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Abstract. The paper examines the efficiency of the application of CUDA technologies for the parallelization of the 
cryptographic algorithm with the public key. The speed of execution of several implementations of the algorithm is compared: 
sequential implementation on the CPU and two parallel implementations – on the CPU and GPU. A description of the public key 
algorithm is presented, as well as properties that allow it to be parallelized. The advantages and disadvantages of parallel 
implementations are analyzed. It is shown that each of them can be suitable for different scenarios. The software was developed 
and several numerical experiments were performed. The reliability of the obtained results of encryption and decryption is 
confirmed. To eliminate the influence of external factors at the time of execution the algorithm was tested ten times in a row and 
the average value was calculated. Acceleration coefficients for message encryption and decryption algorithms were estimated 
based on OpenMP and CUDA technology. The proposed approach focuses on the possibility of further optimization through the 
prospects of developing a multi-core architecture of computer systems and graphic processors. 
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1. Introduction 

The demand and need to increase the speed of 
software applications continues to grow as programs are 
developed that require more computing power. In the 
field of measuring technology, there is often an increase 
in the share of virtual measuring instruments relative to 
real ones. With the help of elements of the graphic 
library, many measuring equipment has been imple-
mented to date. Such changes most noticeable in more 
developed countries, such as the United States, Germa-
ny, France, etc. It is known that NASA also very often 
uses similar tools on the Lab View platform, which 
reduces the time to build various information and measu-
rement systems for aircraft, and a variety of auxiliary 
measuring equipment. As known, such systems are quite 
cumbersome and large and require quite powerful com-
puter equipment. Until 2004, Moore’s Law allowed the 
number of transistors in a processor to automatically 
increase software performance [1]. That is, if the pro-
cessor executes more instructions per second, the software 
will also run faster. However, because of the physical 
limitations of processors and heating of components, it is 
impossible to continue to rely on Moore’s Law to achieve 
faster executions of algorithms, consequently the collec-
tion of measurement data in real-time, which makes a 
more instrumental error in the measurement system. 

One of the alternatives is parallel computing, 
which uses the advantages of a multi-core computer 
architecture [2–5]. In this model, multiprocessors com-
municate with each other through a shared cache con-
tained in the hardware of the device. However, the 
software needs to be adapted so that it can use multiple 
processors to work on a single task, that is, use tech-

niques of parallel computing to change the way code is 
written and executed. 

One of the most interesting and popular areas of 
modern development is the transition from the imple-
mentation of computing on the CPU to computing on the 
GPU. In particular, Nvidia proposed its solution by 
developing the CUDA parallel computing architecture. 
Nvidia offers examples of the practical application of 
CUDA to solve general-purpose problems [6–8]. The 
observed increase in performance compared to the CPU 
in these examples is from 10 to 100 times. This approach 
can be applied to virtual measuring instruments. 

Parallel execution of a sequential stream of instruc-
tions on the CPU has certain basic limitations and simple 
addition of executable blocks cannot achieve a significant 
increase in speed. At the same time, the GPU was created 
to execute parallel instructions. Most of the graphics 
processor, in contrast to the central, is occupied by 
executable units, which gives an advantage in the speed of 
tasks execution related to parallel data processing, namely 
when the same sequence of operations is applied to a large 
amount of data and the number of instructions exceeds the 
number of memory accesses. Thus, the architecture of the 
processor allows you to achieve greater efficiency in pa-
rallel computing. Also, an important advantage of using a 
graphics processor for general-purpose computing is that 
the computing CPU remains less busy and can be used to 
perform other tasks. 

This paper analyzes different approaches to the 
parallelization of the block encryption algorithm and the 
decryption of the public key algorithm. This algorithm is 
used in a wide range of security applications [9], it can 
also be used to encrypt data when transmitting measu-
rement information over long distances. 
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2. Problem Statement and Analysis 

It is known [10], the RSA algorithm is one of the 
most well-known public-key cryptographic algorithms. 
The cryptographic stability of the algorithm is based on 
the computational complexity of factorization of large 
numbers [11]. RSA is a block algorithm that makes it 
suitable for parallelization. 

The RSA public key consists of a module n  of a 
certain length (product of prime numbers p  and q ) and 
an exponent e . The length of the number n is deter-
mined in bits. The associated secret key consists of the 
same number n , and the value d of 1mod ( ),d e f n∗ =  
where ( )f n  – it is the Euler function. Ideally, the prime 
numbers generated by the random number generator 
used to build the module n , should not be reused. The 
probability that random numbers p  or q  will be repea-
ted when generating keys should go to 0. 

The RSA algorithm is characterized by perfect 
security, simple key management, it is practical in 
execution and understanding. However, in the RSA 
encryption algorithm, modular power seriously affects 
the performance of the algorithm and can become a 
bottleneck, which limits its technical application. There-
fore, the optimization of the RSA encryption algorithm 
focuses on research related to the development of multi-
core processor architecture. The use of OpenMP, 
Pthreads and other multithreaded technologies allows to 
use of more computing power, increases efficiency, and 
reduces data processing time. 

CUDA technology makes it possible to perform 
general-purpose calculations on a graphics processor. 
Nvidia’s CUDA platform enables software developers to 
use thousands of stream processors capable of providing 
parallel acceleration in a single node [12]. CUDA 
technology allows studying the feasibility of running a 
parallel program of the RSA algorithm and use JCUDA 
to implement parallelization. 

There is no correlation or relationship between 
packet data in the RSA encryption process. Therefore, 
you can use the domain decomposition method. In this 
case, all data will be classified as domains. Each thread 
or process will process its subdomain. Due to data 
parallelism, the method [13] increases the computational 
speed of RSA. The bottleneck of the RSA encryption 
process is the need for big data processing. CUDA al-
lows parallel encryption of data between packets. 

3. The Goal of the Work 

The goal of this work is to analyze the effec-
tiveness of CUDA technology in parallelization of the 
RSA encryption and decryption algorithm and increase 
the speed of the measuring system, as well as to compare 
the results with parallelization based on OpenMP tech-
nology and its sequential version. 

4. Parallelization of the RSA Algorithm 

Cryptographic algorithms, in particular the RSA 
algorithm, usually work with large numbers that are 
hundreds and thousands of bits in size. The operation of 
modular exponentiation such numbers is associated with 
significant costs, which limits the operation of the 
algorithm at the hardware level and, as a consequence, 
slows down its operation. Because in practice the encry-
ption process must take place in real-time, this shor-
tcoming is critical. To solve this problem, experts have 
been developed various algorithms, one of such algo-
rithms is the RSA algorithm [14]. 

The main idea of the algorithm is cyclic partial 
multiplication with decreasing length of intermediate 
results. In the first stage, the indicator is converted into 
binary form. Then the value received is read from right to 
left, that is, starting with smaller bits. The number of 
iterations is equal to the number of bits in the binary 
representation of the indicator, but the result includes only 
those in which the corresponding bit is equal to 1. The 
result is obtained according to the following formula [15]: 

1 2

0
( ) (mod ),

i in a

i
res b m

−

=
= ∏  

where n  is the number of bits of the indicator, b  is the 
basis, i  is the iteration number, m  is the module 
(absolute value). The following is the pseudocode of this 
algorithm: 
result = 1  
exponent = e  
while exponent > 0  
if (exponent mod 2 == 1):  
result = (result * g) mod m  
exponent = exponent >> 1  
g = (g * g) mod m  
return result 

The Open MP standard is used to implement a 
parallel algorithm on the CPU. The parallelization pro-
cess was carried out directly in the encryption/decryption 
units. Threads for parallel code processing and distri-
bution of instructions between them occurred dynami-
cally using a combination of directives #pragma omp 
parallel for (up to 256 threads). The previously described 
algorithm “Right-to-left binary method” was used to 
implement the modular exponentiation. 

The following is the source code for the encry-
ption feature: 

void encrypt(int *num, int *key, int *den, unsigned int *result, 
size_t len) {  
#pragma omp parallel for  
for (int i=0; i < len; i++) {  
result[i] = mod(num[i], *key, *den);  
}  

At parallelization utilizing CUDA the algorithm 
of interaction between the central and graphic processors 
constructed as follows: 
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Step 1: Reception by the CPU of the original message 
and parameters. 

Step 2: Check for available graphics devices and 
initialize them. 

Step 3: Initialize copies of host and device variables: 
* dev_num, * dev_key, * dev_den, * dev_res. 
Step 4: Allocate GPU space for these variables. 
Step 5: Transfer the input data to the GPU. 
Step 6: Calling the CUDA kernel on the GPU: 
RSA <<< nblocks, nthreads >>> (dev_num, dev_key, 

dev_den, dev_res) 
Step 7: Copy the results back to the host. 
Step 8: Clear the memory. 

Here, the RSA kernel is a function that is execu-
ted on a group of threads. According to the researched 
problem, the RSA kernel implements the calculation of 
the encrypted text, using the algorithm of exponentiation 
of “Right-to-left binary method”. For all calculations on 
the GPU, 1 block is allocated, which contains 512 
threads. 

The following is the source code of the encry-
ption-decryption function of the RSA algorithm: 

_global_ void rsa(int *num, int *key, int *den, unsigned int 
*result) {  

int i = threadIdx.x + blockIdx.x * blockDim.x;  
int temp = mod(num[i], *key, *den);  
atomicExch(&result[i], temp);  
} , 
where mod (num[i], *key, *den) – the function of the 
modular erection in the degree described above. Here 
num[i] – the corresponding processing unit, *key – an 
indicator of the degree, *den – module. The result is 
assigned to the temp variable and returned to the host. 

To identify a specific thread, its index is cal-
culated that is the unique identifier of each thread in the 
block, which executes one instruction, but with a dif-
ferent set of data. The data are distributed among the 
threads [16]. Such property as multithreading is also 
investigated here. The optimal number of threads should 
be equal to the size of the input file, but this size is 
variable. When the number of threads exceeds the op-
timal one, some threads consume only resources. In the 
case when the number of threads is lesser than the 
optimal value, the load on the thread increases. The grid 
128×128 seems to be the optimal number able to operate 
with large and small files. 

5. The Results of Parallelization  
of the RSA Algorithm 

To evaluate the performance of the implemented 
programs, the same file was used for the encryption and 
decryption algorithm. Thus, the reliability of the 
obtained results was checked, because the decrypted file 
corresponds to the same original file. Similarly, the 
execution time was measured to make appropriate 

comparisons. The algorithm was performed 10 times in a 
row to average the results, to eliminate the influence of 
external factors. 

To study the work and compare the efficiency of 
the written algorithms, numerous experiments were 
conducted, consisting of the following test groups: 

1. Fixed message size (760 bits). Encryption and 
decryption algorithms are performed with keys of 
different sizes (from 768 bits to 8192 bits). 

2. Incoming messages of variable size. The size is 
determined by the size of the encryption key. 

Numerical experiments were performed on a PC 
with the following characteristics: 
CPU: Intel (R) Core ™ i7-8550U 1.8GHz, No of Cores: 
2 
Memory: 16,00 Gb 
GPU: NVIDIA GeForce GT 550m, 96 CUDA cores 
System: Windows 10 

Table 1–4 is represented the results of expe-
riments in groups. The results of the experiments of 
group 1 are given in Table 1 and Table 2, and the results 
of experiments of group 2 – in Table 3 and Table 4. Vi-
sualization of the obtained results is presented in Fig. 1–4, 
respectively. 
 

Table 1 

The execution time of the encryption algorithm for  
a message size of 760 bits with a variable key size 

Execution time, s 

Key size, 
bit 

The 
sequential 

algorithm on 
the CPU 

The parallel 
algorithm on 

the CPU 

The parallel 
algorithm on 

the GPU 

768 0.112 0.92 1.06 
1024 0.129 0.93 0.93 
2048 0.46 1.27 0.86 
3072 0.84 1.2 0.77 
4096 1.48 1.56 0.92 
6144 4.07 3.09 1.89 
8192 5.89 3.68 1.93 

 
 

Fig. 1. Visualization of execution time  
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Table 2 

The execution time of the decryption algorithm  
for a message of 760 bits with a variable key size 

 

Execution time, s 

Key 
size, bit 

The 
sequential 
algorithm 

on the 
CPU 

The parallel 
algorithm on the 

CPU 

The parallel 
algorithm on the 

GPU 

768 5.03 5.45 2.32 
1024 8.82 7.78 2.74 
2048 76.27 36.67 9.26 
3072 252.04 75.68 22.44 
4096 410.22 143.78 40.57 
6144 1724.45 368.89 94.35 
8192 2234.38 446.8 125.16 

 

Table 3 
The execution time of the encryption algorithm  

for the variable size message 
Execution time, s 

Key size, bit 
The 

sequential 
algorithm on 

the CPU 

The parallel 
algorithm on 

the CPU 

The parallel 
algorithm on 

the GPU 

768 0.55 0.83 1.04 
1024 0.69 0.92 1.17 
2048 1.05 2.6 1.44 
3072 2.96 3.89 2.26 
4096 6.7 6.7 4.23 
6144 25.69 11.54 7.98 
8192 42.9 19.24 10.82 

Table 4 

The execution time of the decryption algorithm  
for the variable size message 

Execution time, s 

Key size, bit 
The 

sequential 
algorithm on 

the CPU 

The parallel 
algorithm on 

the CPU 

The parallel 
algorithm on 

the GPU 

768 4.67 5.34 2.54 
1024 10.87 8.78 2.98 
2048 149.67 62.89 16.45 
3072 603.66 187.54 55.87 
4096 1887.7 614.43 123.76 
6144 9534.87 2165.34 449.52 
8192 26893.05 4598.69 1489.92 

 

The results are given in Tables 1 and 3 show that 
the implementation of the algorithm on the GPU starts 
working faster than the other two implementations when 
the key size becomes larger than 3072 bits. 

Comparing the results given in Tables 2 and 4 
with the corresponding Table 1 and 3, we can conclude 
that the duration of decrypting the message exceeds the 
time required for encryption. This is due to  significantly  

 
Fig. 2. Comparative graph of execution time  

 

 
Fig. 3. Comparative graph of execution time  

 

 

 
Fig. 4. Comparative graph of execution time  

 
exceeding the values of the generated private keys the 
similar values of public keys and increases the number of 
calculations. For keys of any size, the results of the decryp-
tion algorithm on the GPU are better than the results on the 
central one. The large acceleration in speed is obtained by 
CUDA to parallelize the RSA algorithm on the GPU. 

To assess the effectiveness of parallel imple-
mentation for Tables 4, the acceleration factor was cal-
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culated [16]. The results of the calculation of the latter 
are given in Tables 5 and 6, where S1 is the acceleration 
factor for multithreaded implementation on the CPU; S2 – 
for realization on a graphical processor. 

From Tables 5–6, we can conclude that the 
acceleration factor for the encryption process is small, 
but there exist significant advantages for decrypting. 
 

Table 5 

Coefficients of acceleration for the tables of 
experimental group 1 
Encryption Decryption Key size, 

bit S1 S2 S1 S2 
768 0.121 0.105 0.922 2.168 

1024 0.138 0.138 1.133 3.218 
2048 0.362 0.534 2.079 8.236 
3072 0.7 1.09 3.33 11.231 
4096 0.948 1.608 2.853 10.111 
6144 1.317 2.153 4.674 18.277 
8192 1.6 3.051 5.234 18.98 

Table 6 

Coefficients of acceleration for the tables of 
experimental group 2 
Encryption Decryption Key size, 

bit S1 S2 S1 S2 
768 0.662 0.528 0.874 1.838 

1024 0.75 0.589 1.238 3.647 
2048 0.403 0.729 2.379 9.098 
3072 0.76 1.309 3.218 10.804 
4096 1 1.583 3.072 15.252 
6144 2.226 3.219 4.403 21.211 
8192 2.229 3.964 5.847 22.049 

 

6. Conclusions 
To speed up the transmission/reception of mea-

surement information between remote devices, CUDA 
technology has been applied for the parallelization of the 
RSA algorithm. The obtained results with parallelization 
based on OpenMP technology are compared with its 
sequential variant. To evaluate the efficiency of the 
proposed parallel algorithm, the acceleration factor was 
calculated: for the encryption algorithm with the key size 
of 8192 the mentioned factor is ~ 4, and for the dec-
ryption algorithm under the condition of GPU appli-
cation this factor is estimated as 22. That is, CUDA tech-
nology could be applied to accelerate the decryption 
algorithm for large public keys.  

In general, the developed method confirms the 
effectiveness of parallel computing on a graphical pro-
cessor to increase the productivity of cryptographic 
algorithms and accelerating the virtual system. 
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