УДК 528.87+550. 837.3

 $C.\Pi$. Левашов¹, H.A. Якимчук¹, И.H. Корчагин²

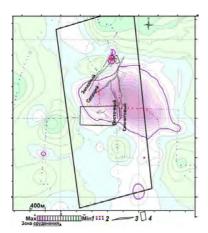
ПРИМЕНЕНИЕ ГЕОЭЛЕКТРИЧЕСКИХ И ДИСТАНЦИОННЫХ МЕТОДОВ ДЛЯ ПОИСКОВ РУДНЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Анализируются результаты экспериментальной апробации наземных геоэлектрических методов становления короткоимпульсного электромагнитного поля (СКИП), вертикального электрорезонансного зондирования (ВЭРЗ), а также технологии обработки и интерпретации спутниковых данных с целью "прямых" поисков рудных полезных ископаемых и водоносных коллекторов.

Ключевые слова: уран; золото; месторождение; спутниковые данные; прямые поиски; обработка; геоэлектрические методы.

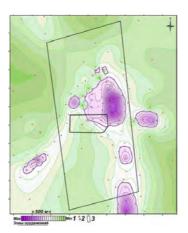
Введение. Технология геофизических исследований (в том числе и "прямых" поисков и разведки различных рудных полезных ископаемых), включающая геоэлектрические методы становления короткоимпульсного поля (СКИП) и вертикального электрорезонансного зондирования (ВЭРЗ) [Левашов и др., 2003, 2006] дает возможность оперативно получать новую информацию о перспективах нефтегазоносности, рудоносности и водоносности изучаемых площадей. Технология СКИП-ВЭРЗ многократно применялись для поисков и картирования водонасыщенных горизонтов [Левашов и др., 2010б]. Полевые исследования позволили экспериментально установить некоторые базовые принципы, дальнейшее практическое использование которых предоставляет новые возможности как для повышения эффективности и разрешающей способности методов СКИП и ВЭРЗ, так и для расширения круга задач, которые могут оперативно и эффективно решаться этими методами. В частности, полевыми исследованиями [Левашов и др., 2010а, 2010б] показано, что методы СКИП и ВЭРЗ могут найти применение для "прямых" поисков и разведки рудных полезных ископаемых.

В 2010 г. началась апробация нового метода обработки данных дистанционного зондирования Земли (ДЗЗ) на известных месторождениях и перспективных на нефть и газ площадях, а также рудных объектах [Левашов и др., 2010в]. В докладе приводятся примеры апробации методов СКИП и ВЭРЗ, а также новой технологии обработки данных ДЗЗ для обнаружения и картирования объектов и зон с рудной минерализацией.

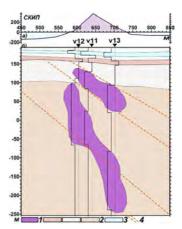

Украинский кристаллический щит (Кировоградская область). Впервые методы СКИП и ВЭРЗ применялись для решения рудных поисковых задач в 2004 г. при проведении полевых работ на месторождении золота в коренных породах [Левашов и др., 2005]. Результаты работ показали, что а) методом СКИП уверенно картируются по площади аномально поляризованные участки типа "рудное тело"; б) метод ВЭРЗ позволяет определять глубину и прослеживать по площади положение границы между осадочными и кристаллическими породами; в) зоны повышенной поляризации

(оруденения) в породах фундамента также могут картироваться методом ВЭРЗ; г) технология СКИП-ВЭРЗ может использоваться для поисков и разведки объектов с рудной минерализацией.

В 2010 на этом месторождении был также апробирован и новый метод обработки данных ДЗЗ. Основная задача работ — оценка возможности применения метода для оперативного выделения и картирования зон золоторудной минерализации. Полученные результаты, в целом, показали принципиальную возможность применения новой технологии обработки спутниковых данных для обнаружения и картирования участков золоторудного оруденения.


Обнаружение и картирование зон уранового оруденения (УКЩ, Украина). В 2009 г. на отдельном участке Новоконстантиновской зоны была опробована модификация разломов технологии СКИП-ВЭРЗ, предназначенная для обнаружения и картирования зон уранового оруденения по площади и определения глубин залегания и мощностей отдельных рудных тел в разрезе [Левашов и др., 2010в]. Результаты принципиальную экспериментов показали возможность использования методов СКИП и ВЭРЗ для "прямых" поисков урановых руд: площадная съемка методом СКИП позволяет картировать геоэлектрические аномальные зоны типа "зона уранового оруденения" (рис. 1), а зондирование ВЭРЗ дает возможность в пределах закартированных аномалий определять глубины залегания и мощности аномально поляризованных пластов (АПП) типа "урановая залежь" (рис. 3).

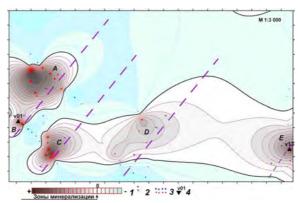
В 2010 г. спутниковые данные участка проведения наземных работ также были обработаны специальной методике. Выделенные закартированные по результатам работ аномалии типа "зона уранового оруденения" (рис. 2) в целом удовлетворительно коррелируются контурами самого месторождения, так и с контурами аномальной зоны, закартированной наземной съемкой методом СКИП (рис. 1). Результаты апробации свидетельствуют, что крупные и средние скопления урановых руд, а также небольшие по площади зоны уранового оруденения могут быть обнаружены закартированы специальной обработкой и дешифрированием данных ДЗЗ.


Рис. 1. Карта аномалий типа "зона уранового оруденения" на площади работ.

1 – шкала интенсивности поля СКИП; 2 –точки измерений поля СКИП; 3 – зоны разломов в фундаменте; 4 – контуры участка.

Рис. 2. Карта аномалий типа "зона уранового оруденения" (по результатам обработки данных ДЗЗ).

I — шкала интенсивности аномального отклика; 2 — точки определения отклика; 3 — контуры участка.


Рис. 3. Вертикальный разрез аномальной зоны типа "урановое оруденение", профиль 1.

I – зоны АПП типа "урановое оруденение";
2 – гранитоиды;
3 – обводненный горизонт;
4 – тектонические нарушения.

Месторождение в осадочных породах. По результатам обработки данных ДЗЗ в пределах месторождения (рудника) закартирована аномалия "зона золоторудной минерализации" типа [Левашов и др., 2010в]. В юго-западной части площади обнаружена и прослежена разломная зона северо-западного простирания. Обычно, зоны разломов являются участками гидротермальнометасоматической проработки пород, в которых формируются рудные месторождения различного типа. В пределах разломной зоны выявлена еще одна небольшая аномалия типа "зона золоторудного оруденения", что может свидетельствовать о гидротермально-метасома-тическом образовании этого рудного объекта. С этого участка может осуществляться вынос рудных минералов в зону осадочного месторождения. В пределах аномалий специальным методом сканирования данных ДЗЗ выполнена оценка глубин залегания рудных тел: v01 – 5-12 м; v02 –17-80 м.

Месторождение гидротермально-метасо-матического типа в коренных породах. обследованной площади выявлено закартировано пять аномалий типа золоторудной минерализации" [Левашов и др., 2010в]. Все они расположены в одной зоне северовосточного простирания. Специальное сканирование спутниковых данных в семи пунктах позволило получить следующие оценки глубин залегания рудоносных тел: v01 - 2-27 м, 63-86 м, 112-133 м; v02 – 3-25 м, 63-84 м, 106-134 м; v03 – 3-26 м, 51-73 м, 100-125 м; v04-6-36 м, 58-80 м, 123-140 м; v05 -15-25 м, 45-50 м, 95-106 м; v06 -20-31 м, 56-60 м, 106-115 м; v07 – 6-25 м, 45-65 м, 108-118 м.

Обнаружение и картирование участков с платинорудной минерализацией. Съемкой методом СКИП в районе "спутниковой" аномалии обследован участок размером $1.0\times0.5~{\rm km}^2$ (рис. 4).

Рис. 4. Карта аномалий типа "зона платинорудного оруденения" на участке "АР" (по данным съемки СКИП).

1 — шкала интенсивности поля СКИП; 2 — направления падения ультрабазитов; 3 — точки съемки СКИП; 4 — пункты ВЭРЗ

В его пределах выделено пять отдельных зон типа "зона платинорудного оруденения". На участке работ установлены выходы на поверхность пород ультрабазитового состава, в которых, обычно, и фиксируются зоны платинорудной минерализации. Зондирование ВЭРЗ было проведено на 2 станциях в диапазоне глубин 0-500 м. АПП типа "платинорудный пласт", "золоторудный пласт" и "мета-морфические породы" были обнаружены в разрезе зондированием. Максимальная суммарная мощность АПП типа

"платинорудный пласт" (110 м) зафиксирована на станции ВЭРЗ V13 (рис. 4). Зоны максимальной мощности АППр являются наиболее перспективными для бурения скважин .

Выводы. Показана принципиальная возможность применения технологии СКИП-ВЭРЗ для оперативных поисков и картирования рудных объектов различной минерализации.

Новый метод обработки и дешифрирования данных ДЗЗ дает возможность оперативно выявлять и картировать аномалии типа "залежь" (АТЗ) – "водоносный горизонт", "золоторудная залежь", "залежь с урановой минерализацией", и Специальная методика сканирования спутниковых данных позволяет также оценивать глубины залегания и мощности отдельных АПП типа "водоносный пласт", "пласт с золоторудной минерализацией", "пласт с урановой минерализацией", и т.д. Полученные результаты указывают на целесообразность включения "спутникового" метода в технологию "прямых" поисков и разведки месторождений рудных и горючих полезных ископаемых мобильными методами СКИП и ВЭРЗ. Использование "спутниковой" компоненты технологии на рекогносцировочных этапах работ и наземной геоэлектрической - на детализацинных представляет широкие возможности для оптимизации поискового процесса.

В целом, включение мобильных технологий "прямых" поисков скоплений УВ, воды и рудных полезных ископаемых (в том числе и технологии СКИП-ВЭРЗ, "спутникового метода") в традиционный комплекс поисковых геологогеофизических методов будет способствовать как минимизации финансовых затрат на решение конкретных поисково-разведочных задач, так и

сокращению времени на их практическую реализацию.

Литература

- Левашов С.П., Якимчук Н.А., Корчагин И.Н. Электрорезонансное зондирование и его использование для решения задач экологии и инженерной геологии // Геологический журнал. 2003. № 4. С. 24-28.
- Левашов С.П., Якимчук Н.А., Корчагин И.Н., Пищаный Ю.М. Возможности геоэлектрических методов при поисках и разведке объектов с рудной минерализацией // Научный вестник НГУ. 2005, № 9. С. 69-72.
- Левашов С.П., Якимчук Н.А., Корчагин И.Н., Дегтярь Р.В., Божежа Д.Н. Обнаружение и картирование геоэлектрическими методами зон повышенного газонасыщения на угольных шахтах // Геофизика. 2006. № 2. С. 58-63.
- Левашов С.П., Якимчук Н.А., Корчагин И.Н., Разин Д.В., Юзленко А.Т. О возможности картирования геоэлектрическими методами скоплений углеводородов в кристаллических породах // Геоинформатика. 2010а. № 1. С. 22-32.
- Левашов С.П., Якимчук Н.А., Корчагин И.Н., Зейгельман М.С., Пищаный Ю.М. Поиски и картирование водоносных горизонтов различной минерализации геоэлектрическими методами // Геоинформатика. 2010б. № 2. С. 19-25.
- Левашов С.П., Якимчук Н.А., Корчагин И.Н., Божежа Д.Н. Оперативное решение задач оценки перспектив рудоносности лицензионных участков и территорий в районах действующих промыслов и рудных месторождений // Геоинформатика. 2010в. N 4. С. 23-30.

ЗАСТОСУВАННЯ ГЕОЕЛЕКТРИЧНИХ ТА ДИСТАНЦІЙНИХ МЕТОДІВ ДЛЯ ПОШУКІВ РУДНИХ КОРИСНИХ КОПАЛИН

С.П. Левашов, М.А. Якимчук, І.М. Корчагін

Аналізуються результати експериментальної апробації геоелектричних методів становлення короткоімпульсного електромагнітного поля (СКІП), вертикального електрорезонансного зондування (ВЕРЗ), а також технології обробки та інтерпретації супутникових даних з метою "прямих" пошуків рудних корисних копалин і водоносних колекторів.

Ключові слова: уран; золото; родовище; супутникові дані; прямі пошуки; геоелектричні методи.

APPLICATION OF GEOELECTRIC AND REMOTE SENSING METHODS FOR ORE MINERAL RESOURCES PROSPECTING

S. Levashov, N. Yakymchuk, I. Korchagin

The results of experimental approbation of geoelectric methods of forming short-pulsed electromagnetic field (FSPEF) vertical electric-resonance sounding (VERS) and the technology of satellite data processing and interpretation for the "direct" prospecting the ore minerals and water-bearing reservoirs are analyzed.

Key words: uranium; gold; deposit; satellite data; direct prospecting; processing; geoelectric methods.

¹Институт прикладных проблем экологии, геофизики и геохимии, г. Киев

²Институт геофизики НАН Украины, г. Киев