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/s ouinroeanns pasimayiitnoi nomenuyianvhoi enepeii 3emai E suxopucmano 3D-po3nooin
2YCHUHU eNincoioanvHol nianemu pazom 3 1020 oyinkor mounocmi. Came 6UKOPUCMAHHA
OCManHbBOi 0ano 3mozy euxonamu oyintosannsa E na ocnoesi nuwe padiansnozo po3nodiny zycmunu
Y eu2naoi ii HenepepeHux ma Kyckogo-nenepepeHux mooeneii. Jlescanopa-Jlannaca, Powa, bynnapoa
i I'aycca. B pesynvmami ompumana nepisnicmo ona E 3 eepxuero epanuyero Ey, ona oonopionozo posnodiny
i HudcHero zpanuyero Ecays, aKa sionogsioac poznooiny I'aycca onsa cycmunu 3emni. I'onoeni oyinku E
oaromo 2aphe noz2odxcenun 3 Ecys aK y 6unaoky E, saixe 6azyemocsa na mooeni Powa 3 6 2onosnumu
cmpubdxkamu cycmunu, max i oyinku E, wio eionosioaroms 4 naiinpocmiwium mooenam
3 OOHUM CIPUOKOM 2YCHIUHU HA ZPAHUNL AOPO-MAHMIA.

/Jlna oyenku zcpasumayuonnoil nomenyuanbHoil Inepeuu 3emau E ucnonvzosano 3D-pacnpedenenue
nAOMHOCU 6HYMPU IITUNCOUOATLHOU NIIAHENbl COBMECHHO C €€ OUeHKOI MOYHOCHbBIO.
HUmenno npumenenue nocieoneii 0aao 603MOHCHOCHb bINOIHUMY oWeHusanue E monvko

Ha ba3ze paouanvHo20 pacnpedesieHUs NIOMHOCHU 8 6UOe ee HenPePbIBHBLIX U KYCOUHO-HEnPEPbLEHbIX

mooeneii. Jlescanopa-Jlannaca, Powa, bynnapoa u I'aycca. B pe3ynomame noJiyueno HepageHcmeo
ona E ¢ eepxnum npeoenom Ey 011 00nopoonoit nnanemol u Huxcnum npeoenom Ecyys,
coomeemcmeyrouium I'ayccoeomy pacnpedenenuio. I naguvie oyenku E oarom npexpacnoe
coznacosanue ¢ Egys, 6K1104an 3navenue E, ocnosannoe na modenu Powa c 6 2nasnvimu
CKauKamu niomuocmu eHympu 3emau, u oyenku E, omeeuarowiue npocmeituwium 4 mooenam
C OOHUM CKAYKOM HA ZPAHUYE AOPO-MAHMUA.

1 Introduction. Determination of the Earth’'s volume density distribution d(r ,J,l1 ) from externa

potential data requires a solution of the known inverse problem of the Newtonian paotential. If the planet’s
gravitational potential energy E and density at the surface are accepted as additiona information, this problem
transforms from an improperly posed to a properly posed problem with its possible solution for the 3D density
d(r,J,l) through the three-dimensional Cartesan moments (Mescheryakov, 1977). According to Gauss

(1840) the search of the stationary value E can be treated as one of central subjects of the potential theory. A
remarkable summary of the Gauss problem reads: “minimum and maximum paotential energy correspond to
physically (for the Earth) meaningless cases: a surface distribution and a mass point. The ‘true’ Earth lies
somewhere in between” (Moritz, 1990). It is obvious that the potential energy E can be estimated from the
density and interna gravitational potential. However only few E-values for the homogeneous Earth
(Mescheryakov, 1973; Rubincam, 1979; Moritz, 1990) and the planet differentiated into homogeneous mantle
and homogeneous core (Rubincam, 1979) are found in the literature. Thus, the question remains: how can we
evaluate better this‘true’ Earth and the corresponding potential energy E.

This study focuses on (a) the determination of the Earth's global density distribution and (b) the
estimation of the gravitational potential energy E using continuous and piecewise density models. The
Earth’s mass and principal moments of inertia represent initial information for the unique solution of the
restricted Cartesian moments problem providing in this way the density d(r ,J,I ) and the potential
energy E. The principal moments of inertia given in (Marchenko, 2007) were used for the computation of
the 3D global density d(r ,J,l ).
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It should be pointed out, that accuracy of the global density and potential energy was derived
especially to restrict the possible solution domain in such a way that a reasonable solution may be selected
either from 3D-spatial or radial density inside the elipsoidal or spherical planet.

2. The Earth’s global density distribution. Let us consider the mathematical model of the 3D
global density distribution d(r ,J,lI ) derived by (Mescheryakov et a., 1977) inside the Earth having a

shape of the dlipsoid of revolution with the flattening f and the semimgjor axis a. According to
Mescheryakov (1991) the exact but restricted by the order 2 solution of the three-dimension Cartesian
moments problem for d(r ,J,l ) reads

d(r,J,l)=d(r)g+Dd(r,J,l), (@)

Dd(r,J,l )=DK +r ?(DK,;sin?J cos’| +DK,sin?J sin®+ DK,cos’J) , 2)

where d(r )y is the piecewise reference radial density model with radial density jumps such as PREM
(Dziewonski and Anderson, 1981), Dd(r ,J,l ) is some anomalous density with the following components
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In the relationships above c=1-f, the dimensionless Cartesian moments |y, 1,0, lgp, @d 1o,

(1100 = oo = 1oor =0) of the density of a gravitating body (Grafarend et al., 2000) can be computed via
the Earth’s mass M and dimensionless principal moments of inertia A, B, and C normalized by 1/Ma®*:

oo =1 1]

I =(B+C- A)/21

Il = (A- B+C)/2

lo =(A+B- C)/2},

The reference model d(r ), includes individual information about density jumps, the mean density

A=+/5A,(1- 1/H)- J—E>K22/3U
B =+/5A,(1- l/HD)+\/_A22/3y )
C=-5Aq/Hp. A

d?, and the mean moment of inertia | X, which have been selected preiminary for the construction of the
radial profile d(r ) . In contrast to Mescheryakov (1991) [Egs. (1 — 3)] the Cartesian moments 15, , 15,
| &y, and | X, of the reference density d(r ), were derived here for one common set of the conventional

constants d., and |, of the model (1) and density jumps entering into d(r ) :
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Thus, intheseformulaer (O£r £1) isthe reative distance from the origin of a coordinate system
to aninternal current point; J and | arethe polar distance and longitude of this point; d,, isthe convenient
mean density; Hp is the dynamica dlipticity; A,,A,, are the fully normalized (non-zerc) harmonic
coefficients adopted here as Stokes constants in the principal axes system OABC . Therefore, this 3D
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global density [Eq.(1)] is given in the geocentric coordinate system of the principal axes of inertia and
agreed with the Earth’'s mass and the principal moments of inertia to preserve in this way the external
gravitational potential from zero to second degreg/order, Hp, the flattening f, and density jumps.

The radial density d(r ), is also treated within the ellipsoid of revolution if we use the formula

r,=R(1- 2f >P,(cosJ)/3) for the radius vector r. by neglecting f?2 (Moritz, 1990), where P,(cos]) is
the 2nd-degree L egendre polynomial. This formula results from the average of r. over the unite sphere that
gives the mean radius R=6371 km. According to Mescheryakov (1991) Egs. (1 - 2) are valid for a
homothetic stratification when f=const inside the elipsoidal Earth. Hence, if the set of the internal
ellipsoidal surfaces r, islabeled by the associated mean radiusr of a sphere we have

~ 5 2 u rr
=rgd- ZfxP(cos)), P r=—=-2, 6
F=rghe 5 fPi(oosd) R ©)
By averaging d(r ,J,l ) over dlipsoidal surfaces we define the piecewise radial density d(r) as
d(r)=d(r)s +[DK +r 2DD) i
. ) N
35, € DI, 0 Uy (7
DD = 22d_ 852D 0, + Dl gy + — 2 2= 3Dl o3
12 gsg 200 020 CZ g 000(]

with the treatment of the reference density d(r ), within the elipsoidal Earth. Since the radius r is
constant for each T, the densities d(r )y and d(r ) arealso constant by Egs. (7) at the surface (6).
Accuracy estimation of the 3D continuous global density was derived from error propagation, keeping in
mind that information about accuracy of the mean density d X, the mean moment of inertia 1 ¥, and density
jumpsin different piecewise radial models d(r ), (such as PREM) are not found in literature or were not easily
accessibleto the author. For this reason we will consider the reference density d(r ), as some exact constituent

or “normal density”. Hence, the variance-covariance matrix of the principal moments of inertia, accuracy of the
mean density s, , and accuracy of theflattening s ; were chosen asinitial informetion (Table 1).

Theaccuracy s 4 of the mean density dr requires additional remarks because this value represents a
scale factor of the considered theory. If d_=55l4g/cm® and the gravitational constant
G =(6.673+0.010) x10" ™ m®kg™?s? suggested by the IERS Conventions 2003 (McCarthy and Petit, 2004)
are selected, we get s =0.08g/cm®. According to the IAG recommendations for G and GM (Table 1)
another mean density d_. = (5.5145 + 0.0026) g/cm? finally was adopted.

Tablel
Initial parameters and their accuracy

Reference Adopted parameters

Groten, 2004 G=(6.67259+0.0003)40™ m3kg's?

Groten, 2004 GM=(398600.4415+0.0008)40°’m’s 2

Marchenko, 2007 A=0.3296127+0.0000005

Marchenko, 2007 B=0.3296200+0.0000005

Marchenko, 2007 C=0.3306990+0.0000005

Marchenko and Schwintzer, 2003 1/f=298.25650 + 0.00001

Thus, the global density distribution and accuracy at different depths were based on the value
d,, =(5.5145+ 0.0026) g/lcm?, the flattening f, and the principal moments of inertia A, B, and C from Table

1. The principal moments of inertia (given here in the zero frequency tide system) are results from the
adjustment of the 2nd-degree harmonic coefficients of 6 gravity field models and 7 values Hp of the
dynamical dlipticity all transformed to the common value of precession constant at epoch J2000. The
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reference radial density profile d(r ), in Eq. (1) was selected in the form of the simple piecewise Roche's
law separated into seven basic shells (Marchenko, 2000), which is slightly different from PREM.

Fig. 1. Density anomalies[g/cnt] Dd(r ,J,! ) [Eq.(2)] Fig. 2. Accuracy' s 4, 5y [glen] of the continuous 3D
at the mantle/crust boundary (r=6346.6 km) density distribution at the mantle/crust boundary

Therefore, with d(r ), known as exact constituent, the accuracy estimation s, ;,, of the 3D

continuous global density distribution d (r,J,I') (based only on the Earth’s mechanical parameters) and
lateral density heterogeneities [Eq. (2)] are straightforward. Comparison of these lateral density anomalies
Bd(r,J,l') (Fig. 1) with the accuracy s 4, ;,, of the continuous constituent at the same depths (Fig. 2)

leads generally at least to values of the same order in uncertainties and density heterogeneities taken for
various depths. Because discussed uncertainties are increasing when radius r is decreasing to zero we will
use below only radial density models for further determination of the Earth’s gravitational potential energy.

3. Estimation of the gravitational potential energy. As well-known the computation of the
gravitational potential energy is based on the following expression (Moritz, 1990):

1
E=- >y ¥ xdt , 8
ztc)l| i )
whered is the Earth’s density, V; istheinternal gravitational potential, andt isthe planet’s volume.
Table2
Expressions for different radial density models
Model Mathematical expression
Homogeneous planet d(r)=d, = const
Legendre-Laplace law d(r)=dysin(g )/(g)
Roche' slaw d(r):a+br2
Bullard’s modd d(r):a+br2+cr4
Gauss modd — _h2p2
(Marchenko, 2000) d(r) =d, ep(-b"r )

For the determination of the potential energy E we will examine additionally to the homogeneous
Earth the following radial-only continuous density profiles: Legendre-Laplace law, Roche's law (as
solutions of the Clairaut’s equation), Bullard's model, and Gaussian (normal) distribution (see Fig. 3).
Therefore, in order to determine the gravitational potential energy E we use density laws from Table 2
initially for the spherical Earth. The parameters of the simplest density models (Fig. 3) listed in Table 2
were derived in the closed form (Marchenko, 2000) from the solution of the inverse problem based on the
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well-known conditions to keep d,,, I, and the density d at the Earth’ surface (Moritz, 1990). The
parameters dyand a represent the density at the origin (Table 2 and Table 3). Initially we derive
relationships for the internal potential V; corresponding to these density laws. Then, applying Eg. (8) to the
density models from Table 2 and internal potentials we find final expressions given in Table 3 for the
estimation of the potential energy E of the spherical Earth.

19— g(r) d(r)
——

[Legandre-Laplace model]

Piecewise PREM
model with 11 shells

& — |_Bullard’s model

q —

2 Piecewise Roche’s
- r [km] model with 7 shells  [km]
o T T T T T T T n 1 1 1 I
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Fig. 3. Legendre-Laplace, Roche, Bullard, and Gauss Fig. 4. Piecewise Roche-density model with 7 shells
continuous densities compared with PREM [g/cnT] compared with PREM-density model d(r ) [g/cnT]

With adopted d,, and the dimensionless mean moment of inertia |, =0.3299773+ 0.0000005

(Table 1) numerically we get estimations of the energy E given in Table 4, which includes E-estimates
given by Mescheryakov (1973) and Rubincam (1979) for further comparisons. Thus, there are two limits
for all computed E:

EGaJss £ EEanh £E
The upper limit E,, agrees with the homogeneous Earth. The minimum amount E_, corresponds

to the Gauss' model. Such assertion has an evident mathematical explanation. The first term of the Taylor
series expansion of Eg, from Table 3 represents the gravitational potential energy of the homogeneous

Earth E,, . Globally speaking every model from Table 3 includes the main term equal to E,, . But the sum
of other terms with E,, givesasmaller E than thevalue E, .

Homogeneous * (9)

Table3
Thegravitational potential energy E of the spherical Earth for different radial density models
Model Mathematical expression

Homogeneous planet E=-16p 2Gd2R%/15
Legendre-Laplace law 2~ 2p5 . .

E-. 4p G?OR ?coszg _ 3sing cosg +lg

g g a

Roche' slaw 2~p5

g=. 1P CR (21a® + 24ab + 7b?)

315
Bullard’smodd 16p 2GR®
=- P [286a(36b + 250)+ 900%a" + H10015° + 14040 + 295¢2)|

Gauss modd _p?GdZR° @yp exp(- bet(b) 5 Zpef(2b)?

E= b Vi 2exp(-2b~) — 5 -

a
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Table 4
Estimations of the gravitational potential energy E (spherical Earth)
Model E, ergs
Mescheryakov, 1973 -234 710
Rubincam, 1979 -245 “10%
Homogeneous planet -2.2419 10%
Legendre-Laplacelaw - 2.4595 10
Roche's law - 24802 10%
Bullard’s mode - 24716 10%
Gauss model - 25009 10%
Table5

E-estimates for the spherical Earth with one density-jump at the core/mantle boundary

R.m.s. deviation from PREM in the
Model (2 snlls) E, egs core-mantle area, g/lem®
Rubincam, 1979 -245 “10® -
Legendre-Laplacelaw - 2.4944° 10%° 0.430
Roche'slaw -2.4938 10* 0.409
Bullard’'smodd - 2.4907 10* 0.322
Gauss modd - 2.4940° 10* 0.437

It has to be pointed out, that the energy E derived by Mescheryakov (1973) as 2E = -V, M was based

on the known Earth’s mass M and the mean-value theorem after preliminary computation of the mean value Vi,
of theinterna potential V; in Eq. (8). The estimation of E given by Rubincam (1979) was found for the spherica
Earth differentiated into homogeneous core and homogeneous mantle with one jump at the core-mantle
boundary. We will apply a similar approach to the above-discussed profiles using the direct approximation of
the PREM density by these four simplest piecewise modes separated into two shells with the same basic jump
a the core-mantle boundary. Table 5 illustrates results of such approximation in the form of r.m.s. deviations
from the PREM density based in every case on the additional conditionsto keep d,, I ,,, and d. Despitethe
best value of r.m.s. for the Bullard's mode we prefer to use below a simpler Roche's law due to a smaller
number of the parameters a; and b; (j=1,2,...K) introduced for each shell.

The comparison of E-values from Table4 and Table 5 gives better-quality agreement between all values
of E when the basic jump of density at the core/mantle boundary is taking into consideration. E-estimates given
in Table 5 satisfy again to the inequality (9) with thetwo limits Eg, . ad E,, from Table4. All values of E in

the case of these piecewise models from Table 5 are very close to the minimum amount Eg, . For thisreason
was derived under the assumption that s 5, depends only on accuracy of d,,
and |, given above. Numerically we get E, . = (- 2.5009+ 0.0025) " 10% ergs. Hence, if a spherical Earth
differentiates into present-day core and mantle we get in view of the edtimated accuracy
S Gas =10.0025" 10% ergs a perfect accordance between E-values corresponded to the layered Legendre-

the accuracy s 5, Of E

Gauss

Laplace, Roche, Bullard, and Gauss models with 2 shells. This quarntity s 5, is certainly larger than E-
estimates contained in the 2nd-degree harmonics (Rubincam, 1979) and for this reason we will use again radial-
only piecewise model for the determination of the potential energy E of the dlipsoidal Earth.
The internal potential V, inside the elipsoid of revolution with the radial density d(r =r *R) was
adopted according to Moritz (1990, p.41). For the homothetic stratification f=const we get
R

V, =V, ¥+ py S 31 (r)r?dr +4pGgyl(r)rdr +DV*', (10)
r
0 r

8pG xf
3r

80G xf

D\/ie” -
3r

P,(cosJ )rc‘yi(r)rzdr - P,(cosJ )rc‘yj(r)r“dr , (11)
0 0
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the internal potential of the dlipsoidal Earth [Eq. (10)] in the form of theinternal potential of the spherical
planet V. ¥ reduced to V, by the elipsoidal reduction DV,*' [Eq. (11)]. Egs. (10 — 11) allow the direct
computation of the potential energy E in the following way

E = Eghere T DEg (12
if inserted into Eq. (8). Then, taking into account the flattening f we will determine the dlipsoida reduction
DE,, beforehand. Since the values E of the piecewise radial models with one jump (Table 5) are very close to
the lower limit E, iNnEq. (9) it is enough to estimate DE,, by applying the Gauss' continuous mode inside
the ellipsoid with the homothetic stratification. Numerically we get DES™® » 0.000045" 10* ergs two orders

smaller value than accuracy s &, =+0.0025" 10%® ergs. Hence it is sufficient to adopt the reduction
DV,* =0 inEq. (10) for theinternal potential V, .

If the expression for E is known, the piecewise PREM profile is one of a most suitable densities for
the estimation of the potential energy E, although this problem is not discussed in the literature. Due to
polynomials of different powers adopted for each shell there are significant difficulties in the derivation of
such relationship for E in the case of the PREM moddl. Therefore we will apply another appropriate model
represented by polynomials of identical even powers within every shell. Because the PREM-profile agrees

well with the piecewise Roche modd (Marchenko, 2000) consisting from 7 shells (Fig. 4), we use this
Roche density as initial information in the following form

.2
g
d;(r)=a, +b &2, a, =1, =0, (13)
eRg

wherej=0,1,2,...k, kisthe number of shdls (k=7), g and b; are the known coefficients of the modd (13) given for
each shdl separatdy (Table 6) with the artificial zero shell a, =, =0 involved here for the generalization of
basic formulae. Note also that r.m.s. deviation between these models (Fig. 4) has the value 0.06 g/em® for the most
important in our case core-mantle area.and increases only to 0.24 g/en? for thetotal Earth (core-mantle-crust).

Table6

Piecewise Roche' s modd with 7 basic shells as sampled for the PREM (M ar chenko, 2000)
j (Sndll) a, glom® by, g/em® rj, km
1 (Inner core) 13.061 -8.891 12215
2 (Outer core) 12.483 -8.343 3480.0
3 (Lower mantle) 6.370 -2.574 5701.0
4 (Upper mantle) 6.058 -2.577 5971.0
5 (Upper mantle) 5784 -2.524 6151.0
6 (Upper mantle) 6.057 -2.903 6346.6
7 (Crust) 6.622 -3.952

With DV,® =0, r,=0, and a current point lied within the j shell at the distance r, the substitution of
Eq. (16) into Eg. (13) provi des the expression for the internal potential

Mj+1 k M1
\/i(r)—&Ga Gi, (r)rdr +—ij(r)r2dr +4pG GJJ+1(r)rdr +40G § Csh (r)rar . (14)
1=1 N1 I 1= j+1r|
Then we substltute Eq. (13) into Eq. (14), obtaining
Gé 3, u Gé
Y= 8 (17~ 1)+ g - D) + B G (- )+t )u"'Canw (15)
r SR 2 & 2R
d é u u
v =P8 G0 r.31)+ﬂ2(r.5- 5 |
3 L6 5R u i,/ (16)
G4 é b u?
cl = 8 - 1 - g
nt > |9+1ga|(l 17N SRz Nl i
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Table7

Egtimations of the potential energy E derived from the piecewise Roche' s modd (T able 6)
j (shdl) Contribution E; of each shell, ergs
1 (Inner core) -0.0541 10%
2 (Outer core) -0.9159 10%
3 (Lower mantle) -1.1625 10%
4 (Upper mantle) -0.1527 " 10®
5 (Upper mantle) -0.0954 10%
6 (Upper mantle) -0.0998 10
7 (Crus) -0.0104" 10%
Total gravitational potential energy: - 2.4910° 10% ergs

Thus, according to Egs. (14 — 15) in the case of the piecewise Roche's density (13) the internal
potential V,(r) at the arbitrary current point P can be formed from the four parts: first two terms and last
two termsin Eq. (18) represent the potentials of the Earth’s layers lied below and above P, respectively. By
this, after some algebraic manipulation with Eq. (15) inserted into Eq. (8) we get a simple possibility of the
determination of the gravitational potential energy E. Theresult is

kK T k u

E=-28 V()= E,.
i =y (17)

|

Ej:-Zpé.ij, ¥

m=1 b

where E; expresses the contribution of each j-shell in the total value E by
o, =aM,(r?-r2)/2
C,; =4pGa, (a;A +b;B;),

i
:
!
Cyj =4pGay (3 A +b,Cy), .
'|',

Caj =a,C (- 171)/3 (18)
G, =b,M (- r*)/(ar?), ¥
Csj =4pGb; (3;C; +b;D; /R*),!
C;; =4pGh;(3;B; +b;D; /R).i
Gaj = byCl (1] - 1721) /(5R?), Ib
A= (3rj5-1 - 5rj3: 1rj2 + 2rj5)/30’ |u
_ 2 -
B, =(5r/,- 7rpr2+2r/)I(7T0R?), | (19)

C,=(@],- 7riyrt +ar))/(84R?), ¥

Dj =(5r}l; - Orf i’ +4r7) [(180R) |,

With adopted piecewise Roche' s density (Fig. 4, Table 6) we get the estimation of the potential energy E
(Table 7) by means of the contributions E; of each shel [Eq. (17)]. The obtained quantity
E =-2.4910" 10* ergs agreeswell with E-estimates from Table 5 based on the radial profiles with onejump at
the coremantle boundary and  satifies to  the inequaity (9) a  the  vicinity
Egass = (- 25009+ 0.0025)" 10 ergs  of the minimum amount. In view of the accuracy

S Gaxs = £0.0025" 10* ergs we get a remarkable accordance between E =-2.4910" 10% ergs derived from
the piecewise Roche s density with 7 basic shells as sampled for PREM and the values E given by the simplest
piecewise Legendre-Laplace, Roche, Bullard, and Gauss models with 2 shells al corresponded to the sphericaly
symmetric  Earth differentiated into core and mantle only. We may assume that the quantity
E =-2.4910" 10* ergs will be close to E-value of the PREM mode, taking into account a minimum contribu-
tion E; of thecrust (Table 7) into the total E and r.m.s. deviation between PREM and piecewise Roche' s models.
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4 Conclusions. The global density model inside the elipsoidal Earth was adopted as exact solution of the
restricted three-dimensional Cartesian moments problem for d(r ,J,l ) under the conditions to conserve the

Earth’'s mass, the geometrical flattening, and all principal moments of inertia. This modd includes the reference
radial density profile d(r ) selected in the form of the piecewise Roche's models with 7 basic shells, taking

into account density jumps as sampled for PREM. With d(r ), chosen as exact constituent, the accuracy
Sq( 4.1y Of continuous global density was derived from the consistent set of the Earth’s mechanical parameters.

Comparison of the lateral density anomalies Bd(r ,J,l ) with theaccuracy s 4, 5, a the same depths leads

generaly at least to values of the same order in uncertainties and density heterogeneities.

As a result, only radial density models were adopted for the determination of the gravitational potential
energy E. Reationships for E were derived in the following cases: 1) continuous Legendre-Laplace, Roche,
Bullard, and Gauss radial density laws; 2) the same radial moded s with one added jump of density at the core-
mantle boundary (2 shells); 3) the piecewise Roche's profile separated into 7 shells. The estimation of E
according to various continuous density laws gives the following result: there aretwo limits for al computed E.
First one agrees with the homogeneous distribution. Second one corresponds to the Gauss' radial density.

Finally all determinations of the potential energy E were made for the spherical Earth since the
ellipsoidal reduction DE, gives two orders smaller quantity than the estimated accuracy

S Gaes =20.0025" 10¥ ergs. Taking into account s g, We get a perfect agreement between

Egax = (-2.5009+ 0.0025) " 10% ergs, the potential energy E =-2.4910" 10% ergs derived from the

piecewise Roche's density with 7 basic shells, and the values E given by the four simplest piecewise
Legendre-Laplace, Roche, Bullard, and Gauss models with 2 shells (core and mantle only).

Among continuous densities for the Earth’'s interior given in Fig. 3 the Gaussian distribution (based
on the Earth's fundamental parameters d.,, 1., d only) allows a better-quality representation of the

general trend of the planet’ s piecewise density. By this, the Gauss' model leads to the reliable estimation of
the lower limit Ecass Of the potential energy E, answering in this manner on the question above about the
gravitational potential energy E of the ‘true’ Earth (Moritz, 1990): all piecewise density models give E-

values at the vicinity E. . =-2.5009" 10® ergs of the lower limit of Eq. (9).

Gauss

1. Dziemonski A.M. and Anderson D.L. (1981) Preliminary reference Earth model. Physics of the
Earth and Planetary Interiors, Vol. 25, pp. 297-356. 2. Grafarend E., Engels J., and Varga P. (2000) The
temporal variation of the spherical and Cartesian multipoles of the gravity field: the generalized
MacCullagh representation. Journal of Geodesy, Vol. 74, pp. 519-530. 3. Groten E. (2004) Fundamental
parameters and current (2004) best estimates of the parameters of common relevance to astronomy,
geodesy and geodynamics. Journal of Geodesy, Vol. 77, pp. 724-731. 4. Marchenko A.N. (2000) Earth’s
radial density profiles based on Gauss' and Roche's distributions. Bolletino di Geodesia e Scienze Affini,
Anno LIX, No.3, pp. 201-220. 5. Marchenko A.N. and Schwintzer P. (2003) Estimation of the Earth's
tensor of inertia from recent global gravity field solutions. Journal of Geodesy, Vol. 76, p. 495-509.
6. McCarthy D. and Petit G. (2004) IERS Conventions (2003), |IERS Technical Note, No.32, Verlag des
Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, 2004. 7. Mescheryakov G.A. (1973) On
the estimation of some values characterizing the internal gravity field of the Earth. Geodesy, cartography
and aerophotosurveying, Lvov, No. 17, pp. 34-40 (in Russian). 8. Mescheryakov G.A. (1977) On the unique
solution of the inverse problem of the potential theory. Reports of the Ukrainian Academy of Sciences,
Kiev, Series A, No. 6, pp. 492-495 (in Ukrainian). 9. Mescheryakov G.A. (1991) Problems of the potential
theory and generalized Earth. “ Nauka’, Moscow, 1991. 203 p. (in Russian). 10. Mescheryakov G.A.,
Shopjak 1.N., and Dejneka Yu.P. (1977) Function’s representation inside the Earth’'s ellipsoid by means of
the partial sum of a generalized Fourier series. Geodesy, cartography and aerophotosurveying, No 21, pp.
55-62, Lvov (in Russian). 11. Moritz, H. (1990) The Figure of the Earth. Theoretical Geodesy and Earth’s
Interior. Wichmann, Karlsruhe. 12. Rubincam D.P. (1979) Gravitational potential energy of the Earth: A
spherical harmonic approach. Journal of Geophysical Research, Vol. 84, No. B11, pp. 6219-6225.



