УДК 582.282.23.07.7:577.152.1

РОЛЬ КОДОВАНОЇ ГЕНОМ РЕХ1 АТФ-ази, ЗАДІЯНОЇ В БІОГЕНЕЗІ ПЕРОКСИСОМ У МЕТИЛОТРОФНИХ ДРІЖДЖІВ *HANSENULA POLYMORPHA*, У СЕЛЕКТИВНІЙ АВТОФАГІЙНІЙ ДЕГРАДАТИВНІЙ ІНАКТИВАЦІЇ ОСНОВНИХ ФЕРМЕНТІВ ПЕРОКСИСОМНОГО МАТРИКСУ

О. Мороз, С. Гудзь, О. Кулачковський, І. Русин, Т. Перетятко, Б. Паляниця, І. Кутько

Львівський національний університет імені Івана Франка вул. Грушевського, 4, м. Львів, 79005, Україна e-mail: biolog@franko.lviv.ua

Виявлено пошкодження індукованої глюкозою та етанолом автофагійної деградативної інактивації алкогольоксидази та каталази при 28 та 37° С у клітинах мутантів *Hansenula polymorpha pex1* з блоком біогенезу пероксисом та температурочутливих ревертантів, похідних штаму 125-2E (*pex1 leu1.1*), після індукції біогенезу пероксисом при пермісивній (28° С) і рестриктивній (37° С) температурах. За допомогою електронномікроскопічних досліджень простежено відсутність пероксисом і наявність кристалоїду алкогольоксидази у клітинах мутантного по гену РЕХ1 штаму 125-2E, наявність пероксисом одночасно з кристалоїдом у клітинах усіх ts ревертантів, крім ревертантів 14Б-3 і 77Б, і наявність лише пероксисом у клітинах мутантів 14Б-3 і 77Б після індукції біогенезу пероксисом при 28° С. У клітинах всіх досліджуваних ts ревертантів після інкубації у середовищі з метанолом при 37° С, як і в мутанта 125-2E, пероксисом не виявлено.

Ключові слова: метилотрофні дріжджі, біогенез і деградація пероксисом, інактивація пероксисомних ферментів, алкогольоксидаза, каталаза.

Мікротільця (пероксисоми, гліоксисоми, глікосоми) виявлені практично в усіх еукаріотичних клітинах [38, 52]. Метаболічні функції пероксисом надзвичайно різноманітні: від β -окиснення довголанцюгових жирних кислот у людини, фотодихання у рослин, гліколізу у трипаносом і продукування пеніциліну у філаментозних грибів до первинного метаболізму різних джерел вуглецю та азоту у дріжджів. Спадково детерміновані пошкодження пероксисом у людини призводять до ранньої смерті [40]. Вивчення гомеостазу пероксисом з використанням дріжджів як об'єкта дослідження важливе для розуміння механізмів виникнення пов'язаних з порушенням пероксисом захворювань людини, оскільки мутанти дріжджів без функціональних пероксисом життєздатні під час культивування на спеціальних поживних середовищах. Метилотрофні дріжджі містять у пероксисомах не лише основні ферменти окиснення й асиміляції метанолу (алкогольоксидаза, каталаза, дигідроксиацетонсинтаза) [2, 17, 43, 48], а й ферменти окиснення метильованих

[©] Мороз О., Гудзь С., Кулачковський О. та ін., 2003

амінів (амінооксидаза) [48], у гліоксисомах – ферменти гліоксилатного шунта (ізоцитратліаза, малатсинтаза, а також каталаза і частково малатдегідрогеназа) [48 - 50].

Пероксисоми дріжджів не утворюються de novo, однак розвиваються з органел, що вже існують. Пероксисоми не містять ДНК, синтез пероксисомних білків відбувається на вільних цитозольних полірибосомах і контрольований переважно на транскрипційному рівні [23]. Біогенез мікротілець відбувається лише за умов нормального функціонування механізмів синтезу й імпорту пероксинів - гетерогенної групи білків пероксисомної мембрани, кодованих РЕХ-генами [28, 30, 39], а також інших (відмінних від пероксинів) білків мембрани – носіїв і транспортерів субстратів, метаболічних інтермедіатів, продуктів та кофакторів матриксних ферментів крізь мембрану пероксисом [6, 11, 19, 33]. Ідентифіковано білки, рецептори PTS сигналів (peroxisomal targeting signal) білків матриксу: РТS1-білки [12, 16, 38] специфічно взаємодіють з РТS1-рецептором (Pex5), РТS2-білки [27, 42, 53] – з РТS2-рецептором (Рех7). Висловлено гіпотезу, згідно з якою РТS1- і РТS2специфічні рецептори є одночасно транслокаторами відповідних білків у пероксисому [7, 10, 15, 25]. На мембрані пероксисом рецептори PTS1- і PTS2-білків взаємодіють з гетеромерним комплексом, який охоплює щонайменше три різні білки: інтегральний білок пероксисомної мембрани Рех13 та асоційовані з цитоплазматичною поверхнею пероксисомної мембрани білки Pex14 і Pex17 [8, 13, 15, 35]. Імовірно, в імпорті білків пероксисомного матриксу задіяні також Pex18, Pex21 [29], Pex2, Pex12 [34], Pex10 [9], Pex4 [47] та Рех8 [37, 54]. Впізнавання за допомогою специфічних рецепторів білків пероксисомної мембрани та їх інсерція у мембрану пероксисом відбувається шляхами, відмінними від шляхів транслокації білків пероксисомного матриксу: безпосередньо з цитозолю (можливо, за участю мембранних везикул) або через ендоплазматичний ретикулум [18, 22, 41, 44].

Ізольовано низку мутантів (*pex* мутанти), дефектних по біогенезу пероксисом, клоновано відповідні гени (PEX-гени) і проаналізовано їхні білкові продукти (пероксини) [6, 25, 38, 52]. Сьогодні описано 23 пероксини, більшість з них є компонентами пероксисомної мембрани [18, 38, 41]. Специфічні детермінанти впізнавання для деградації можуть бути у мембрані пероксисом, оскільки деякі *pex* мутанти, які не мають сформованих органел, дефектні по деградативній інактивації ферментів пероксисомного матриксу [5, 45, 46]. З'ясовано, що кристалоїди (алкогольоксидаза і/або каталаза [32, 51]), які у мутантів *H. polymorpha* не оточені пероксисомною мембраною, не підлягають деградації [26]. Очевидно, продукти ряду PEX-генів беруть участь як у біогенезі, так і в селективній деградації мікротілець, тобто є спільними елементами обох процесів [26].

Описано, що білок Pex1 у *H. polymorpha* формує комплекс з білком Pex6, з яким фізично і функціонально взаємодіє [20]. Комплекс білків Pex1 і Pex6 тісно асоційований з цитозольною поверхнею пероксисомної мембрани. Білок Pex1, як і Pex6, є ATФ-азою з родини AAA білків (<u>A</u>TP-ases <u>A</u>ssociated with various cellular <u>A</u>ctivities [20]) і бере участь у біогенезі пероксисом. Ген PEX1 у дріжджів *H. polymorpha* клоновано і схарактеризовано [20]. Висловлено припущення, що HpPex1p є важливим для імпорту матриксних білків з огляду на його участь у інерції/стабільності деяких білків пероксисомної мембрани (які входять до гіпотетичного комплексу транслокації), а також Pex1 задіяний у механізмі перенесення в мембрану пероксисом фосфоліпідів [20]. З метою з'ясування ролі продукту гена PEX1 в селективній макропексофагії і, зокрема, деградативній інактивації основних ферментів пероксисомного матриксу, отримано колекцію ts-ревертантів мутантного штаму *pex1 H. polymorpha*, а також досліджено зміни активностей алкогольоксидази і каталази після перенесення у середовища з глюкозою та етанолом метанол-індукованих при пермісивній та рестриктивній температурах клітин цих ревертантів. Виконано генетичний аналіз мутацій, які зумовили ts-фенотип отриманих штамів. За допомогою електронно-мікроскопічних досліджень вивчено ультраструктуру клітин ts-ревертантів мутанта *pex1* після індукції біогенезу пероксисом при пермісивній та рестриктивній температурах.

Використано такі штами метилотрофних дріжджів *H. polymorpha*: NCYC 495 (*met6*) – штам дикого типу, 125-2E (*pex1 leu1.1*) та per4-3a (*pex1 leu1.1*) – мутантні по гену PEX1 штами (колекція Dr. R.J.S. Baerends, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands), 125-2E-14Б (*pex1^{ts} leu1.1*), 125-2E-28Б (*pex1^{ts} leu1.1*), 125-2E-66Б (*pex1^{ts} leu1.1*), 125-2E-14Б-3 (*pex1^{ts} leu1.1*), 125-2E-14Б-14 (*pex1^{ts} leu1.1*), 125-2E-28Б-11 (*pex1^{ts} leu1.1*), 125-2E-66Б-5 (*pex1^{ts} leu1.1*), 125-2E-77Б (*leu1.1*) (наша праця).

Клітини вирощували у мінімальному рідкому чи на агаризованому (2,5% агар) середовищі Беркгольдера при 28 чи 37° С. Біотин та тіамін додавали у концентраціях 5 та 400 мкг/л, відповідно. Концентрація факторів росту ауксотрофних мутантів (амінокислот лейцину (leu) та метіоніну (met)) становила 40 мг/л. Джерела вуглецю: метанол, етанол, глюкозу, додавали у концентраціях 0,5-1,0%. Аерування культури проводили на круговій качалці (200 об./хв).

Штам *H. polymorpha* 125-2Е використано як батьківський для отримання колекції ts-ревертантів. Мутації індукували УФ-світлом. Використовували дозу опромінення, яка забезпечувала 10% виживання клітин. Визначали частоту виникнення мутантів після селекції на середовищі з метанолом (0,5%) за наявністю росту при 28° С і відсутністю - при 37° С.

Для генетичного аналізу масової вибірки аскоспор використовували такі середовища: YEPD (дріжджовий екстракт – 1%, пептон – 2%, глюкоза – 2%, агар – 2,5%) – багате поживне середовище для підрощування клітин; МЕ (мальтекстракт – 2%, агар – 2,5%) – для споруляції вегетативних клітин у результаті голодування азотом; агаризоване мінімальне середовище без факторів росту *leu* та *met* з 0,5% метанолом для перевірки мутацій на домінантність чи рецесивність; агаризоване мінімальне середовище без факторів росту з 1% глюкозою для росту диплоїдів; агаризоване мінімальне середовище без факторів росту з 1% глюкозою для виявлення у мейотичних сегрегантів ts та wt (wild type) або ts, pex та wt за наявності супресорної мутації фенотипів; агаризовані мінімальні середовища з 1% глюкозою без факторів росту, лише з метіоніном та лише з лейцином для дослідження зчеплення маркерів ауксотрофності з мутаціями, які зумовили ts та pex фенотипи у досліджуваних штамів. Аскоспорогенну культуру диплоїдів інкубували з 30% етанолом протягом 25 хв з перемішуванням при 37° С для ліквідації диплоїдних клітин, які не проспорулювали, і висівали після відповідних розведень у розрахунку 100-200 колоній на чашку.

Концентрацію клітин визначали нефелометрично при 540 нм з використанням гравіметричного калібрування і виражали в міліграмах сухої маси у 1 мл H₂O чи культуральної рідини (мг мл⁻¹) [14].

Пермеабілізацію клітин проводили після обробки суспензії клітин дигітоніном (2 мг/мл) у 10 мМ калій-фосфатному буфері, рН 7,5. Суміш інкубували протягом 15 хв з періодичним струшуванням на водяній бані при 30° С. Клітини двічі відмивали охолодженим 10 мМ калій-фосфатним буфером, рН 7,5, і осаджували центрифугуванням при 4° С. Перед визначенням активностей ферментів у "тінях" суспензію клітин розводили охолодженою дистильованою водою і зберігали на льоді не більше 1 год. Концентрацію пермеабілізованих клітин визначали фотоколориметричним методом при 540 нм.

Активність алкогольоксидази кількісно визначали за рівнем утворення ферментом перекису водню з метанолу, який виявляється в окисненні о-діанізидину за наявності пероксидази хрону [36]. Активність каталази визначали в реакції H_2O_2 з молібдатом [24]. Після припинення реакції уламки пермеабілізованих клітин у реакційній суміші осаджували центрифугуванням при 1-2 тис. об./хв протягом 15 хв. Питомі активності алкогольоксидази і каталази визначали в міжнародних одиницях активності у перерахунку на міліграм клітин. Якісно активність алкогольоксидази визначали безпосередньо в колоніях дріжджів після нанесення агаризованої (0,3% агар) реакційної суміші для визначення активності алкогольоксидази та пермеабілізувального агента (дигітонін -1 мг/мл) на поверхню чашок за наявністю бурого забарвлення клітин [4].

Для вивчення катаболітної інактивації пероксисомних ферментів клітини, інокульовані у рідкому середовищі YEPD протягом доби при 37° С, інкубували при пермісивній (28° С) та рестриктивній (37° С) температурах у середовищі з 0,5% метанолом протягом 16-18 год для індукції біогенезу пероксисом, осаджували центрифугуванням, двічі відмивали дистильованою водою і переносили у середовища з глюкозою (1%) та етанолом (1%), інкубували при 28 або 37° С за 200 об./хв на качалці. Перед початком інкубації та після певних проміжків часу визначали концентрацію клітин для врахування росту культури. Двічі відмиті дистильованою водою клітини (перед інкубацією та інкубовані протягом певного часу) суспендували в охолодженому екстрагувальному буфері (50 мМ калій-фосфатний буфер, рН 7,5, 10⁻⁵ М ЕДТА, 10⁻⁵ М ФМСФ) до концентрації 50-100 мг/мл і пермеабілізували з отриманням "тіней" для визначення активностей ферментів.

Для електронно-мікроскопічних досліджень двічі відмиті дистильованою водою інтактні клітини фіксували в 1,5% водному розчині $KMnO_4$ протягом 20 хв при кімнатній температурі, постфіксацію проводили 1% розчином OsO_4 у какодилатному буфері протягом 90 хв при 0° C [3]. Фіксовані клітини промивали, збезводнювали в зростаючих концентраціях етанолу, окису пропілену та переносили в епоксидну смолу Ероп-812. Ультратонкі зрізи отримували на ультрамікротомі УМТП-6 і контрастували солями свинцю за Рейнольдсом [31]. Перегляд і фотографування зразків виконували на електронному трансмісійному мікроскопі ПЕМ-100 з прискорювальною напругою 75 кВ.

Цитохімічну реакцію на алкогольоксидазу з використанням CeCl₃ проводили так, як описано раніше [21].

Результати опрацьовували статистично за методикою [1].

Найважливішими механізмами, які контролюють гомеостаз пероксисом у дріжджів, є механізми їхнього біогенезу і селективної деградації. З метою виявлення спільних елементів, задіяних в обидвох процесах, отримано колекцію температурочутливих (ts – temperature <u>s</u>ensitive) ревертантів мутантного по гену PEX1 штаму *H. polymorpha* 125-2E. Цікаво було проаналізувати ці мутантні штами з використанням генетичних, біохімічних та електронно-мікроскопічних методів для виявлення участі білка рех1, асоційованої з цитозольною поверхнею пероксисомної мембрани АТФ-ази, як у біогенезі пероксисом, так і у їхній селективній автофагії, і, зокрема, деградативній інактивації основних ферментів пероксисомного матриксу – алкогольоксидази та каталази.

Температурочутливі (ts) ревертанти мутантного по гену РЕХ1 штаму 125-2Е отримували після опромінення клітин УФ-світлом протягом 40 с (виживання 10%). Селе-

кцію виконували на мінімальному агаризованому середовищі з 0,5% метанолом (*leu*) за наявністю росту при 28° С і відсутністю - при 37° С. Проаналізовано 40 667 колоній ревертантів. Частота спонтанних реверсій штаму 125-2Е при 28° С становила 1,3 10^{-4} ; при 37° С – 3,2 10^{-4} . Частота УФ-індукованих реверсій - 2,3 10^{-3} при 28°С. Отримані tsревертанти вирощували на середовищі з 0,5% метанолом (*leu*) при 28°С і методом відбитків переносили на середовища з глюкозою (0,5%) та етанолом (1%) з лейцином, інкубували протягом 6 год 20 хв при 37° С. Агаризовану суміш, яка охоплювала реакційні компоненти для визначення активності алкогольоксидази та пермеабілізувальний агент – дигітонін, наносили на поверхню інкубаційного середовища для інактивації ферменту. Пошкодження індукованої глюкозою (0,5%) та етанолом (1%) інактивації алкогольоксидази виявлено у восьми ts-ревертантів у результаті якісного визначення активності ферменту безпосередньо у клітинах, інкубованих на чашках.

З метою виявлення poni білка pex1 в індукованій глюкозою та етанолом автофагійній деградативній інактивації основних ферментів пероксисомного матриксу необхідно було попередньо перевірити рівень глюкозної та етанольної катаболітної репресії синтезу даних ферментів, а також здатність до утилізації глюкози й етанолу (непряма ознака транспорту цих сполук) клітинами як вихідного штаму 125-2Е, так і його похідних tsревертантів. У результаті вивчення кінетики росту та індукції синтезу алкогольоксидази під час утилізації клітинами штамів NCYC 495, per4-3a та 125-2E метанолу, етанолу та глюкози (рис.1) виявилося, що у мутантних по гену PEX1 штамів 125-2E та рег4-за глюкозна та етанольна катаболітна репресія синтезу алкогольокидази відбувається нормально, тобто активність ферменту у вирощених на етанолі та глюкозі клітин дорівнює нулю (див. рис.1, Б 5, 6). Рівень активності алкогольоксидази у мутантів 125-2Е та рег4-за під час культивування у середовищі з метанолом виявився значно нижчим, ніж у штаму дикого типу (p<0,05) (див. рис.1, Б 4), можливо, у зв'язку з блокуванням утилізації названої сполуки клітинами цих штамів (див. рис.1, А І). Згідно з отриманими результатами для індукції синтезу алкогольоксидази клітини мутантів з пошкодженим біогенезом пероксисом та похідних штаму 125-2Е вирощували у багатому поживному середовищі УЕРД до високої концентрації біомаси та інкубували протягом 12-18 год у середовищі з 0,5% метанолом. Клітини мутантів рег4-за та 125-2Е за рівнем нагромадження біомаси під час утилізації етанолу та глюкози не відрізнялися від клітин штаму NCYC 495 (p≥0,05) (див. рис.1, А 2, 3).

Кінетику росту вивчали у рідких синтетичних середовищах з метанолом (0,5%), етанолом (1%) та глюкозою (1%) при 28° С клітин штамів NCYC 495, 125-2E, tsревертантів: 125-2E-14Б, 125-2E-28Б, 125-2E-66Б, 125-2E-14Б-3, 125-2E-14Б-14, 125-2E-28Б-11, 125-2E-66Б-5 та ревертанта 125-2E-77Б (рис.2, *a* - *в*). Під час утилізації метанолу при пермісивній температурі концентрація біомаси усіх перевірених ревертантів виявилася значно вищою, ніж штаму 125-2E (p<0,05), однак практично вдвічі нижчою, ніж штаму дикого типу у середині стаціонарної фази росту, крім ревертантів 14Б-3 та 77Б (див. рис.2, *a*). Їхній ріст виявився майже таким, як і штаму дикого типу (p≥0,05). Під час утилізації етанолу та глюкози клітини всіх перевірених мутантних штамів нагромаджували біомасу на рівні клітин штаму дикого типу NCYC 495 (див. рис.2, *б*, *в*), що може бути непрямим доказом непошкодження транспорту молекул цих сполук у клітину (p>0,05). Паралельно досліджували здатність до росту на агаризованих синтетичних

Рис. 1. Кінетика росту (**A**) та індукція синтезу алкогольоксидази (**Б**) під час утилізації клітинами штамів NCYC 495 (**■**), 125-2Е (**▲**) та рег4-3а (Δ) 0,5% метанолу (*1*, *4*), 1% етанолу (*2*, *5*) та 1% глюкози (*3*, *6*) при 28° С (200 об./хв). **А** – за віссю абсцис – час (год); за віссю ординат – концентрація клітин (г/л); **Б** – за віссю абсцис – час (год); за віссю ординат – активність алкогольоксидази ("тіні", Од/мг клітин).

Рис. 2. Кінетика росту в синтетичних середовищах з 0,5% метанолом (*a*), 1,0% етанолом (б), 1% глюкозою (*в*) при 28° С штамів *H. polymorpha* NCYC 495 (■), 125-2E (▲) і ревертантів, похідних *pex1* мутанта: 14Б (●) 28Б (□) 66Б (△) 77Б (○), 14Б-3 (◊), 14Б-14 (х), 28Б-11 (ж), 66Б-5 (♦). За віссю абсцис – час (год); за віссю ординат – біомаса (г/л).

Рис. 3. Зміна активності алкогольоксидази під час інкубації клітин штамів *H. polymorpha* NCYC 495 (■), 125-2E (▲), ts-ревертантів: 14Б (●), 28Б (□), 66Б (△), 14Б-3 (◊) та ревертанта 77Б (○) у середовищах з 1% глюкозою (*1*, *2*, *5*, *6*) та 1% етанолом (*3*, *4*, *7*, *8*) при 28° C (*1*, *3*, *5*, *7*) та 37° C (*2*, *4*, *6*, *8*). Клітини вирощували протягом 24 год до середини експоненційної фази росту у середовищі YEPD та інкубували у середовищі з метанолом (0,5%) при 28° C - A (*1*, *2*, *3*, *4*) і 37° C – Б (*5*, *6*, *7*, *8*) протягом 16-18 год для індукції синтезу алкогольоксидази. Активність алкогольоксидази після індукції біогенезу пероксисом при 28 і 37° С штамів: NCYC 495 – 0,561 і 0,578 Од/мг клітин; 125-2E – 0,685 і 0,931 Од/мг клітин; 14Б – 0,703 і 0,665 Од/мг клітин; 28Б – 0,625 і 0,540 Од/мг клітин; 66Б – 0,666 і 0,741 Од/мг клітин 14Б-3 – 0,490 і 0,579 Од/мг клітин, відповідно, та штаму 77Б – 0,855 Од/мг клітин після індукції синтезу фермента при 28° С, виражали як 100%. За віссю абсцис – час (год); за віссю ординат – зміна активності алкогольоксидази (%).

середовищах з метанолом (0,5%), етанолом (1%) та глюкозою (1%) при рестриктивній температурі (37° С) клітин штамів NCYC 495, 125-2Е і всіх ревертантів. На середовищі з метанолом клітини штамів 125-2Е, 14Б, 2Б, 66Б, 14Б-3, 14Б-14, 28Б-11 та 66Б-5 не росли. Ріст усіх перевірених штамів на середовищах з етанолом та глюкозою не відрізнявся від росту клітин штаму дикого типу при рестриктивній температурі, як і при пермісивній.

Кінетику зміни активності алкогольоксидази досліджували під час інкубації клітин штамів NCYC 495, 125-2E, 125-2E-14Б, 125-2E-28Б, 125-2E-66Б, 125-2E-14Б-3 та 125-2E-77Б у середовищах з глюкозою (1%) та етанолом (1%) при 28 та 37° С (рис.3) Клітини вирощували до середини експоненційної фази росту у середовищі YEPD та інкубували протягом 16-18 год у середовищі з метанолом (0,5%) при 28 і 37° С (рис. 3, А і Б) для індукції синтезу алкогольоксидази. Отримані результати свідчать про пошкодження або блокування індукованої глюкозою та етанолом деградативної інактивації алкогольоксидази у всіх ts-ревертантів та ревертанта 77Б як при пермісивній, так і при рестриктивній температурах після індукції синтезу ферменту і при 28, і при 37° С (відмінність між залишковою активністю алкогольоксидази клітин штаму дикого типу після 6 год інкубації за наявності глюкози та етанолу при обох температурах і клітин усіх перевірених мутантів після індукції у них біогенезу пероксисом як при пермісивній, так і при рестриктивній температурах статистично достовірна: $p \le 0,05$).

Виконано структурний аналіз морфологічної будови клітин штамів NCYC 495, 125-2E, 125-2E-14Б, 125-2E-28Б, 125-2E-66Б, 125-2E-14Б-3 та 125-2E-77Б після індукції біогенезу пероксисом у середовищі з метанолом (0,5%) при 28° С з використанням методів електронної мікроскопії (рис. 4). Клітини мутантного по гену PEX1 штаму 125-2E не мали пероксисом і мали велику зону, кристалоїдну структуру якої виявлено після проведення цитохімічної реакції на алкогольоксидазу з використанням CeCl₃. У клітинах усіх перевірених ts-ревертантів було виявлено і кристалоїд, і пероксисоми, за винятком ревертантів 14Б-3 та 77Б, у клітинах яких формувалися великі за розміром пероксисоми за цих умов. Клітини штамів NCYC 495, 125-2E, 14Б, 28Б, 66Б, 14Б-3 та 77Б інкубували за наявності метанолу (0,5%) також при 37° С. У клітинах ts-ревертантів 14Б, 28Б, 66Б та 14Б-3 пероксисом виявлено не було, як і у мутанта 125-2E (електронно-мікроскопічних даних не наведено). У клітинах ревертанта 77Б при рестриктивній температурі (як і при пермісивній) за наявності метанолу як індуктора утворювалися великі пероксисоми з дещо відмінною від штаму дикого типу морфологічною структурою.

З огляду на відсутність мікротілець після індукції їхнього біогенезу при рестриктивній температурі у всіх ts-ревертантів деградативну інактивацію основних ферментів пероксисомного матриксу досліджували після індукції їхнього синтезу лише при пермісивній температурі. Вивчали кінетику зміни активностей алкогольоксидази і каталази під час інкубації метанольно індукованих при 28° С клітин штамів NCYC 495, 125-2E, рег4за, 125-2E-14Б-14, 125-2E-28Б-11, 125-2E-66Б-5 та 125-2E.77Б у середовищах з глюкозою (1%) та етанолом (1%) при 28° С (рис.5). Як видно з наведених результатів, автофагійна деградація основних пероксисомних ферментів (алкогольоксидази і каталази) у клітинах досліджуваних *рех1* мутантів з блоком біогенезу пероксисом, а також усіх ts-ревертантів штаму 125-2E і ревертанта 77Б блокована або пошкоджена за наявності як глюкози, так і етанолу (p<0,05).

Досліджували локалізацію, характер домінування та зчеплення з маркерами ауксотрофності, мутацій, які зумовили ts фенотип у температурочутливих ревертантів штаму 125-2E, у результаті схрещування штамів 14Б, 28Б, 66Б та 125-2E, ауксотрофних по лейцину, зі штамом дикого типу NCYC 495, ауксотрофним по метіоніну, за схемами, показаними на рис. 6. Виконували генетичний аналіз масової вибірки аскоспор диплоїдів: 125-2E x NCYC 495, 14Б x NCYC 495, 28Б x NCYC 495, 66Б x NCYC 495 (табл. 1 - 4). Попередньо перевірено ріст цих диплоїдів у середовищі з метанолом (*-leu – met*) при 28 та 37°C. Мутації, які зумовлювали рех фенотип у мутанта 125-2E і ts фенотип у реверта

Рис. 4. Електронні мікрофотографії ультратонких зрізів клітин штамів NCYC 495 (1), 125-2E (2, 3), 14Б (4, 5), 28Б (6), 66Б (7), 14Б-3 (8) та 77Б (9) після індукції біогенезу пероксисом при 28° С. Клітини вирощували до середини експоненційної фази росту у середовищі YEPD та інкубували у середовищі з метанолом (0,5%) за умов аерації на качалці (200 об./хв) протягом 16-18 год. На фото 3 та 5 відображено клітини штамів 125-2Е та 14Б, відповідно, після цитохімічної реакції для визначення локалізації молекул білка алкогольоксидази із застосуванням CeCl₃. Позначення: П – пероксисоми; К – кристалоїд.

Рис. 5. Зміна активності алкогольоксидази (1, 2) і каталази (3, 4) клітин штамів *H. polymorpha* NCYC 495 (), 125-2E (), рег4-3а (), 14Б-14 (), 28Б-11 (), 66Б-5 () і 77Б () під час інкубації у середовищах з 1% глюкозою (1, 3) та 1% етанолом (2, 4) при 28° С. Клітини вирощували протягом 24 год до середини експоненційної фази росту у середовищі YEPD та інкубували у середовищі з метанолом (0,5%) при 28° С протягом 18 год при 200 об./хв на качалці. Початкові питомі активності алкогольоксидази і каталази (Од/мг клітин і Од 10³/мг клітин, відповідно) штамів NCYC 495 (0,761 і 0,078), 125-2E (0,253 і 0,059), рег4-3а (0,105 і 0,062), 14Б-14 (0,284 і 0,180), 28Б-11 (0,133 і 0,112), 66Б-5 (0,151 і 0,045) і 77Б (0,670 і 0,042) виражали як 100%. За віссю абсцис – час, год; за віссю ординат – зміна активності алкогольоксидази, %.

		125-2E X NCYC 495										
leu	met^+	pex1	Х	leu ⁺	met	+						
генотип					феноти	1						
батьківси	ькі класи				1							
leu	met ⁺	pex1			pex	leu						
leu ⁺	met ⁻	+			+	met						
leu	met ⁻	+			+	leu ⁻ met						
leu^+	met ⁺	pex1			pex	prot						
рекомбіна	антні:	I			I	I ···						
leu	met ⁺	+			+	leu						
leu	met ⁻	pex1			pex	leu ⁻ met ⁻						
leu ⁺	met ⁺	+			+	prot						
leu ⁺	met ⁻	pex1			pex	met						
		14	Бх NCY	C 495	- 28Б х N(CYC 495						
leu ⁻	met ⁺	nex1 ^{ts}	x	leu ⁺	met	+						
<u>генотип</u>	met	peni	_^	100	феноти	<u> </u>						
батьківся	ькі класи				φεποτιπ	1						
leu	met ⁺	nev 1 ^{ts}			ts	leu						
leu ⁺	met ⁻	+			+	met ⁻						
leu	met ⁻	+			+	leu ⁻ met ⁻						
leu ⁺	met ⁺	nev1 ^{ts}			te	nrot						
nevombiu	aumui.	pexi			15	piot						
leu	met ⁺	+			+	1011						
leu	met ⁻	nev ^{ts}			te	leu met						
leu ⁺	met ⁺	рсл +			+	nrot						
leu ⁺	met ⁻	nev ^{ts}			te	met ⁻						
icu	met	pex	6	ΈΓ - Ν	WC 405	met						
1			0		1C 495							
<u>ieu</u>	met	pex 1 s	Х	leu	met	<u>+</u> +						
генотип					феноти	1						
оатьківся	ькі класи	1 .			4-	1						
leu ⁺	met	pexis			ts	ieu						
leu	met	+ +			+	met						
leu	met +	+ +			+	leu met						
leu	met	pex1 s			ts	prot						
leu	met	pex1 +			pex	prot						
leu	met +	+ S			+	leu met						
leu	met	pex1 +			pex	leu						
leu .	met .	+ s			+	met						
рекомоїна	антні:					1 -						
leu	met	+ +			+	leu						
leu	met	pex1 s			ts	met						
leu +	met	+ s			+	leu						
leu	met	pex +			pex	met						
leu +	met	pex1 s			ts	leu met						
leu	met	+ +			+	prot						
leu	met	pex1 +			pex	leu met						
leu	met	+ s			+	prot						

Рис. 6. Схеми схрещувань штамів дріжджів *H. polymorpha*. Позначення: рех фенотип – блок утилізації метанолу; ts фенотип – здатність штаму рости на метанолі лише при пермісивній температурі; + фенотип – нормальна здатність утилізувати метанол; s– супресорна мутація; prot – прототрофність штаму.

нтів 14Б, 28Б і 66Б, виявилися рецесивними, оскільки всі перевірені диплоїди були здатними до утилізації метанолу як при пермісивній, так і при рестриктивній температурах. Суспензію спорулювальної культури диплоїдних клітин (0,2 г/л) інкубували з 30% метанолом протягом 25 хв при 37° С. Після відповідних розведень аскоспори у розрахунку 100-200 колоній на чашку висівали на середовище з глюкозою (+leu +met), підрощували і методом відбитків переносили на різні селективні середовища: з 0,5% метанолом (+leu +met) для виявлення у мейотичних сегрегантів ts, pex фенотипів чи фенотипу дикого типу або 1% з глюкозою без факторів росту, лише з метіоніном та лише з лейцином для дослідження зчеплення маркерів ауксотрофності з мутаціями, які зумовили ts чи рех фенотипи у досліджуваних штамів. У результаті аналізу масової вибірки аскоспор диплоїдів 14Б х NCYC 495 та 28Б х NCYC 495 на середовищі з метанолом колоній з рех фенотипом виявлено не було (див. табл. 2, 3). Це може бути свідченням того, що мутації, які зумовили ts фенотип у темпераурочутливих ревертантів 14Б і 28Б, є точковими і містяться або всередині локуса PEX1, або з ним зчеплені. За аналогічних умов серед мейотичних сегрегантів диплоїда 66Б x NCYC 495 поряд з колоніями, що мали ts фенотип та фенотип штаму дикого типу, було виявлено колонії з рех фенотипом (див. табл. 4). Очевидно, мутація, що зумовила ts фенотип у ревертанта 66Б, є супресорною, тобто не локалізована і не зчеплена з геном РЕХ1. Розщеплення по маркерах ауксотрофності в отриманих сегрегантів свідчить, що локус РЕХ1 зчеплений з локусом МЕТ6.

Таблиця 1

Генетичний аналіз масової	вибірки аскоспор диплоїда
125-2E (<i>pex1 leu1.1</i>)	x NCYC 495 (met6).

Загальна	Ріст на сере- Серед сегрегантів виявлено											
кількість колоній сегрегантів, які виросли на середо-	довищі з ме- танолом (+ <i>leu</i> + <i>met</i>) при 28° і 37° С, %		Прототроф- них, %		<i>Leu</i> ⁻ ауксот- рофних, %		<i>Met</i> ⁻ ауксот- рофних, %		<i>Leu⁻ met⁻</i> аук- сотроф- них, %			
вищі з 1%		фенотип										
глюкозою (+ <i>leu</i> + <i>met</i>)	+	pex	+	pex	+	pex	+	pex	+	pex		
144	65,97	34,03	5,26	38,78	5,26	40,82	44,21	12,24	45,26	8,16		

Примітка. + фенотип – клітини, які росли на середовищі з 0,5% метанолом (+*leu* +*met*) і при 28° С, і при 37° С. Рех фенотип – клітини з блокуванням утилізації метанолу як при пермісивній, так і при рестриктивній температурах.

Отже, виявлено пошкодження або блокування індукованої глюкозою та етанолом селективної деградативної інактивації основних ферментів пероксисомного матриксу в клітинах досліджених *pex1* мутантів та всіх похідних штаму 125-2Е ts-ревертантів і ревертанта 77Б після індукції у них біогенезу пероксисом як при 28, так і при 37° С. Можливо, що в результаті мутацій, які зумовили ts фенотип або + фенотип у похідних штаму 125-2Е, утворення білка pex1 за умов індукції біогенезу пероксисом при пермісивній температурі є дещо відмінним на якомусь етапі реалізації генетичної інформації від його формування у клітинах штаму дикого типу. Про це свідчить факт пошкодження інакти-

вації алкогольоксидази за наявності глюкози та етанолу в усіх ts-ревертантів після індукції синтезу ферменту при пермісивній температурі, незважаючи на те, що в їхніх клітинах формуються пероксисоми й алкогольоксидаза локалізується всередині мікротілець, як наприклад у мутантів 14Б-3 і 77Б. Про неповне відновлення функції асоційованої з цитозольною поверхнею пероксисомної мембрани АТФ-ази, кодованої геном РЕХ1 і задіяної в імпорті матриксних білків та фосфоліпідів у мембрану мікротілець, також можна судити за наявністю кристалоїдної зони, яка головно складається з молекул білка алкогольоксидази, поряд з пероксисомами у клітинах температурочутливих ревертантів, інкубованих за наявності метанолу при 28° С (наприклад, у 14Б, 28Б, 66Б). Можливо, що лише нормально сформований білок рех1 може бути повноцінним елементом-посередником сигнального шляху ініціації селективної макроавтофагії п ероксисом, якщо припустити, Таблиця 2

Генетичний аналіз масової вибірки аскоспор диплоїда 14Б (*pex1*^{ts} *leu1.1*) х NCYC 495 (*met6*).

Загальна	Ріст на	Ріст на сере- Серед сегрегантів виявлено											
кількість	довищі	з мета-											
колоній сег-	нолом	ı (+leu	Πnomomod		Lautour		Mat autoomno		I and most on the				
регантів, які	+m	+met)				Leu aykcol-		Met aykcorpo-		Leu mei ayk-			
виросли на	при 28°	i 37° C,	НИХ, 70		рофних, 76		фни	X, 70	согрофних, 76				
середовищі	0/	6											
з 1% глюко-		фенотип											
зою (+ <i>leu</i>		ta	1	ta		ta		ta		ta			
+met)	Ŧ	ts	Ŧ	ts	Ŧ	ts	Ŧ	ts	Ŧ	ιs			
829	55,61	44,39	7,38	37,23	9,33	37,77	41,21	12,22	42,08	10,87			

Примітка. + фенотип – клітини, які росли на середовищі з 0,5% метанолом (+*leu* +*met*) і при 28° C, і при 37° C. Тѕ фенотип – клітини з блокуванням утилізації метанолу при 37° C і відсутністю цього блокування при 28° C.

Таблиця 3

Генетичний аналіз масової вибірки аскоспор диплоїда 28Б (*pex1*^{ts} *leu1.1*) х NCYC 495 (*met6*).

Загальна	Ріст на	середо-		Серед сегрегантів виявлено								
кількість	вищі з і	метано-										
колоній сег-	лом	(+leu	U nomorpodi		Lautormoor		Matan		I and mot out			
регантів, які	+met)				Leu aykcol-		met aykcor-		Leu mei ayk-			
виросли на	при 28°	три 28° і 37° С,		них, 70		роф-них, 70		рофних, 70		сотрофних, 76		
середовищі	9	%										
з 1% глюко-	фенотип											
зою (+ <i>leu</i>		4.7	1	4.0	1	4.0	1	4.0	1	4.0		
+met)	Ŧ	ts	+	ts	+	ts	+	ts	+	ts		
117	82,05	17,95	7,29	38,09	8,33	33,33	44,79	9,52	39,58	19,08		

Примітка. + фенотип – клітини, які росли на середовищі з 0,5% метанолом (+*leu* +*met*) і при 28° С, і при 37° С. Тѕ фенотип – клітини з блокуванням утилізації метанолу при 37° С і відсутністю цього блокування при 28° С.

Таблиця 4

Загальна	Ріст	на сер	едо-				Серед сегрегантів виявлено										
кількість	вищ	і з мет	ано-														
колоній		лом		Прототрофних, %			<i>Leu</i> ⁻ ауксотрофних, %			<i>Met</i> ауксотрофних, %			<i>Leu⁻ met⁻</i> аук- сотрофних, %				
сегреган-	(+)	leu +m	et)														
тів, які	при	28° i 3	7° C,														
виросли		%															
на сере-								фенотип									
довищі з																	
1% глю-																	
козою	+	ts	pex	+	ts	pex	+	ts	pex	+	ts	pex	+	ts	pex		
(+leu																	
+met)																	
141	53.90	21,28	24,82	7.89	53.33	37,14	1.32	46,67	37,14	48,68	0	11.43	42,11	0	14.29		

Генетичний аналіз масової вибірки аскоспор диплоїда 66Б (*pex1*^{ts} *leu1.1*) х NCYC 495 (*met6*).

Примітка. + фенотип – клітини, які росли на середовищі з 0,5% метанолом (+*leu* +*met*) і при 28° С, і при 37° С. Тѕ фенотип – клітини з блокуванням утилізації метанолу при 37° С і відсутністю цього блокування при 28° С. Рех фенотип – клітини з блокуванням утилізації метанолу як при пермісивній, так і при рестриктивній температурах.

що саме мембрана органел виконує специфічну сенсорну функцію у запуску чи елонгації деградації завдяки локалізації у ній або детермінант упізнавання сигналів або ферментів, які каталізують зміни концентрацій деяких внутрішньоклітинних метаболітів, учасників сигнальних шляхів, наприклад АТФ [44, 45, 46, 47, 48, 49]. Відсутність пошкодження етанольної та глюкозної катаболітної репресії синтезу ферментів метаболізму метанолу, а також відсутність блоку утилізації етанолу і глюкози (непрямий доказ номального транспорту цих сполук) у клітин мутантів 125-2Е, рег4-3а, 14Б, 28Б, 66Б, 14Б-3, 14Б-14, 28Б-11, 66Б-5 та 77Б свідчать про роль саме білка рех1 у пошкодженні селективної автофагійної деградації алкогольоксидази і каталази, індукованої етанолом та глюкозою. Детальне розшифрування природи мутацій, які зумовили ts фенотип та + фенотип у ревертантів штаму 125-2Е із застосуванням методів молекулярної біології могло б привести до ліпшого розуміння функціонування білка рех1 як під час формування пероксисом, так і під час деградації в плані взаємодії з іншими білками пероксисомної мембрани, участі в механізмі транслокації та сигнальному шляху індукції макропексофагії. Можливість розділення процесів утворення та елімінації мікротілець зміною температурних умов у клітинах отриманих і певним чином генетично модифікованих кондиційних мутантів могла б стати вагомим внеском у з'ясуванні ролі АТФ-ази, кодованої геном РЕХ1, у біогенезі й автофагійній деградації пероксисом при використанні методів конфокальної лазерної скануючої мікроскопії і флуоресцентної мікроскопії з відображенням живої клітини.

Робота є частиною міжнародного проекту INTAS 991-0788 "Principles of peroxisome biogenesis and degradation in yeasts". Автори вдячні доктору біол. наук професору А.А.Сибірному за цінні рекомендації і зауваження щодо виконання експериментальних досліджень.

- 1. Деркач М.П., Гумецький Р.Я., Чабан М.С. Курс варіаційної статистики. К.: Вища школа, 1977. 208 с.
- 2. Подгорский В.С. Физиология и метаболизм метанол-усваивающих дрожжей. К.: Наукова думка, 1982. С.12-42.
- Сибирный А.А., Витвицкая О.П., Кулачковский А.Р., Убийвовк В.М. Селекция и свойства мутантов дрожжей Hansenula polymorpha, дефектных по алкогольоксидазе // Микробиология. 1990. Т.58. С. 751-759.
- 4. Сибирный А.А., Титоренко В.И. Метод качественного определения алкогольоксидазы и каталазы в дрожжевых колониях // Укр. биохим. журн. 1986. Т. 58, №5. С. 65-68.
- Aplin A., Jasionowski T., Tuttle D.L. at al. Cytosceletal elements are required for the formation and maturation of autophagic vacuoles // J. Cell Physiol. 1992. Vol. 152. P. 458-466.
- 6. *Baerends R.J.S., Faber K.N., Kiel J.A.K.W. et al.* Sorting and function of peroxisomal membrane proteins // FEMS Microbiol. Rew. 2000. Vol. 24. P. 291-301.
- Braverman N., Steel G., Obie C. et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata // Nat. Genet. 1997. Vol.15. P. 369-376.
- 8. *Brocard C., Lametschwandtner G., Koudelka R., Hartig A.* Pex14p is a member of the protein linkage map of Pex5p // EMBO J. 1997. Vol. 16. P. 5491-5500.
- 9. *Dodt G., Gould S.J.* Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor // J. Cell Biol. 1996. Vol. 135. P. 1763-1774.
- 10. *Elgersma Y., Elgersma-Hooisma M., Wenzel T. et al.* A mobile PTS2 receptor for peroxisomal protein import in *Pichia pastoris* // J. Cell Biol. 1998. Vol. 140. P. 807-820.
- 11. *Elgersma Y., Tabak H.F.* Proteins involved in peroxisome biogenesis and functioning // Biochim. Biophys. Acta. 1996. Vol. 1286. P. 269-283.
- 12. Elgersma Y., Vos A., Berg van den M., van Roermund C.W.T. et al. Analysis of the carboxy-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae // J. Biol. Chem. 1996. V. 271. P. 26375-26382.
- 13. *Erdmann G., Blobel B.* Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor // J. Cell Biol. 1996. Vol. 135. P. 111-121.
- Gonchar M.V., Maidan M.M., Moroz O.M. et al. Microbial O₂- and H₂O₂-electrode sensors for alcohol assays based on the use of permeabilized mutant yeast cells as the sensitive bioelements // Biosensors & Bioelectronics. 1998. Vol. 13. P. 945-952.
- 15. *Gould S.J., Kalish J.E., Morrell J.C. et al.* An SH3 protein in the peroxisome membrane is a docking factor for the PTS1 receptor // J. Cell Biol. 1996. Vol. 135. P. 85-95.
- 16. *Gould S.J., Keller G., Subramani S.* Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase // J. Cell. Biol. 1987. Vol. 105. P. 2923-2931.
- Harder W., Trotsenko Y.A., Bystrykh L.V., Egli T. Metabolic regulation in methylotrophic yeasts // Proc. of the 5-th International Symp. Microbial Growth on C₁ Compounds / H.W. van Verseveld and J. A. Duine, eds. - Dordrecht: Martinus Nijhoff Publishers. 1987. P. 139-149.
- 18. *Hettema E.H., Distel B., Tabak H.F.* Import of proteins into peroxisomes // Biochim. Biophys. Acta. 1999. Vol. 1451. P. 17-34.
- 19. *Higgins C.F.* ABC-transporters: from microorganisms to man // Annu. Rev. Cell. Biol. 1992. Vol. 8. P. 67-113.

- Kiel J.A.K.W., Hilbrands R.E., van der Klei I.J. et al. Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact // Yeast. 1999. Vol. 15. P. 1059-1078.
- 21. *Kulachkovsky A.R., Moroz O.M., Salyha Y.T.* Ultrastructure of temperature sensitive revertants of Hansenula polymorpha mutant pex1 defective in peroxisome biogenesis // Proc. the 15 International Congress on Electron Microscopy. Durban (South Africa) 1-6, september, 2002. P.47-48.
- 22. *Kunau W.-H., Erdman R.* Peroxisome biogenesis: back to the endoplasmic reticulum? // Curr. Biol. 1998. Vol. 8. P. 299-302.
- 23. *Lazarow P.B., Fujiki Y.* Biogenesis of peroxisomes // Annu. Rev. Cell. Biol. 1985. Vol. 1. P. 489-530.
- Luck H. Catalase // Methods in enzymatic analysis / H.-U. Bergmeyer ed. London: Academic Press, 1963. P. 885-894.
- 25. *McCollum D., Monosov E., Subramani S.* The *pas8* mutant of *Pichia pastoris* exibits the peroxisomal protein import deficiencies of Zellweger syndrome cells. The *PAS8* protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the *TRP* protein family // J. Cell Biol. 1993. Vol. 121. P. 761-774.
- Nazarko V., Pochapinskyi O., Nazarko T. et al. Peroxisome homeostasis in the methylotrophic yeast Hansenula polymorpha // Proc. of the 21-st International Specialized Symposium on Yeasts (ISSY 2001) "Biochemistry, Genetics, Biotechnology and Ecology of Nonconventional Yeasts (NCY)". Lviv (Ukraine). 21-25 August, 2001. P. 142.
- Osumi T., Tsukamoto T., Hata S. et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting // Biochem. Biophys. Res. Commun. 1991. Vol. 181. P. 947-954.
- 28. *Purdue P.E., Lazarow P.B.* Peroxisomal biogenesis: multiple pathways of protein import // J. Biol. Chem. 1994. V. 269. P. 30065-30068.
- 29. *Purdue P.E., Yang X., Lazarow P.B.* Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway // J. Cell Biol. 1998. Vol. 143. P. 1859-1869.
- Rachubinski R.A., Subramani S. How proteins penetrate peroxisomes // Cell. 1995. Vol. 83. P. 525-528.
- 31. *Reynolds E.S.* The use of lead citrate at high pH as an electronopaque stain in electron microscopy // J. Cell Biol. 1963. Vol. 17. P. 208-212.
- 32. Sahm H., Roggenkamp R., Wagner F. Microbodies in methanol-grown Candida boidinii // J. Gen. Microbiol. 1975. Vol. 88. P. 218-222.
- 33. *Sakai Y., Saiganji A., Yurimoto H. et al.* The absence of Pmp47, a putative yeast peroxisomal transporter, causes a defect in transport and folding of a specific matrix enzyme // J. Cell. Biol. 1996. Vol. 134. P.37-51.
- 34. Saurin A.J., Borden K.L.B., Boddy M.N., Freemont P.S. Does this have a familiar RING? // Trends Biochem. Sci. 1996. Vol. 21. P. 208-214.
- 35. *Schliebs W., Saidowsky J., Agianian B. et al.* Recombinant human peroxisomal targeting signal receptor PEX5: structural basis for interaction of PEX5 with PEX14 // J. Biol. Chem. 1999. Vol. 274. P. 5666-5673.
- 36. Sibirny A.A., Titorenko V.I., Efremov B.D., Tolstorukov I.I. Multiplicity of mechanisms of carbon catabolite repression, involved in the synthesis of alcohol oxidase in the methylotrophic yeast *Pichia pinus* // Yeast. 1987. Vol.3, №1. P. 233-241.

- Smith J.J., Szilard R.K., Marell M., Rachubinski R.A. The peroxin Pex17p of the yeast Yarrowia lipolytica is associated peripherally with the peroxisomal membrane and is required for the import of a subset of matrix proteins // Mol. Cell Biol. 1997. Vol. 17. P. 2511-2520.
- Subramani S. Protein import into peroxisomes and biogenesis of the organelle // Annu. Rev. Cell. Biol. 1993. Vol. 9. P. 445-478.
- Subramani S. Convergence of model systems for peroxisome biogenesis. Curr. Opin. Cell Biol. 1996. Vol. 8. P. 513-518.
- 40. Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover and movement // Physiol. Rew. 1998. Vol.78, №1. P. 171-188.
- 41. Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover 7nd movement // Physiol. Rew. 1998. Vol.78, №1. P. 171-188.
- Swinkels B.W., Gould S.J., Bodnar A.G. et al. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat-3-ketoacyl-CoA thiolase // EMBO Journal. 1991. Vol. 10. P. 3255-3262.
- Tany Y. Microbiology and biochemistry of methylotrophic yeast // Methylotrophs: microbiology, biochemistry and genetics / C.T. Hou ed. Bona Roka: CRC Press, 1984. P.55-85.
- Titorenko V.I., Rachubinski R.A. The endoplasmic reticulum plays an essential role in peroxisome biogenesis // Trends Biochem. Sci. 1998. Vol. 23. P. 231-233.
- Tuttle D.L., Lewin A.S., Dunn W.A., Jr. Selective autophagy of peroxisomes in methylotrophic yeasts //Eur. J. Ceii Biol. 1993. Vol. 60. P. 283-290.
- Van der Klei I.J., Harder W., Veenhuis M. Selective inactivation of alcohol oxidase in two peroxisome-deficient mutants of the yeast *Hansenula polymorpha* // Yeast. 1991. Vol. 7. P. 813-821.
- 47. Van der Klei I.J., Hilbrands R., Kiel J.A.K.W. et al. Yhe ubiquitin-conjugating enzyme Pex4p Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery // The EMBO Journal. 1998. Vol.17, №3. P. 3608-3618.
- 48. *Veenhuis M., van Dijken J.P., Harder W.* The significance of peroxisomes in the metabolism of one carbon compounds in yeast // Adv. Microb. Physiol. 1983. Vol. 24. P.1-82.
- Veenhuis H., Harder W. Metabolic significance and biogenesis of microbodies in yeasts // Peroxisomes in biology and medicine / H.D. Fahimi, H. Sies eds. Berlin - Heidelberg: Springer - Verlag, 1987. P. 436-458.
- 50. *Veenhuis M., Harder W.* Microbodies // The yeasts. London: Academic Press, 1991.Vol. 4. P. 601-653.
- Veenhuis M., Harder W., van Dijken J.P., Mayer F. Substructure of crystalline peroxisomes in methanol-grown Hansenula polymorpha; evidence for an in vitro crystal of alcohol oxidase // Mol. Cell. Biol. 1981. Vol. 1: P. 949-957.
- 52. Waterham H.R., Cregg J.M. Peroxisome biogenesis // BioEssays.1997. Vol. 19. P. 57-66.
- 53. Waterham H.R., Russel K.A., Vries Y. de, Cregg J.M. Peroxisomal targeting, import and assembly of alcohol oxidase in *Pichia pastoris* // J. Cell. Biol. 1997. V. 139. P. 1419-1431.
- 54. Waterham H.R., Titorenko V.I., Haima P. et al The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals // J. Cell Biol. 1994. Vol. 127. P. 737-749.

THE ROLE OF CODED BY PEX1 GENE ATP-ase, INVOLVED IN PEROXISOME BIOGENESIS IN METHYLOTROPHIC YEASTS *HANSENULA POLYMORPHA*, IN SELECTIVE AUTOPHAGIC DEGRADATIVE INACTIVATION OF MAIN PEROXISOME MATRIX ENZYMES

O. Moroz, S. Gudz, A. Kulachkovsky, I. Rusyn, T. Peretiatko, B. Palianytsia, I. Kut'ko

Ivan Franko National University of L'viv Hrushevskogo str., 4, L'viv, 79005, Ukraine, e-mail: biolog@franko.lviv.ua

It was revealed the defect in glucose and ethanol induced autophagic degradative inactivation of alcohol oxidase and catalase at 28° C and 37° C in cells of *Hansenula polymorpha pex1* mutants with peroxisome biogenesis block and temperature-sensitive revertants, derivatives from 125-2E (*pex1 leu1.1*) strain, after peroxisome biogenesis induction both at permissive (28° C) and restrictive (37° C) temperatures. By means of electron microscopy investigations it was founded absence of peroxisomes and presence of alcohol oxidase crystalloid in cells of strain 125-2E with mutation in PEX1 gene, availability of peroxisomes together with crystalloid in cells of all ts-revertants, except revertants 14B-3 and 77B, and presence of only peroxisomes in cells of mutants 14B-3 and 77B after peroxisome biogenesis induction at 28° C. In cells of all investigated ts-revertants after incubation in medium with methanol at 37° C, so as in 125-2E mutant, peroxisomes were not revealed.

Key words: methylotrophic yeasts, peroxisome biogenesis and degradation, inactivation of peroxisome enzymes, alcohol oxidase, catalase.

Стаття надійшла до редколегії 30.12.2002 Прийнята до друку 28.01.2003