
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 6, No. 2, 2021

SOFTWARE IMPLEMENTATION OF THE ALGORITHM FOR
RECOGNIZING PROTECTIVE ELEMENTS ON THE FACE

Voloshyn Mykola, Yevhenii Vavruk

Lviv Polytechnic National University, 12, S. Banderу Str., Lviv, 79013, Ukraine.
Authors’ e-mail: Mykola.Voloshyn.mki.2020@lpnu.ua, Yevhenii.Y.Vavruk@lpnu.ua

https://doi.org/10.23939/acps2021.02.155

Submitted on 29.10.2021

© Voloshyn M., Vavruk Y., 2021

Abstract: The quarantine restrictions introduced during
COVID-19 are necessary to minimize the spread of
coronavirus disease. These measures include a fixed
number of people in the room, social distance, wearing
protective equipment. These restrictions are achieved by
the work of technological control workers and the police.
However, people are not ideal creatures, quite often the
human factor makes its adjustments. That is why in this
work we have developed software for determining the
protective elements on the face in real time using the
Python scripting language, the open software libraries
OpenCV v4.5.4, TensorFlow v2.6.0, Keras v2.6.0 and
MobileNetV2 using the camera.

The training program uses a prepared set of photos from
KAGGLE – with a mask and without a mask. This set has
been expanded by the authors to include different types of
masks and their location. Using TensorFlow, Keras,
MobileNetV2, a model is created to study the neural net-
work by analyzing images. The generated neural network
uses a model to determine the masks. You can preview the
learning result of the network – it is presented as a graphic
file. A program that uses the connected camera is then
launched and the user can test the operation.

This model can be easily deployed on embedded systems
such as Raspberry Pi, Google Coral, and become a
hardware and software automated system that can be used
in crowded places – airports, shopping malls, stadiums,
government agencies and more.

Index Terms: Computer Vision, Deep Learning,
TensorFlow, OpenCV, Keras, MobileNetV2, KAGGLE

I. INTRODUCTION
SARS-CoV-2 is a virus that causes the develop-

ment of respiratory diseases in humans (including acute
respiratory disease COVID-19) and is transmitted from
person to person [1]. The World Health Organization has
described the outbreak of COVID-19 as a pandemic with
extremely high population damage across the world [2].
Therefore, governments have developed a number of
restrictions to minimize the spread of coronavirus – to
wear protective elements on the face, to maintain social
distance.

To comply with these requirements, automated
subject monitoring systems are being actively developed
using various software and hardware systems [3], [4].

Such systems are not perfect because they have a
number of disadvantages. Among them: the lack of

recognition of different types of protective elements,
incorrect identification of the position of protective
elements on the face.

This paper presents a software algorithm that
minimizes the impact of the above shortcomings and is
based on the use of technologies of artificial intelligence
[5], deep learning [6], computer vision [7]. The project is
implemented using open source software packages:
OpenCV [8], TensorFlow [9], [12], Keras [10],
MobileNetV2 [11].

This algorithm can be transferred to embedded
systems, which allows you to develop a full-fledged
automated system for recognizing protective elements on
the face.

II. PURPOSE OF THE ARTICLE
The purpose of this article is to develop software

for the identification of security features under
quarantine restrictions, determining the probability of
recognizing protective elements. The software must
work in real time. It is necessary to achieve high
accuracy in determining the contours of the face, the
correct placement and use of different types of protective
elements on the face. There is a hope for software
deployment capabilities in embedded systems with the
addition of hardware. There are also additional goals:
creation and methods of learning the neural network,
development of the structural algorithm of the program.

III. BASIC APPROACHES
TO SOFTWARE CREATION

Coronavirus disease has caused irreparable damage
to humanity [1], [2]. The development of an algorithm
for detecting protective elements on the face involves the
use and combination of many technologies [3], [4]. With
the development of information technology in the
modern world, an important role is given to computer
tools that are able to more accurately and efficiently
perform tasks where a person is not able to give good
results over a long period of time or a person cannot
perform certain tasks. Therefore, there are technologies
that can facilitate the implementation of such processes.

Neural networks are used to solve facial
recognition problems. An artificial neural network is a

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Mykola Voloshyn, Yevhenii Vavruk 156

mathematical model modeled after a network of
biological nerve cells. The elements of such a network –
neurons – the smallest computing units – are a kind of
“nano-processors”, each of which receives information,
performs simple calculations on it and transfers it
further. In branched and complex neural networks,
neurons are grouped into “layers”, and the neuron of
each layer can receive information from all neurons of
the previous layer, and transmit, respectively, to all
neurons of the next one [5].

To recognize the protective elements on the face, a
convolutional neural network is used – the main tool for
the classification and recognition of objects, faces in
photographs, speech recognition (Fig. 1).

Fig. 1. Convolutional neural network architecture

Machine learning allows computers to learn on
their own. This is possible thanks to the processing
power of modern computers, which can easily process
large datasets.

Supervised learning involves the use of labeled
datasets containing inputs and expected outputs. When
you train a neural network with supervised learning, you
supply both inputs and expected outputs.

If the result generated by the neural network is
incorrect, it will adjust its calculations. It is an iterative
process that ends when the network stops making
mistakes.

An example of a supervised learning problem is
image processing. The neural network learns to make a
weather forecast using historical data. The training data
includes inputs (pressure, humidity, wind speed) and
outputs (temperature).

Unsupervised learning is machine learning using
datasets with no specific structure.

In the process of training the neural network, it
performs a logical classification of data independently.
An example of a problem with unsupervised learning is
predicting the behavior of online store visitors. In this
case, the network is not trained on labeled data. Instead,
it classifies the input data on its own and answers the

question of which users are most likely to buy different
products.

Deep learning is a machine learning technique.
Deep learning allows you to train a model to predict the
outcome from a set of inputs [6]. Both supervised and
unsupervised learning can be used to train the network
(Fig. 2).

Fig. 2. The difference between deep and machine learning

Deep learning involves the use of a large database
of examples – datasets. They are needed to train the
neural network that creates the model – a set of data with
which the network is able to predict the outcome and
make decisions.

Depending on the types of tasks, there are many
resources with datasets. The most common are
KAGGLE (https://www.kaggle.com/omkargurav/face-
mask-dataset), Google Dataset. It is also advisable to use
GitHub or create your own database using LabelImg, for
example.

For image processing, modern resources provide
for the use of another function of artificial intelligence –
computer vision.

As a technology discipline, computer vision seeks
to apply the theories and models to the creation of
computer vision systems. Examples of the application of
such systems can be: process control systems (industrial
robots, autonomous vehicles), video surveillance sys-
tems, systems for organizing information (for example,
for indexing image databases), systems for modeling
objects or the environment (analysis of medical images,
topographic modeling), interaction systems (for exa-
mple, input devices for a human-machine interaction
system), augmented reality systems, computational pho-
tography, for example, for mobile devices with cameras
[7].

One of the most common software for imple-
menting computer vision is OpenCV, is an open-source
library of general-purpose computer vision, image
processing and numerical algorithms. Implemented in
C/C++, there are also versions for Python, Java, Ruby,
Matlab and other languages.

There is a generally accepted scheme for perfor-
ming the task of image identification using OpenCV
(Fig. 3).

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Software Implementation of the Algorithm for Recognizing Protective Elements on The Face 157

Image processing using OpenCV is a complex set
of subtasks [8]. However, all these tasks are described by
several functions, which makes this library quite flexible
and often used even by large IT businesses.

Image capture

Preprocessing

Definition of
features

Detection,
segmentation

Motion detection, 3D
analysis

Definition, decision making

Fig. 3. General block diagram
of an OpenCV application

IV. DESCRIPTION OF COMPONENTS AND MODE
OF OPERATION OF THE ALGORITHM

To develop an algorithm for identifying protective
elements on the face, the Python scripting language was
used, which has the support of libraries for the creation
and use of neural networks with appropriate auxiliary
resources.

TensorFlow and Keras v2.6.0 were used to create
the convolutional neural network. These are open
program libraries with the functions of creating neural
networks and their training – machine and deep learning.
They are complementary – using TensorFlow to create
and configure neural networks [9], and Keras – a set of
application programming interfaces used for network
training [10].

Because in-depth network training depends on the
amount of data, this process can be quite time
consuming. To optimize this process, additional software
components are used – MobileNetV2 [11]. This is a
lightweight deep neural network for embedded and
mobile devices. The network is based on the use of deep
convolution – processing (convolution) occurs for each
input channel separately (input channel – the division of
the input flow of information into convolutional cores).
The network uses 32 convolutional filters and has 3
processing layers: point convolution – expansion layer
(creates a reflection of the input stream in a large
dimension), depthwise convolution and the final

convolution 1x1 – bottleneck layer. This allows you to
achieve the speed of processing input data and easily
transfer the network between platforms.

A neural network training requires a dataset, a large
set of data that allows a neural network to make
predictions and identify objects. KAGGLE image dataset
is used for this purpose.

OpenCV, which implements computer vision, is
used to run the program in real time. It is necessary to
determine the contours of the user's face and subsequent
identification of security features.

The structure of software algorithm involves 2
stages: neural network training and detection (Fig. 4).

Look face
mask dataset

Train face
mask classifier

with Keras/
Tensorflow

Serialize face
mask classifier

to disk

Load face
mask classifier

from disk

Detect faces in
image/video

stream

Extract each
face

Apply face
mask classifier

to each face
determine

“mask” or “no
mask”

Show result

Phase #1: Train Face Mask Detector

Phase #2: Apply Face
Mask Detector

Fig. 4. Basic block diagram of the algorithm

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Mykola Voloshyn, Yevhenii Vavruk 158

The dataset has been modified to determine the
different types of masks and their correct location. It
contains two folders: “with mask” (2150 images) and
“without mask” (2248 images). Each image is loaded
with a photo size transformation to determine certain
features (Fig. 5).

At the training stage, the speed, number of packets
and the amount of data in each packet are indicated.

For training, a full image is provided, measuring
approximately 224x224 pixels in high definition – for
proper identification of faces and masks. This involves
taking into account the filling of the photo with colors,
contrasts, clear contours of objects in the photo.

Fig. 5. Example of image for processing

The next step is to download and pre-process the
data. Pre-processing is the replacement of image size by
224x224 pixels, conversion of images into an array of
data in the format [-1,1] – label generation [12].

The next step is to configure the MobileNetV2
network, which involves configuring the main and
auxiliary layers of input processing.

Then there is a one-time encoding of the created
labels with indexes. These indices will form the future
model for which the neural network will work.

To improve the efficiency of the algorithm, the
images are also processed directly during training –
changing the zoom, the offset parameters, the angle of
rotation. This is done using an image generator (Ima-
geDataGenerator) and is additional data when learning
the network.

Now, as the architecture is not configured, the data
is loaded, processed and recoded into appropriate labels,
the process of learning the neural network and gene-
rating the model takes place. After that it is necessary to
check the selected model on the test data set.

To test the effectiveness of network learning, a pre-
test schedule is built on the basis of the MatPlotLib
library, which is supported by the Python language. This
will allow you to check the correctness of the definition
of protective elements on the face in percentage.

If the learning outcomes are satisfactory, the transi-
tion to the real-time recognition program is performed.

After connecting OpenCV v4.5.4 parameters are set
for library work: image (input, with borders for the
conclusion), face (catalog for definition of a contour),
model (created during training), confidence (for filtering
of weak detection of faces – value of 50% will be
enough).

The next step is to load the generated model and
pre-process to capture the frame size of the future
display and increase, done by replacing the previous
image by increasing the size to 300x300 pixels and
calculating the average value.

The value determines the face to localize all faces
in the images. The result is checked with a threshold of
confidence – they must be appropriate [13].

A boundary triangle is created to identify the face,
by linking the results obtained earlier and the confidence
threshold. An additional step to correctly identify the
face in this test is the model that was created during the
training of the system. Next, determine the possible
position of the mask on the face.

The last step is to set the label class and display the
result to the user. The label class is determined based on
the probabilities obtained when processing the network
model and the purpose of this label of the corresponding
color: green – the user in the mask, red – the user
without the mask. The text of the label with the name of
the class and the probability of detection of the security
element and the rectangle of the front frame is formed
using the OpenCV drawing functions. The processed
image is shown on the display.

V. VERIFICATION
In order to check the algorithm, it must be tested.
The proposed algorithm uses a Lenovo IdeaPad

Gaming I15 laptop with a six-core Intel Core i7-9750
processor, frequency of 2.6 GHz. The size of RAM is 16
GB. Operation system is Windows 10 Pro.

The neural network was trained on a data set that
provides 4398 images. They contain photos of faces
without protective elements and with them (also involves
the use of different types of masks).

Learning takes place by epochs – stages of learning
that the network goes through. Number of epochs – 20.
If the result is not high enough for higher efficiency, the
number of epochs can be increased. Each epoch is
divided by the amount of data loaded – this is a constant
that divides the input array into equal intervals. This
work uses 2 intervals (Fig. 6). On a computer with the
configuration described above, according to the available
dataset from KAGGLE, neural network training takes 53
minutes.

Fig. 6. Stages of deep learning

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Software Implementation of the Algorithm for Recognizing Protective Elements on The Face 159

After training and creating a model of work,
MatPlotLib v3.4.3 generates a graph with the percentage
of accuracy and loss. The result showed that the accu-
racy of masking detection in this network at the end of
training is approximately 99%, which is a good indicator
and allows us to test our model in real time (Fig. 7).

The next step in testing is to run a real-time
identification algorithm.

Since this is a software algorithm, it does not
involve the use of additional hardware resources, it is
enough to use a local camera built into any modern
laptop. Video streaming through the camera is done by
activating it using the VideoStream function. The result
of the camera – identification of the user, determining
the contour of his face and determining the status of the
user – with or without a mask (Fig. 8).

Fig. 7. Graph of calculation of accuracy and loss in deep
learning and model generation

Fig. 8. Identification of the user's face without a mask

The real-time face recognition time in a video
stream is approximately 200 milliseconds. Depending on
the location of the head, the probability of face
identification ranges from 95 to 100 percent.

The second stage of verification is the identification
of the usual protective mask on the face and verification
of the result. (Fig. 9).

The real-time face recognition time in a video
stream is approximately 300 milliseconds. Depending on
the location of the head, the probability of facial
identification ranges from 95 to 100 percent.

The next step is to check the identification of
protective elements in the wrong position of the mask –
unclosed nose (Fig. 10). The class identification time is
320 milliseconds. The probability of recognition is in the
range of 86–97 percent.

Fig. 9. Identification of the user's face with a mask

Fig. 10. Check the identification with the nose not closed

Identification of other types of masks is also
checked. (Fig. 11). Recognition time is 300 milliseconds.
The probability of class recognition is 95-100 percent.

Fig. 11. Verification of identification
of homemade protective masks

The results of the study showed that this software
product defines the contours of the face, displays them in
the video stream and identifies the protective elements. It
displays the class to which the user belongs and the
probability of the recognition. The software also identifies
protective elements of different types. The program is able
to determine whether the contour of the mask on the face is
in the correct position – if the mask does not cover the nose,
the user is identified in the class “NoMask”.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Mykola Voloshyn, Yevhenii Vavruk 160

VI. CONCLUSION
In this paper, an algorithm for determining the

protective elements on the face in quarantine measures
was developed and tested. The algorithm of work was
created and described. The project is implemented in
Python scripting language using computer vision. The
neural network is taught by the method of deep learning
using open data sets and libraries. The results showed that
the recognition is performed with accuracy: 95–100
percent for the face, 95–100 percent for the recognition of
the mask, 86–97 percent when the mask is in the wrong
position, 95100 percent for the identification of other
types of masks. The resources used in this work allow you
to deploy software on embedded systems, such as
Raspberry Pi, which will further improve the hardware
features to create a software-hardware automated system.

REFERENCES
[1] World Health Organization. Transmission of SARS-CoV-2 –

implications for infection prevention precautions: Scientific brief.
July, 2020. Available at: https://apps.who.int/iris/bitstream/handle/
10665/333114/WHO-2019-nCoV-Sci_Brief-
Transmission_modes-2020.3-eng.pdf (Accessed: 18 November
2021).

[2] D. M. Morens, Gregory K. Folkers, and Anthony S. Fauci. What is
a Pandemic? August, 2009. Available at: https://academic.oup.
com/jid/article/200/7/1018/903237 (Accessed: 18 November
2021).

[3] Henderi, A. Setiani Rafika, H. L. Hendric Spits Warnar, M. A.
Saputra. An Application of Mask Detector For Prevent Covid-19
in Public Services Area. Henderi et al 2020 J. Phys.: Conf. Ser.
1641 012063. doi:10.1088/1742-6596/1641/1/012063

[4] G. K. Jakir Hussain, R. Priya, S Rajarajeswari, P. Prasanth,
N. Niyazuddeen. The Face Mask Detection Technology for Image
Analysis in the Covid19 Surveillance System. G K Jakir Hussain
et al 2021 J. Phys.: Conf. Ser. 1916 012084. doi:10.1088/1742-
6596/1916/1/012084.

[5] S. J. Russel, P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed., Upper Saddle River, New Jersey 07458, 2010,
pp. 727–737. ISBN-13: 978-0-13-604259-4. Available at:
https://cs.calvin.edu/courses/cs/344/kvlinden/resources/AIMA-
3rd-edition.pdf (Accessed: 18 November 2021).

[6] C. Ranjan, Understanding Deep Learning Application in Rare
Event Prediction, 1st ed., USA, 2020, pp. 13–15. ISBN:
9798586189561. Available at: https://www.researchgate.net/
publication/348077077_Understanding_Deep_Learning_Applicati
on_in_Rare_Event_Prediction (Accessed: 18 November 2021).

[7] G. Kudrayvtsev, Fundamentals of Computer Vision, May, 2020,
pp.14-16. Available at: https://drive.google.com/file/
d/11CoPBCQHwVTlv7_u1UKSdo3xo1HlCncj/view (Accessed:
18 November 2021).

[8] J. Minichino, J. Howse, Learning OpenCV 3 Computer Vision
with Python, 2nd ed., Birmingham, 2015, pp. 209–228. ISBN 978-
1-78528-384-0. Available at: https://repository.unikom.ac.id/
67052/ (Accessed: 18 November 2021).

[9] T. Hope, Ye. S. Resheff, I. Lieder, Learning TensorFlow: A Guide
to Building Deep Learning Systems, O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472, pp. 23–40.
ISBN: 978-1-491-97851-1. Available at: https://
www.academia.edu/40118139/TensorFlow_A_GUIDE_TO_BUI
LDING_DEEP_LEARNING_SYSTEMS (Accessed: 18
November 2021).

[10] A. Gulli, S. Pal, Deep Learning with Keras: Implemented neural
networks with Keras on Theano and TensorFlow, Birmingham,
2017, pp. 88–100. ISBN: 978-1-78712-842-2. Available at:
https://sites.google.com/site/9520camilemoh3/1oidarkAbetuul7uJ
hyA911 (Accessed: 18 November 2021).

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[12] R. Zhang, TensorFlow 2 Tutorial, 2020, pp. 4–12. Available at:
https://itbook.store/books/1001606140961 (Accessed: 18
November 2021).

[13] G. Garrido, P. Joshi, OpenCV 3.x with Python By Example, 2nd
ed., Birmingham, January, 2018. ISBN: 978-1-78839-690-5.
Available at: https://libribook.com/view1/9744 (Accessed: 18
November 2021).

Mykola Voloshyn is a second-year
Master's student of the Department of
Electronic Computers at Lviv Polytechnic
National University. In 2020, he received
a bachelor's degree in Computer
Engineering, Department of Specialized
Computer Systems. Developed automated
access control and management systems
for organizing work in various fields.

Areas of interest include embedded systems engineering,
such as Robotics, application development for processor
modules (such as STM32, PSoC4, PSoC6), Automated Testing,
the Internet of Things, Artificial Intelligence. He is interested in
designing and modeling modules using VHDL and Verilog
hardware description languages.

Yevhenii Ya. Vavruk is an
associate professor of the Department of
Electronic Computers at Lviv
Polytechnic National University. In 1975
he graduated from the Department of
Electronic Computers of Lviv
Polytechnic Institute with a degree in
Electrical Engineering. During 1975-
2000 he worked at Lviv Research Radio
Engineering Institute, held the position

of head of the group for the development of processors and
signal processing systems. He was engaged in the design,
commissioning, testing of hardware channels for the exchange of
information and measuring systems, processors for the control of
moving objects, high-performance systems and specialized
processors of radar systems.

The topic of the candidate's dissertation is “Functionally-
oriented processors for onboard control and information
processing systems”. From 2001 to 2005 he held the position of
senior lecturer at the Department of Electronic Computers. Since
2005 he has been an associate professor.

Research interests – digital signal and image processing
(design of algorithms and hardware for digital signal and image
processing), development of parallel computational algorithms
and structures.

He is the author of 98 copyright certificates for inventions
in the field of computer technology (32 introduced into
production), 33 articles in professional journals, 28 conference
abstracts, 27 educational and methodological developments
(including 7 textbooks).

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

