
N2_{1+7(51+52)10 , (15)
B (4y172)7 }_1/2
NS‘{”mmw ’

Due to orthogonality of Legendre polynomials the functions (14) are orthogonal to each other and their
radial factors are generalized the Schull-Lowdin function. Therefore the functions ¢;(p;, py) form the
two-electron basis in space {R} = {p;, p»}, which allows us to search the equation solution (1) in the
series form

k
V_(py,pa) = Z%%(Phpz)- (16)
s=1

Substituting the expression (16) in the equation (1), multiplying by vs(p;, py) and integrating by
coordinates we obtain the system of linear homogeneous equations for unknown coefficients as:

a1(Hi1 — E_) +axVia +agVis + - - + aiVig = 0;
a1 Vo1 + ag(Hgg — E_) 4+ agVoz + -+ 4+ apVor, = 0;

(17)
a1Vi1 + a2Vie + azVig + -+ - + ap(Hpr, — E-) = 0.
The normalization condition of function (16) requires satisfaction of the expression
k
dal=1. (18)
s=1
The matrix elements which appear in the equations (17) are defined as follows:
Hy; = (Wilh(ry) + h(rg) + 0(r1, r2)|); (19)
Hij = Vij = (ilo(ry, ro)vy) by i #j.
All of them are calculated in the analytical form. In particular,
? i 2 2 9 (daran)?
(1|h(r1) + h(r2)[y1) = Niqai + a3 — 2(a1 + a2) + 2——"claias — a1 — az| eRy;
(a1 + az)
R R 4 5
(ali(er) + hira)lva) = N3{ 32+ 6 - 51— ot L s — o - o R (20
(B1 + B2)
A - 2 (4m172)” 2
_N2) a2 2
(¥3|h(r1) + h(re)lis) = N3 {’h +75 — g(’n +72) + T+ o) 2n72 — 3 +72)| Ry
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etc. Using the expansion of factor |p; — py|™! in a series of Legendre polynomials P;(t) we reduce
the calculation of matrix elements of inter-electron interactions operator to the integrals calculation of

type - "
Lu(alt) = [ o e [V e, (21)
0 0

The explicit expressions of the matrix elements V;; through the integrals (21) are given in the Appendix.
The value of energy of H~ ion have found by minimizing the root of the secular equation

det |Hz'j — E_él-j| =0 (22)
with regard to parameters oy, a9, ..., v2. It turned out that the minimum energy value is achieved by
81 = B2, 71 = Y2, 61 = 62, ... . In order to find the coefficients of expansion a; let us use k—1 equation

of system (17) and the normalization condition (18) at the known value of E_. The calculation results
of the ion energy, variational parameters and coeflicients of expansion a; for different values of number
of terms in expansion (1 < k < 4) are given in Table 1.

Table 1. The value of H™ ion energy, variational parameters and the coefficients of expansion a,.

k 1 2 3 1
E_(k),Ry | —1.0266 | —1.04915 | —1.05058 | —1.05087
a 1.0392 | 1.035582 1.03524 1.03518
s 0.2832 | 0.323936 | 0.326516 0.32706
B = Ba - 0.998302 1.00138 1.00151
= — - 1.53401 1.53982
5 =02 - - - 2.09053
ar 1.0000 | 0.993734 | 0.9939285 | 0.993977
as - —0.111768 | —0.1086079 | —0.108094
as - - —0.0176175 | —0.0171053
as - - - —0.005792
(k) - - 0.039840 | 0.039592
E_(c) - - —1.055054 | —1.0552888

3. The perturbation theory

As can be seen from the Table 1 the convergence of series (16) become worse at k > 3, which require
the increase of terms number of series. To omit the cumbersome function, we represent the solution of
the equation (1) as the sum of two terms

V_(p1,p2) = Vo(py1,p2) +cP(py, pa)- (23)

Here Uo(p;, p2) is the normalized function (16) at k = 3 or 4, which corresponds to the energy E_ (k)
found with the known parameters a1, as, 81, B2, V1, Y2, - - - as well as known coefficients as. The factor
c is the variational parameter and function ®(p,, py) is the correction to the Schull-Léwdin function,
namely

M a o
®(p1,p2) = Eag{{e_aple_QpQ(l —Tp2) +e e 27 (1 Fpl)}- (24)

The factor M determines from the normalization condition ®(p1, p2) and depends on the variational
parameters o and I':

=i () < () [ (-0
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Now we have the problem with three variational parameters, and the energy of ion can be found

from the expression
E_(k) + 2¢(®|H| W) + (D|H|D)
1+ 2¢(®|Wq) + 2 )

In our case the parameter ¢ should be several times smaller than in the approximation (4) because
zero-order approximation of the function ¢o(p;, py) gives more than 90% of ionization energy. On the
other hand, the coefficients of the expansion (16) have such order: a; ~ 1.0; |az| ~ 0.1; |as| ~ 0.01.
Therefore, while calculating matrix elements, which appear in the expression (24), we consider the
approximation

E_(¢) = min (26)

(®[To) = ay(®lyr), (P[H|Wo) = a1 (P|H |t1). (27)
As follows from orthonormality of the functions ¥;(p;, p3)
(@|0(r1, o)1) = 2Ry. (28)
Herewith instead the matrix element (®|0(r;,r2)| V1) we used the corrected matrix element
AW [0(r1, 1) W1 ) (@hr) + (1 — A)(@[0(ry, 12)[W1), (29)

which effectively takes into account the influence upper terms of expansion (16). The factor A =
0.5(\/§ — 1) corresponds to the “golden section” approximation. At kK =4 and I' = 0.1001, o = 0.4095
the energy minimum is achieved at ¢yp = —0.1202. The value of ion energy equals £F_ = —1.055502 Ry,
that corresponds to the result of the work [7].

The normalized function (23) is presented in the form

4
U_(p1,ps) =Y asthi(pr, po) + é@®(p1, p2), (30)
s=1
where
as = asn_l/z,
o(k) = con™ V2, (31)

n =1+ 2coar(®[1) + 2 = 0.910821.

4. Conclusions

As follows from the calculation of the energy, the distribution of electron density in H~ ion can be
interpreted within shell model. Two of the shells correspond to the spherically-symmetric distribution
of charge (the function 91 (p;, ps)), and the maximum of distribution is in the distances approximately
ag and 3ag from the proton. Three other shells correspond to the distribution of charge by type 2p-,
3d- and 4 f-hydrogen function, and the maximum of radial distribution is in the distances ~ 2ay. The
most significant contributions to the ionization energy gives the spherically-symmetric shells and shell
of the 2p-type. The shell of 3d-type gives much lower contribution, and the contribution of 4 f-shell is
negligible. The function ¥o(p;, py) gives more than 90% of ionization energy. The correction function
®(py, py) gives the contribution to the ionization energy which is approximately 5 times less than the
contributions of functions 1 (p;, ps) or ¥2(py, py). Nevertheless, this contribution is also important,
it takes into account the radial and angular correlations between electrons from the first and third
shells and allows us to achieve spectroscopic accuracy (~ 107° Ry) in the calculation of the ionization
energy of negative ion of hydrogen.
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Appendix

Let us show here the expressions of matrix elements of operator of inter-electron interactions 0(ry,rs)
which appear in the expression (19):

3 .3 2
a0 Oél + 052 (041052)
Vip = 8N —= ;
=28 1(a1+a2)4{a1a2(a1+a2)+ 1 +5a1+042 ;
64
Vay = 5]\722(5152)5{ 514(2811282) + I34(B1 + B2|B1 + B2)

+ %[ 116(261(282) + L6 (Br + B2|B1 + B2)] };

1 /4\*
Vaz = N?f% <§> (7172)7{I§|6(271|272) + I5i6(v1 + 72|71 +2)

2
+= [138(271272) + I3is(m1 +y2lv1 +72) + Igjs(v1 + 72|71 +72)

+ 11020 272) + Tjo(n + 727 + 12)] };

(32)

4
Vig = N1N26—(a1a2)3/2(5152)5/2{15\4(041 + Bilas + B2) + Iy (a2 + Bilen + 52)};

3V3
128
Vig = N1N3 45\/3(041042)3/2(/7172)7/2{Iﬂﬁ(al +1laz +72) + Ifjgloa + y2laz + 71)}%
Vi = NaNs——oo (81 2)2(17)""* + { o (B + B2 + )
9.15+4/15

+ I56(B1 + 72|82 + 1) + % [155(B1 + 71182 +72) + Ig(B1 + 72| B2 +71)] };

etc. All matrix elements are dimensionless and expressed in Ry. Here are also introduced the symmetric
integrals (21), namely

1
nim(@l0) = 5 {Injm(alb) + Loy (bla) } - (33)
The matrix elements and overlap integrals which appear in (24), (26) are also calculated in analytical
form or reduced to the tabular integrals:
042—1—%—3F n ()41+%—3F }
(a4 o)+ 5)*  (a+az)¥(aa+5)4)]

<(I)‘¢1> = 16\/§MN1Q3(041042)3/2{

. 16 « 0"
(@|012]1) = —MN1a3(a1a2)3/2 I (Oé + a1, az + —) —TI'lis <a +ag,az + —)
V2 2 2
@ o a
+ 112 <Oé1 + 57044-012) — ' <Oé1 + 5,04-1-00) + I <Oé+0é2,041 + 5)

(6% « (6%
—T'Ii3 (a+a2,a1 + 5) + I <a2+§,a+a1) — Ty (Oég—i- §,a+a1>};

P 32 3 aofoila—1)+a(—-1)—2a  a(a—1)+ ay 1
(@1 + halthr) = EMNIQ (ara2)* { (a+a1)(az + §)3 * (a+a2)3(ar + §)3
Cag(a — ag) — 209 + 3o (a — 1) — 40
(a+a1)3(a2 + %)4
_ Tai(a —a1) — 201 + 3ag(a — 1) — 4a }
(a+az)3(a1 + §)? ’
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