
TRANSFORMING AND PROCESSING
THE MEASUREMENT SIGNALS

PARALLELIZATION OF RSA CRYPTOGRAPHIC
ALGORITHM BASED ON CUDA TECHNOLOGIES

Lesia Mochurad, Ph. D., Ass.-Prof., Yuriy Kryvenchuk, Ph. D., Ass.-Prof., Svyatoslav Yatsyshyn, Dr. Sc., Prof.
Lviv Polytechnic National University, Lviv, Ukraine

e-mail: lesia.i.mochurad@lpnu.ua

https://doi.org/10.23939/istcmtm2021.02.005

Abstract. The paper examines the efficiency of the application of CUDA technologies for the parallelization of the
cryptographic algorithm with the public key. The speed of execution of several implementations of the algorithm is compared:
sequential implementation on the CPU and two parallel implementations – on the CPU and GPU. A description of the public key
algorithm is presented, as well as properties that allow it to be parallelized. The advantages and disadvantages of parallel
implementations are analyzed. It is shown that each of them can be suitable for different scenarios. The software was developed
and several numerical experiments were performed. The reliability of the obtained results of encryption and decryption is
confirmed. To eliminate the influence of external factors at the time of execution the algorithm was tested ten times in a row and
the average value was calculated. Acceleration coefficients for message encryption and decryption algorithms were estimated
based on OpenMP and CUDA technology. The proposed approach focuses on the possibility of further optimization through the
prospects of developing a multi-core architecture of computer systems and graphic processors.

Key words: The public key algorithm; Graphics processor; Efficiency indicator; OpenMP standard.

1. Introduction

The demand and need to increase the speed of
software applications continues to grow as programs are
developed that require more computing power. In the
field of measuring technology, there is often an increase
in the share of virtual measuring instruments relative to
real ones. With the help of elements of the graphic
library, many measuring equipment has been imple-
mented to date. Such changes most noticeable in more
developed countries, such as the United States, Germa-
ny, France, etc. It is known that NASA also very often
uses similar tools on the Lab View platform, which
reduces the time to build various information and measu-
rement systems for aircraft, and a variety of auxiliary
measuring equipment. As known, such systems are quite
cumbersome and large and require quite powerful com-
puter equipment. Until 2004, Moore’s Law allowed the
number of transistors in a processor to automatically
increase software performance [1]. That is, if the pro-
cessor executes more instructions per second, the software
will also run faster. However, because of the physical
limitations of processors and heating of components, it is
impossible to continue to rely on Moore’s Law to achieve
faster executions of algorithms, consequently the collec-
tion of measurement data in real-time, which makes a
more instrumental error in the measurement system.

One of the alternatives is parallel computing,
which uses the advantages of a multi-core computer
architecture [2–5]. In this model, multiprocessors com-
municate with each other through a shared cache con-
tained in the hardware of the device. However, the
software needs to be adapted so that it can use multiple
processors to work on a single task, that is, use tech-

niques of parallel computing to change the way code is
written and executed.

One of the most interesting and popular areas of
modern development is the transition from the imple-
mentation of computing on the CPU to computing on the
GPU. In particular, Nvidia proposed its solution by
developing the CUDA parallel computing architecture.
Nvidia offers examples of the practical application of
CUDA to solve general-purpose problems [6–8]. The
observed increase in performance compared to the CPU
in these examples is from 10 to 100 times. This approach
can be applied to virtual measuring instruments.

Parallel execution of a sequential stream of instruc-
tions on the CPU has certain basic limitations and simple
addition of executable blocks cannot achieve a significant
increase in speed. At the same time, the GPU was created
to execute parallel instructions. Most of the graphics
processor, in contrast to the central, is occupied by
executable units, which gives an advantage in the speed of
tasks execution related to parallel data processing, namely
when the same sequence of operations is applied to a large
amount of data and the number of instructions exceeds the
number of memory accesses. Thus, the architecture of the
processor allows you to achieve greater efficiency in pa-
rallel computing. Also, an important advantage of using a
graphics processor for general-purpose computing is that
the computing CPU remains less busy and can be used to
perform other tasks.

This paper analyzes different approaches to the
parallelization of the block encryption algorithm and the
decryption of the public key algorithm. This algorithm is
used in a wide range of security applications [9], it can
also be used to encrypt data when transmitting measu-
rement information over long distances.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Measuring equipment and metrology. Vol. 82, No. 2, 2021

6

2. Problem Statement and Analysis

It is known [10], the RSA algorithm is one of the
most well-known public-key cryptographic algorithms.
The cryptographic stability of the algorithm is based on
the computational complexity of factorization of large
numbers [11]. RSA is a block algorithm that makes it
suitable for parallelization.

The RSA public key consists of a module n of a
certain length (product of prime numbers p and q) and
an exponent e . The length of the number n is deter-
mined in bits. The associated secret key consists of the
same number n , and the value d of 1mod (),d e f n∗ =
where ()f n – it is the Euler function. Ideally, the prime
numbers generated by the random number generator
used to build the module n , should not be reused. The
probability that random numbers p or q will be repea-
ted when generating keys should go to 0.

The RSA algorithm is characterized by perfect
security, simple key management, it is practical in
execution and understanding. However, in the RSA
encryption algorithm, modular power seriously affects
the performance of the algorithm and can become a
bottleneck, which limits its technical application. There-
fore, the optimization of the RSA encryption algorithm
focuses on research related to the development of multi-
core processor architecture. The use of OpenMP,
Pthreads and other multithreaded technologies allows to
use of more computing power, increases efficiency, and
reduces data processing time.

CUDA technology makes it possible to perform
general-purpose calculations on a graphics processor.
Nvidia’s CUDA platform enables software developers to
use thousands of stream processors capable of providing
parallel acceleration in a single node [12]. CUDA
technology allows studying the feasibility of running a
parallel program of the RSA algorithm and use JCUDA
to implement parallelization.

There is no correlation or relationship between
packet data in the RSA encryption process. Therefore,
you can use the domain decomposition method. In this
case, all data will be classified as domains. Each thread
or process will process its subdomain. Due to data
parallelism, the method [13] increases the computational
speed of RSA. The bottleneck of the RSA encryption
process is the need for big data processing. CUDA al-
lows parallel encryption of data between packets.

3. The Goal of the Work

The goal of this work is to analyze the effec-
tiveness of CUDA technology in parallelization of the
RSA encryption and decryption algorithm and increase
the speed of the measuring system, as well as to compare
the results with parallelization based on OpenMP tech-
nology and its sequential version.

4. Parallelization of the RSA Algorithm

Cryptographic algorithms, in particular the RSA
algorithm, usually work with large numbers that are
hundreds and thousands of bits in size. The operation of
modular exponentiation such numbers is associated with
significant costs, which limits the operation of the
algorithm at the hardware level and, as a consequence,
slows down its operation. Because in practice the encry-
ption process must take place in real-time, this shor-
tcoming is critical. To solve this problem, experts have
been developed various algorithms, one of such algo-
rithms is the RSA algorithm [14].

The main idea of the algorithm is cyclic partial
multiplication with decreasing length of intermediate
results. In the first stage, the indicator is converted into
binary form. Then the value received is read from right to
left, that is, starting with smaller bits. The number of
iterations is equal to the number of bits in the binary
representation of the indicator, but the result includes only
those in which the corresponding bit is equal to 1. The
result is obtained according to the following formula [15]:

1 2

0
() (mod),

i in a

i
res b m

−

=
= ∏

where n is the number of bits of the indicator, b is the
basis, i is the iteration number, m is the module
(absolute value). The following is the pseudocode of this
algorithm:
result = 1
exponent = e
while exponent > 0
if (exponent mod 2 == 1):
result = (result * g) mod m
exponent = exponent >> 1
g = (g * g) mod m
return result

The Open MP standard is used to implement a
parallel algorithm on the CPU. The parallelization pro-
cess was carried out directly in the encryption/decryption
units. Threads for parallel code processing and distri-
bution of instructions between them occurred dynami-
cally using a combination of directives #pragma omp
parallel for (up to 256 threads). The previously described
algorithm “Right-to-left binary method” was used to
implement the modular exponentiation.

The following is the source code for the encry-
ption feature:

void encrypt(int *num, int *key, int *den, unsigned int *result,
size_t len) {
#pragma omp parallel for
for (int i=0; i < len; i++) {
result[i] = mod(num[i], *key, *den);
}

At parallelization utilizing CUDA the algorithm
of interaction between the central and graphic processors
constructed as follows:

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Measuring equipment and metrology. Vol. 82, No. 2, 2021 7

Step 1: Reception by the CPU of the original message
and parameters.

Step 2: Check for available graphics devices and
initialize them.

Step 3: Initialize copies of host and device variables:
* dev_num, * dev_key, * dev_den, * dev_res.
Step 4: Allocate GPU space for these variables.
Step 5: Transfer the input data to the GPU.
Step 6: Calling the CUDA kernel on the GPU:
RSA <<< nblocks, nthreads >>> (dev_num, dev_key,

dev_den, dev_res)
Step 7: Copy the results back to the host.
Step 8: Clear the memory.

Here, the RSA kernel is a function that is execu-
ted on a group of threads. According to the researched
problem, the RSA kernel implements the calculation of
the encrypted text, using the algorithm of exponentiation
of “Right-to-left binary method”. For all calculations on
the GPU, 1 block is allocated, which contains 512
threads.

The following is the source code of the encry-
ption-decryption function of the RSA algorithm:

global void rsa(int *num, int *key, int *den, unsigned int
*result) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
int temp = mod(num[i], *key, *den);
atomicExch(&result[i], temp);
} ,
where mod (num[i], *key, *den) – the function of the
modular erection in the degree described above. Here
num[i] – the corresponding processing unit, *key – an
indicator of the degree, *den – module. The result is
assigned to the temp variable and returned to the host.

To identify a specific thread, its index is cal-
culated that is the unique identifier of each thread in the
block, which executes one instruction, but with a dif-
ferent set of data. The data are distributed among the
threads [16]. Such property as multithreading is also
investigated here. The optimal number of threads should
be equal to the size of the input file, but this size is
variable. When the number of threads exceeds the op-
timal one, some threads consume only resources. In the
case when the number of threads is lesser than the
optimal value, the load on the thread increases. The grid
128×128 seems to be the optimal number able to operate
with large and small files.

5. The Results of Parallelization
of the RSA Algorithm

To evaluate the performance of the implemented
programs, the same file was used for the encryption and
decryption algorithm. Thus, the reliability of the
obtained results was checked, because the decrypted file
corresponds to the same original file. Similarly, the
execution time was measured to make appropriate

comparisons. The algorithm was performed 10 times in a
row to average the results, to eliminate the influence of
external factors.

To study the work and compare the efficiency of
the written algorithms, numerous experiments were
conducted, consisting of the following test groups:

1. Fixed message size (760 bits). Encryption and
decryption algorithms are performed with keys of
different sizes (from 768 bits to 8192 bits).

2. Incoming messages of variable size. The size is
determined by the size of the encryption key.

Numerical experiments were performed on a PC
with the following characteristics:
CPU: Intel (R) Core ™ i7-8550U 1.8GHz, No of Cores:
2
Memory: 16,00 Gb
GPU: NVIDIA GeForce GT 550m, 96 CUDA cores
System: Windows 10

Table 1–4 is represented the results of expe-
riments in groups. The results of the experiments of
group 1 are given in Table 1 and Table 2, and the results
of experiments of group 2 – in Table 3 and Table 4. Vi-
sualization of the obtained results is presented in Fig. 1–4,
respectively.

Table 1

The execution time of the encryption algorithm for
a message size of 760 bits with a variable key size

Execution time, s

Key size,
bit

The
sequential

algorithm on
the CPU

The parallel
algorithm on

the CPU

The parallel
algorithm on

the GPU

768 0.112 0.92 1.06
1024 0.129 0.93 0.93
2048 0.46 1.27 0.86
3072 0.84 1.2 0.77
4096 1.48 1.56 0.92
6144 4.07 3.09 1.89
8192 5.89 3.68 1.93

Fig. 1. Visualization of execution time

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Measuring equipment and metrology. Vol. 82, No. 2, 2021

8

Table 2

The execution time of the decryption algorithm
for a message of 760 bits with a variable key size

Execution time, s

Key
size, bit

The
sequential
algorithm

on the
CPU

The parallel
algorithm on the

CPU

The parallel
algorithm on the

GPU

768 5.03 5.45 2.32
1024 8.82 7.78 2.74
2048 76.27 36.67 9.26
3072 252.04 75.68 22.44
4096 410.22 143.78 40.57
6144 1724.45 368.89 94.35
8192 2234.38 446.8 125.16

Table 3
The execution time of the encryption algorithm

for the variable size message
Execution time, s

Key size, bit
The

sequential
algorithm on

the CPU

The parallel
algorithm on

the CPU

The parallel
algorithm on

the GPU

768 0.55 0.83 1.04
1024 0.69 0.92 1.17
2048 1.05 2.6 1.44
3072 2.96 3.89 2.26
4096 6.7 6.7 4.23
6144 25.69 11.54 7.98
8192 42.9 19.24 10.82

Table 4

The execution time of the decryption algorithm
for the variable size message

Execution time, s

Key size, bit
The

sequential
algorithm on

the CPU

The parallel
algorithm on

the CPU

The parallel
algorithm on

the GPU

768 4.67 5.34 2.54
1024 10.87 8.78 2.98
2048 149.67 62.89 16.45
3072 603.66 187.54 55.87
4096 1887.7 614.43 123.76
6144 9534.87 2165.34 449.52
8192 26893.05 4598.69 1489.92

The results are given in Tables 1 and 3 show that
the implementation of the algorithm on the GPU starts
working faster than the other two implementations when
the key size becomes larger than 3072 bits.

Comparing the results given in Tables 2 and 4
with the corresponding Table 1 and 3, we can conclude
that the duration of decrypting the message exceeds the
time required for encryption. This is due to significantly

Fig. 2. Comparative graph of execution time

Fig. 3. Comparative graph of execution time

Fig. 4. Comparative graph of execution time

exceeding the values of the generated private keys the
similar values of public keys and increases the number of
calculations. For keys of any size, the results of the decryp-
tion algorithm on the GPU are better than the results on the
central one. The large acceleration in speed is obtained by
CUDA to parallelize the RSA algorithm on the GPU.

To assess the effectiveness of parallel imple-
mentation for Tables 4, the acceleration factor was cal-

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Measuring equipment and metrology. Vol. 82, No. 2, 2021 9

culated [16]. The results of the calculation of the latter
are given in Tables 5 and 6, where S1 is the acceleration
factor for multithreaded implementation on the CPU; S2 –
for realization on a graphical processor.

From Tables 5–6, we can conclude that the
acceleration factor for the encryption process is small,
but there exist significant advantages for decrypting.

Table 5

Coefficients of acceleration for the tables of
experimental group 1
Encryption Decryption Key size,

bit S1 S2 S1 S2
768 0.121 0.105 0.922 2.168

1024 0.138 0.138 1.133 3.218
2048 0.362 0.534 2.079 8.236
3072 0.7 1.09 3.33 11.231
4096 0.948 1.608 2.853 10.111
6144 1.317 2.153 4.674 18.277
8192 1.6 3.051 5.234 18.98

Table 6

Coefficients of acceleration for the tables of
experimental group 2
Encryption Decryption Key size,

bit S1 S2 S1 S2
768 0.662 0.528 0.874 1.838

1024 0.75 0.589 1.238 3.647
2048 0.403 0.729 2.379 9.098
3072 0.76 1.309 3.218 10.804
4096 1 1.583 3.072 15.252
6144 2.226 3.219 4.403 21.211
8192 2.229 3.964 5.847 22.049

6. Conclusions
To speed up the transmission/reception of mea-

surement information between remote devices, CUDA
technology has been applied for the parallelization of the
RSA algorithm. The obtained results with parallelization
based on OpenMP technology are compared with its
sequential variant. To evaluate the efficiency of the
proposed parallel algorithm, the acceleration factor was
calculated: for the encryption algorithm with the key size
of 8192 the mentioned factor is ~ 4, and for the dec-
ryption algorithm under the condition of GPU appli-
cation this factor is estimated as 22. That is, CUDA tech-
nology could be applied to accelerate the decryption
algorithm for large public keys.

In general, the developed method confirms the
effectiveness of parallel computing on a graphical pro-
cessor to increase the productivity of cryptographic
algorithms and accelerating the virtual system.

7. Conflict of interest

The authors state that there are no financial or
other conflicts regarding the work.

References
[1] H. Sutter, “The free lunch is over: A Fundamental

Turn Toward Concurrency in Software”, Dr. Dobb’s Journal,
vol. 30, no. 3, p.7, 2005.

[2] M. Balandin, E. Shurina, “The Methods for Solving
High-dimensional SLAE”, NSTU, pp. 28–35, 2000.

[3] B. Chapman, G. Jost, “Ruud van der Pas: Using
OpenMP: portable shared memory parallel programming”, Sc.
and Eng. Comp., Cambridge, pp. 164–172, 2008.

[4] L. Mochurad, N. Boyko, V.Sheketa, “Paralle-
lization of the Process of Calculating the Optimal Route for a
Strike Aircraft Flight”, Proc. of 2nd Int. Workshop on Control,
pp. 63–75, 2020.

[5] C. Yang, C. Huang, C. Lin, “Hybrid CUDA,
OpenMP, and MPI parallel programming on multicore GPU
clusters”, Comp. phys. com., vol. 1, pp. 266–269, 2011.

[6] A. Grama, A. Gupta, G. Karypis, V. Kumar, “Intro-
duction to Parallel Computing”, Addison Wesley, p. 856, 2003.

[7] L. Mochurad, N. Boyko, “Technologies of
distributed systems and parallel computation:”, Publ. House
“Bona”, 2020.

[8] R. Farber, “CUDA Application Design and
Development”, Morgan Kaufmann, p. 336, 2011.

[9] J. Sanders, E. Kandrot, “CUDA by Example: An
Introduction to General Purpose GPU Programming”,
Addison-Wesley Professional, p. 312, 2010.

[10] S. Barychev, V. Honcharov, R. Serov, “Fundamen-
tals of Modern Cryptography: A Textbook”, RF: Hot Line,
2002.

[11] A. Metolkin, V. Kardashuk, “Studies of the Methods
of enhancing the cryptographic stability”, Bull East-Ukr.
University named after V. Dal, vol. 6, pp. 90–95, 2018 (in Ukr.).

[12] Official page of CUDA technologies, 2020.
[Online]. Available: https://developer.nvidia.com/cuda-zone.

[13] O. Klochko, E. Kovalenko, “RSA Data encryption
algorithm”, J.: Science, technics and education, vol 3, pp. 1–11,
2016.

[14] S. Prasanth, K. Jegadish, B. Partibane, “Efficient
Modular Exponentiation Architectures for RSA Algorithm”,
Int. J. Eng. Res. in Electronic and Com. Eng., vol. 3, no. 5,
pp. 230–234, 2016.

[15] S. Saxena, B. Kapoor, “State of the Art Parallel
Approaches for RSA Public Key Based Cryptosystem”, Int. J.
on Comp. Sc. & Appl. (IJCSA), Vol. 5, No. 1, Febr. 2015.

[16] D. Chang, M. Kantardzic, M. Ouyang, “Hierar-
chical Clustering with CUDA/GPU”, ISCA PDCCS, pp. 7–12,
2009.

[17] L. Mochurad, N. Boyko, N. Stanasiuk, “Fore-
casting stock prices and accounting for stock market on
multicore computers”, Int. Workshop on Conflict Man. in
Glob. Inf. Networks, pp. 276–289, 2019.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

