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Для оцінювання гравітаційної потенціальної енергії Землі E використано 3D-розподіл  
густини еліпсоїдальної планети разом з його оцінкою точності. Саме використання  

останньої дало змогу виконати оцінювання E на основі лише радіального розподілу густини  
у вигляді її неперервних та кусково-неперервних моделей: Лежандра-Лапласа, Роша, Булларда  

і Гаусса. В результаті отримана нерівність для E з верхнею границею EH для однорідного розподілу 
і нижнею границею EGauss, яка відповідає розподілу Гаусса для густини Землі. Головні оцінки E 
дають гарне погодження з EGauss: як у випадку E, яке базується на моделі Роша з 6 головними 

стрибками густини, так і оцінки E, що відповідають 4 найпростішим моделям  
з одним стрибком густини на границі ядро-мантія. 

 

Для оценки гравитационной потенциальной энергии Земли E использовано 3D-распределение 
плотности внутри эллипсоидальной планеты совместно с ее оценкой точностью.  
Именно применение последней дало возможность выполнить оценивание E только  

на базе радиального распределения плотности в виде ее непрерывных и кусочно-непрерывных 
моделей: Лежандра-Лапласа, Роша, Булларда и Гаусса. В результате получено неравенство  

для E с верхним пределом EH для однородной планеты и нижним пределом EGauss, 
соответствующим Гауссовому распределению. Главные оценки E дают прекрасное 
согласование с EGauss, включая значение E, основанное на модели Роша с 6 главными  

скачками плотности внутри Земли, и оценки E,  отвечающие простейшим 4 моделям  
с одним скачком на границе ядро-мантия. 

 
1 Introduction. Determination of the Earth’s volume density distribution ),,( λϑρδ  from external 

potential data requires a solution of the known inverse problem of the Newtonian potential. If the planet’s 
gravitational potential energy E and density at the surface are accepted as additional information, this problem 
transforms from an improperly posed to a properly posed problem with its possible solution for the 3D density 

),,( λϑρδ  through the three-dimensional Cartesian moments (Mescheryakov, 1977). According to Gauss 
(1840) the search of the stationary value E can be treated as one of central subjects of the potential theory. A 
remarkable summary of the Gauss’ problem reads: “minimum and maximum potential energy correspond to 
physically (for the Earth) meaningless cases: a surface distribution and a mass point. The ‘true’ Earth lies 
somewhere in between” (Moritz, 1990). It is obvious that the potential energy E can be estimated from the 
density and internal gravitational potential. However only few E-values for the homogeneous Earth 
(Mescheryakov, 1973; Rubincam, 1979; Moritz, 1990) and the planet differentiated into homogeneous mantle 
and homogeneous core (Rubincam, 1979) are found in the literature. Thus, the question remains: how can we 
evaluate better this ‘true’ Earth and the corresponding potential energy E.  

This study focuses on (a) the determination of the Earth’s global density distribution and (b) the 
estimation of the gravitational potential energy E using continuous and piecewise density models. The 
Earth’s mass and principal moments of inertia represent initial information for the unique solution of the 
restricted Cartesian moments problem providing in this way the density ),,( λϑρδ  and the potential 
energy E. The principal moments of inertia given in (Marchenko, 2007) were used for the computation of 
the 3D global density ),,( λϑρδ .  
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It should be pointed out, that accuracy of the global density and potential energy was derived 
especially to restrict the possible solution domain in such a way that a reasonable solution may be selected 
either from 3D-spatial or radial density inside the ellipsoidal or spherical planet.  

2. The Earth’s global density distribution. Let us consider the mathematical model of the 3D 
global density distribution ),,( λϑρδ  derived by (Mescheryakov et al., 1977) inside the Earth having a 
shape of the ellipsoid of revolution with the flattening f and the semimajor axis a. According to 
Mescheryakov (1991) the exact but restricted by the order 2 solution of the three-dimension Cartesian 
moments problem for ),,( λϑρδ  reads 

),,()(),,( R λϑρδ∆ρδλϑρδ += ,                                                          (1) 
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2 ϑ∆ϑ∆λϑ∆ρ∆λϑρδ∆ KKKK +++=  ,                         (2) 
where R)(ρδ  is the piecewise reference radial density model with radial density jumps such as PREM 
(Dziewonski and Anderson, 1981), ),,( λϑρδ∆  is some anomalous density with the following components 
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In the relationships above χ=1−f, the dimensionless Cartesian moments 000I , 200I , 020I , and 002I  
( 0001010100 === III ) of the density of a gravitating body (Grafarend et al., 2000) can be computed via 
the Earth’s mass M and dimensionless principal moments of inertia A, B, and C normalized by 1/Ma2: 
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The reference model R)(ρδ  includes individual information about density jumps, the mean density 
R
mδ , and the mean moment of inertia R

mI , which have been selected preliminary for the construction of the 

radial profile R)(ρδ . In contrast to Mescheryakov (1991) [Eqs. (1 – 3)] the Cartesian moments RI 000 , RI 200 , 
RI 020 , and RI 002  of the reference density R)(ρδ  were derived here for one common set of the conventional 

constants mδ  and mI  of the model (1) and density jumps entering into R)(ρδ : 
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Thus, in these formulae ρ ( 10 ≤≤ ρ ) is the relative distance from the origin of a coordinate system 
to an internal current point; ϑ and λ are the polar distance and longitude of this point; mδ  is the convenient 
mean density; HD is the dynamical ellipticity; 2220 , AA  are the fully normalized (non-zero) harmonic 
coefficients adopted here as Stokes constants in the principal axes system CBAO . Therefore, this 3D 
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global density [Eq.(1)] is given in the geocentric coordinate system of the principal axes of inertia and 
agreed with the Earth’s mass and the principal moments of inertia to preserve in this way the external 
gravitational potential from zero to second degree/order, HD, the flattening f, and density jumps. 

The radial density R)(ρδ  is also treated within the ellipsoid of revolution if we use the formula 

)3/)(cos21( 2 ϑPfRre ⋅−=  for the radius vector re by neglecting 2f  (Moritz, 1990), where )(cos2 ϑP  is 
the 2nd-degree Legendre polynomial. This formula results from the average of re over the unite sphere that 
gives the mean radius R=6371 km. According to Mescheryakov (1991) Eqs. (1 − 2) are valid for a 
homothetic stratification when f=const inside the ellipsoidal Earth. Hence, if the set of the internal 
ellipsoidal surfaces er~  is labeled by the associated mean radius r of a sphere we have 
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By averaging ),,( λϑρδ  over ellipsoidal surfaces we define the piecewise radial density )(ρδ  as 
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with the treatment of the reference density R)(ρδ  within the ellipsoidal Earth. Since the radius ρ is 
constant for each er~ , the densities R)(ρδ  and )(ρδ  are also constant by Eqs. (7) at the surface (6). 

Accuracy estimation of the 3D continuous global density was derived from error propagation, keeping in 
mind that information about accuracy of the mean density R

mδ , the mean moment of inertia R
mI , and density 

jumps in different piecewise radial models R)(ρδ  (such as PREM) are not found in literature or were not easily 
accessible to the author. For this reason we will consider the reference density R)(ρδ  as some exact constituent 
or “normal density”. Hence, the variance-covariance matrix of the principal moments of inertia, accuracy of the 
mean density 

mδσ , and accuracy of the flattening fσ  were chosen as initial information (Table 1). 

The accuracy 
mδσ  of the mean density δm requires additional remarks because this value represents a 

scale factor of the considered theory. If 3g/cm 5.514=mδ  and the gravitational constant 
-2-1311 skgm 10)010.0(6.673 −⋅±=G  suggested by the IERS Conventions 2003 (McCarthy and Petit, 2004) 

are selected, we get 3g/cm 08.0=
mδσ . According to the IAG recommendations for G and GM (Table 1) 

another mean density 3g/cm 0.0026)5.5145( ±=mδ  finally was adopted.  

Table 1  

Initial parameters and their accuracy 

Reference Adopted parameters 
Groten, 2004 G=(6.67259±0.0003)⋅10-11 m3kg-1s-2 
Groten, 2004 GM=(398600.4415±0.0008)⋅109m3s-2 
Marchenko, 2007 A=0.3296127±0.0000005 
Marchenko, 2007 B=0.3296200±0.0000005 
Marchenko, 2007 C=0.3306990±0.0000005 
Marchenko and Schwintzer, 2003 1/f=298.25650 ± 0.00001 

 
Thus, the global density distribution and accuracy at different depths were based on the value 

3g/cm 0.0026)5.5145( ±=mδ , the flattening f, and the principal moments of inertia A, B, and C from Table 
1. The principal moments of inertia (given here in the zero frequency tide system) are results from the 
adjustment of the 2nd-degree harmonic coefficients of 6 gravity field models and 7 values HD of the 
dynamical ellipticity all transformed to the common value of precession constant at epoch J2000. The 
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reference radial density profile R)(ρδ  in Eq. (1) was selected in the form of the simple piecewise Roche’s 
law separated into seven basic shells (Marchenko, 2000), which is slightly different from PREM.  

 

g/cm3 
 

 

g/cm3 
 

Fig. 1. Density anomalies [g/cm3] ),,( λϑρδ∆   [Eq.(2)] 
at the mantle/crust boundary (r=6346.6 km) 

Fig. 2. Accuracy ),,( λϑρδσ  [g/cm3] of the continuous 3D 

density distribution at the mantle/crust boundary 
 
Therefore, with R)(ρδ  known as exact constituent, the accuracy estimation ),,( λϑρδσ  of the 3D 

continuous global density distribution ),,(~
λϑρδ  (based only on the Earth’s mechanical parameters) and 

lateral density heterogeneities [Eq. (2)] are straightforward. Comparison of these lateral density anomalies 
),,( λϑρδ∆  (Fig. 1) with the accuracy ),,( λϑρδσ  of the continuous constituent at the same depths (Fig. 2) 

leads generally at least to values of the same order in uncertainties and density heterogeneities taken for 
various depths. Because discussed uncertainties are increasing when radius ρ is decreasing to zero we will 
use below only radial density models for further determination of the Earth’s gravitational potential energy. 

3. Estimation of the gravitational potential energy. As well-known the computation of the 
gravitational potential energy is based on the following expression (Moritz, 1990): 

∫ ⋅⋅−=
τ

τδ dVE i2
1 ,                                                                       (8) 

where δ is the Earth’s density, Vi is the internal gravitational potential, and τ is the planet’s volume.  
 

Table 2 
Expressions for different radial density models 

Model Mathematical expression 
Homogeneous planet      const)( == mδρδ  
Legendre-Laplace law      )/()sin()( 0 γργρδρδ =  
Roche’s law      2)( ρρδ ba +=  
Bullard’s model      42)( ρρρδ cba ++=  
Gauss’ model  
(Marchenko, 2000) 

     )exp()( 22
0 ρβδρδ −=  

 
For the determination of the potential energy E we will examine additionally to the homogeneous 

Earth the following radial-only continuous density profiles: Legendre-Laplace law, Roche’s law (as 
solutions of the Clairaut’s equation), Bullard’s model, and Gaussian (normal) distribution (see Fig. 3). 
Therefore, in order to determine the gravitational potential energy E we use density laws from Table 2 
initially for the spherical Earth. The parameters of the simplest density models (Fig. 3) listed in Table 2 
were derived in the closed form (Marchenko, 2000) from the solution of the inverse problem based on the 
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well-known conditions to keep mδ , mI , and the density sδ  at the Earth’ surface (Moritz, 1990). The 
parameters 0δ and a represent the density at the origin (Table 2 and Table 3). Initially we derive 
relationships for the internal potential Vi corresponding to these density laws. Then, applying Eq. (8) to the 
density models from Table 2 and internal potentials we find final expressions given in Table 3 for the 
estimation of the potential energy E of the spherical Earth.  

 

δ(r)  
Gauss’ model

PREM model 

Legandre-Laplace model 

Bullard’s model 

Roche’s model 

r [km] 

 
 

r [km] 

δ(r) 

Piecewise Roche’s 
model with 7 shells 

Piecewise PREM 
model with 11 shells 

 

Fig. 3. Legendre-Laplace, Roche, Bullard, and Gauss 
continuous densities compared with PREM [g/cm3] 

Fig. 4. Piecewise Roche-density model with 7 shells 
compared with PREM-density model δ(ρ) [g/cm3] 

 

With adopted mδ  and the dimensionless mean moment of inertia 0.00000050.3299773 ±=mI  
(Table 1) numerically we get estimations of the energy E given in Table 4, which includes E-estimates 
given by Mescheryakov (1973) and Rubincam (1979) for further comparisons. Thus, there are two limits 
for all computed E: 

 sHomogeneouEarthGauss EEE ≤≤ .                                                             (9) 

The upper limit HE  agrees with the homogeneous Earth. The minimum amount GaussE  corresponds 
to the Gauss’ model. Such assertion has an evident mathematical explanation. The first term of the Taylor 
series expansion of GaussE  from Table 3 represents the gravitational potential energy of the homogeneous 
Earth HE . Globally speaking every model from Table 3 includes the main term equal to HE . But the sum 
of other terms with HE  gives a smaller E than the value HE . 

Table 3 
The gravitational potential energy E of the spherical Earth for different radial density models 

Model Mathematical expression 
Homogeneous planet 15/16 522 RGE mδπ−=  
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Table 4 
Estimations of the gravitational potential energy E (spherical Earth) 

Model E, ergs 
Mescheryakov, 1973 −2.34    ×1039 
Rubincam, 1979 −2.45    ×1039 
Homogeneous planet −2.2419×1039 
Legendre-Laplace law −2.4595×1039 
Roche’s law −2.4802×1039 
Bullard’s model −2.4716×1039 
Gauss’ model  −2.5009×1039 

 

Table 5 
E-estimates for the spherical Earth with one density-jump at the core/mantle boundary 

Model  (2 shells) E, ergs R.m.s. deviation from PREM in the 
core-mantle area, g/cm3 

Rubincam, 1979 −2.45    ×1039 − 
Legendre-Laplace law −2.4944×1039 0.430 
Roche’s law −2.4938×1039 0.409 
Bullard’s model −2.4907×1039 0.322 
Gauss’ model  −2.4940×1039 0.437 

  

It has to be pointed out, that the energy E derived by Mescheryakov (1973) as MVE m−=2  was based 
on the known Earth’s mass M and the mean-value theorem after preliminary computation of the mean value Vm 
of the internal potential Vi in Eq. (8). The estimation of E given by Rubincam (1979) was found for the spherical 
Earth differentiated into homogeneous core and homogeneous mantle with one jump at the core-mantle 
boundary. We will apply a similar approach to the above-discussed profiles using the direct approximation of 
the PREM density by these four simplest piecewise models separated into two shells with the same basic jump 
at the core-mantle boundary. Table 5 illustrates results of such approximation in the form of r.m.s. deviations 
from the PREM density based in every case on the additional conditions to keep mδ , mI , and sδ . Despite the 
best value of r.m.s. for the Bullard’s model we prefer to use below a simpler Roche’s law due to a smaller 
number of the parameters ja  and jb  (j=1,2,…k) introduced for each shell.  

The comparison of E-values from Table 4 and Table 5 gives better-quality agreement between all values 
of E when the basic jump of density at the core/mantle boundary is taking into consideration. E-estimates given 
in Table 5 satisfy again to the inequality (9) with the two limits GaussE  and HE  from Table 4. All values of E in 
the case of these piecewise models from Table 5 are very close to the minimum amount GaussE . For this reason 

the accuracy E
Gaussσ  of GaussE  was derived under the assumption that E

Gaussσ  depends only on accuracy of mδ  

and mI  given above. Numerically we get ergs 10)0025.05009.2( 39
Gauss ×±−=E . Hence, if a spherical Earth 

differentiates into present-day core and mantle we get in view of the estimated accuracy 
ergs 100025.0 39

Gauss ×±=Eσ  a perfect accordance between E-values corresponded to the layered Legendre-

Laplace, Roche, Bullard, and Gauss models with 2 shells. This quantity E
Gaussσ  is certainly larger than E-

estimates contained in the 2nd-degree harmonics (Rubincam, 1979) and for this reason we will use again radial-
only piecewise model for the determination of the potential energy E of the ellipsoidal Earth. 

The internal potential iV  inside the ellipsoid of revolution with the radial density )( Rr ⋅= ρδ  was 
adopted according to Moritz (1990, p.41). For the homothetic stratification f=const we get 
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the internal potential of the ellipsoidal Earth [Eq. (10)] in the form of the internal potential of the spherical 
planet sphere

iV  reduced to iV  by the ellipsoidal reduction ell
iV∆  [Eq. (11)]. Eqs. (10 – 11) allow the direct 

computation of the potential energy E in the following way 
ellSphere EEE ∆+= ,                                                            (12) 

if inserted into Eq. (8). Then, taking into account the flattening f we will determine the ellipsoidal reduction 
ellE∆  beforehand. Since the values E of the piecewise radial models with one jump (Table 5) are very close to 

the lower limit GaussE  in Eq. (9) it is enough to estimate ellE∆  by applying the Gauss’ continuous model inside 

the ellipsoid with the homothetic stratification. Numerically we get ergs 10000045.0 39Gauss ×≈ellE∆  two orders 

smaller value than accuracy ergs 100025.0 39
Gauss ×±=Eσ . Hence, it is sufficient to adopt the reduction 

0=ell
iV∆  in Eq. (10) for the internal potential iV . 

If the expression for E is known, the piecewise PREM profile is one of a most suitable densities for 
the estimation of the potential energy E, although this problem is not discussed in the literature. Due to 
polynomials of different powers adopted for each shell there are significant difficulties in the derivation of 
such relationship for E in the case of the PREM model. Therefore we will apply another appropriate model 
represented by polynomials of identical even powers within every shell. Because the PREM-profile agrees 
well with the piecewise Roche model (Marchenko, 2000) consisting from 7 shells (Fig. 4), we use this 
Roche density as initial information in the following form 

2

)( 
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


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+=

R
rbar jjjδ ,             000 == ba ,                                             (13) 

where j=0,1,2,…k, k is the number of shells (k=7), aj and bj are the known coefficients of the model (13) given for 
each shell separately (Table 6) with the artificial zero shell 000 == ba  involved here for the generalization of 
basic formulae. Note also that r.m.s. deviation between these models (Fig. 4) has the value 0.06 g/cm3 for the most 
important in our case core-mantle area and increases only to 0.24 g/cm3 for the total Earth (core-mantle-crust).  

Table 6 

Piecewise Roche’s model with 7 basic shells as sampled for the PREM (Marchenko, 2000) 

j  (Shell) aj, g/cm3 bj, g/cm3 rj, km 
1 (Inner core) 13.061 -8.891 
2 (Outer core) 12.483 -8.343 
3 (Lower mantle) 6.370 -2.574 
4 (Upper mantle) 6.058 -2.577 
5 (Upper mantle) 5.784 -2.524 
6 (Upper mantle) 6.057 -2.903 
7 (Crust) 6.622 -3.952 

1221.5 
3480.0 
5701.0 
5971.0 
6151.0 
6346.6 

 

With 0=ell
iV∆ , r0=0, and a current point lied within the j shell at the distance r, the substitution of 

Eq. (16) into Eq. (13) provides the expression for the internal potential 
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Table 7 
Estimations of the potential energy E derived from the piecewise Roche’s model (Table 6) 

j  (Shell) Contribution Ej of each shell, ergs 
1 (Inner core) −0.0541×1039 
2 (Outer core) −0.9159×1039 
3 (Lower mantle) −1.1625×1039 
4 (Upper mantle) −0.1527 ×1039 
5 (Upper mantle) −0.0954×1039 
6 (Upper mantle) −0.0998×1039 
7 (Crust) −0.0104×1039 
Total gravitational potential energy: −2.4910×1039 ergs  

 

Thus, according to Eqs. (14 – 15) in the case of the piecewise Roche’s density (13) the internal 
potential )(rVi  at the arbitrary current point P can be formed from the four parts: first two terms and last 
two terms in Eq. (18) represent the potentials of the Earth’s layers lied below and above P, respectively. By 
this, after some algebraic manipulation with Eq. (15) inserted into Eq. (8) we get a simple possibility of the 
determination of the gravitational potential energy E. The result is 
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where jE  expresses the contribution of each j-shell in the total value E by 
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With adopted piecewise Roche’s density (Fig. 4, Table 6) we get the estimation of the potential energy E 
(Table 7) by means of the contributions jE  of each shell [Eq. (17)]. The obtained quantity 

ergs 104910.2 39×−=E  agrees well with E-estimates from Table 5 based on the radial profiles with one jump at 
the core-mantle boundary and satisfies to the inequality (9) at the vicinity 

ergs 10)0025.05009.2( 39
Gauss ×±−=E  of the minimum amount. In view of the accuracy 

ergs 100025.0 39
Gauss ×±=Eσ  we get a remarkable accordance between ergs 104910.2 39×−=E  derived from 

the piecewise Roche’s density with 7 basic shells as sampled for PREM and the values E given by the simplest 
piecewise Legendre-Laplace, Roche, Bullard, and Gauss models with 2 shells all corresponded to the spherically 
symmetric Earth differentiated into core and mantle only. We may assume that the quantity 

ergs 104910.2 39×−=E  will be close to E-value of the PREM model, taking into account a minimum contribu-
tion E7 of the crust (Table 7) into the total E and r.m.s. deviation between PREM and piecewise Roche’s models.  
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4 Conclusions. The global density model inside the ellipsoidal Earth was adopted as exact solution of the 
restricted three-dimensional Cartesian moments problem for ),,( λϑρδ  under the conditions to conserve the 
Earth’s mass, the geometrical flattening, and all principal moments of inertia. This model includes the reference 
radial density profile R)(ρδ  selected in the form of the piecewise Roche’s models with 7 basic shells, taking 
into account density jumps as sampled for PREM. With R)(ρδ  chosen as exact constituent, the accuracy 

),,( λϑρδσ  of continuous global density was derived from the consistent set of the Earth’s mechanical parameters. 

Comparison of the lateral density anomalies ),,( λϑρδ∆  with the accuracy ),,( λϑρδσ  at the same depths leads 
generally at least to values of the same order in uncertainties and density heterogeneities.   

As a result, only radial density models were adopted for the determination of the gravitational potential 
energy E. Relationships for E were derived in the following cases: 1) continuous Legendre-Laplace, Roche, 
Bullard, and Gauss radial density laws; 2) the same radial models with one added jump of density at the core-
mantle boundary (2 shells); 3) the piecewise Roche’s profile separated into 7 shells. The estimation of E 
according to various continuous density laws gives the following result: there are two limits for all computed E. 
First one agrees with the homogeneous distribution. Second one corresponds to the Gauss’ radial density.  

Finally all determinations of the potential energy E were made for the spherical Earth since the 
ellipsoidal reduction ellE∆  gives two orders smaller quantity than the estimated accuracy 

ergs 100025.0 39
Gauss ×±=Eσ . Taking into account E

Gaussσ  we get a perfect agreement between 

ergs 10)0025.05009.2( 39
Gauss ×±−=E , the potential energy ergs 104910.2 39×−=E  derived from the 

piecewise Roche’s density with 7 basic shells, and the values E given by the four simplest piecewise 
Legendre-Laplace, Roche, Bullard, and Gauss models with 2 shells (core and mantle only). 

Among continuous densities for the Earth’s interior given in Fig. 3 the Gaussian distribution (based 
on the Earth’s fundamental parameters mδ , mI , sδ  only) allows a better-quality representation of the 
general trend of the planet’s piecewise density. By this, the Gauss’ model leads to the reliable estimation of 
the lower limit EGauss of the potential energy E, answering in this manner on the question above about the 
gravitational potential energy E of the ‘true’ Earth (Moritz, 1990): all piecewise density models give E-
values at the vicinity ergs 105009.2 39

Gauss ×−=E  of the lower limit of Eq. (9).  
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