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Abstract. The notion of the metrical space 
factorization in the tasks of processing a separate space 
as well as n- image sets based upon the almost 
factorisation of the images of normed separable 
topological spaces is exemplified. It is provided by 
formulating the notion of the almost factorspace as the 
generalization of the topological space factorization. The 
almost equivalency class, which gave the possibility of 
demonstrating the practical realisation of theoretical 
results is considered. The notions of the almost 
equivalency and the solution of the task of the 
superposition of the sets of equitype images for 
continuous and discrete cases are exemplified. 
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Introduction  
The intensive technological development of the 

computer hardware and software caused the increase and 
low price of computing power resulting in large 
accessible computing resources. They began the 
expansion in versatile applied spheres of human 
activities giving some impulse for the active 
development of already existed scientific areas. The 
most significant and dynamically developing sphere is 
the artificial intelligence, i.e. signal, language and image 
processing. The main criterion of this innovative 
processing is its intellectuality aiming at the solution of 
many practical tasks in robotics, control systems, 
decision making processes, etc. The intellect support 
problem raises the need of the active development of 
existing methods of previous processing as well as of 
new ones for the further use of their results in the applied 
tasks of the analysis and synthesis of the artificial 
intelligence systems.   

Classic methods of image processing developed by 
R.Honsales, H.Endryus, M.Tekalp, U.Prett, L.Shapiro, 
Ye.Putiatyn, V.Hrytsyk, Sh.Peleg, R.Vorobel are 
elaborated enough and provide effective results in 
solving the applied image processing tasks. The 
development of these methods has reached its peak 
because they were directed towards processing a 
separate signal.  

The development of a new method for building 
effective computing tools demands the use of new 
approaches to seeking and finding additional information 
and knowledge. V. Kozhemiako, R. Tkachenko, E. 
Bodianskyi, R. Duda, P. Khart and others have 
contributed to this development. Thus the crucial task is 
considered to be the development of the effective means 
of signal set processing, which demands developing new 
models of their representation as well as methods and 
algorithms of their processing. 

 
1. Factorisation of topological signal spaces 
1.1. THE CASE OF A SEPARATE SIGNAL 
Let n-dimensional signal be given 

P: Rn → R1,    (1) 
which in the discrete representation looks as follows 

P: Xn,∞ → R1    (2) 
where Rn – the continuous space of real numbers, which 
in a discrete case was presented as an unlimited set Xn,∞.  

Let the given topology ℑ  [1, 5] be in the space Rn n-
dimensional open areas pm ∈ Rn. E.g., in the case of 
language signals (one-dimensional signals) pm – are frag-
ments, and in the case of images (two-dimensional signals) 
pm are fragments. The set { } [ ]1,m mp∞

∈ ∞
Ξ =   is the topo-

logical space covering ( ),P ℑ  [1, 5], i.e. 
[ ]1,

n
m

m

p
∈ ∞

⊂R U .  

For the class K(P) [16] of the signal P every element 
pm of the covering ∞Ξ  corresponds to some integral 
characteristic 1

m
ΚΛ ∈ R  of the signal representation 

model [16] 

m mp Κ→ Λ .    (3) 
The representation (3) is exceptionally injected and 

gives the possibility for the covering ∞Ξ  to get 
individual space  (as a rule a normed one)  

{ } [ ]1,m m

Κ Κ

∈ ∞
Δ = Λ ,    (4) 

which elements m
ΚΛ  belong to the space R1 in 

accordance with [16].  In general case the characteristics 

m
ΚΛ  can be multidimensional, but it is compulsory for 

them to belong to some normed space. 
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The metrics ( ),m nd Κ
Κ Κ

Δ
Λ Λ  of the individual space 

ΚΔ  makes it possible to induce the metrics of the space 
∞Ξ  

  

( ) ( )
, , , , :

, , .
m n m n m m n n

m n m n

p p p p

d p p d∞ Κ

∞ Κ Κ Κ Κ Κ

Κ Κ
Ξ Δ

∀ ∈ Ξ ∃Λ Λ ∈ Δ → Λ → Λ

= Λ Λ
(5) 

Based upon the metrics (5) of the space ∞Ξ , the 
binary ratio of the equivalency ~ [8] may be introduced 
as 

( ) ( )
, ,

: ~ , , 0.

m n

m n m n m n m n

p p

p p p p d p p d
Κ

∞ Κ

∞

Δ Κ Κ
Ξ Δ

∀ ∈Ξ

≠ ↔ = Λ Λ =
(6) 

which determines the equivalency class [pm] of the 
element pm in the space ∞Ξ as follows 

[ ] ____
1; ;

{ | }m k k
k k m

p p p ∞

= ∞ ≠
= ∈ Ξ  .  (7) 

In compliance with [7] the set of all equivalency 
classes forms a factor space / ~∞Ξ  of the space ∞Ξ  by 
the space ΚΔ   

[ ]{ }/ ~ | , 1..m mp p m∞ ∞Ξ = ∈ Ξ = ∞ .  (8) 

The equivalency ratio (6) determines metrics (5) as 
semimetrics. 

In practical signal processing tasks the 
determination area is considered to be closed and limited 
in the space Rn, i.e. a compact, what gives the possibility 
by [1] out of any convergent covering ∞Ξ  to separate 
finite subcovering NΞ  of the dimension N, which is a 
covering P and belongs to the topology ℑ . In case of the 
finiteness of the space NΞ its factor space / ~MΞ  by the 
space ΚΔ is finite as well. 

The factorization according to formulae (3)-(7) is 
exemplified for a continual case (1), but can be applied 
for a discrete case. It is taken that the issue of 
discretization Rn was considered previously. Then, in 
practice the task of factorization of the signal [7] is 
solved via semimetrics formation (in accordance with 
the characteristics of the representation model) for the 
finite covering NΞ  of the limited space Xn and 
formation by this metrics the equivalency class [pm] for 
every element pm of the covering NΞ , which form the 
factor space / ~NΞ  of the space Xn.  The formulation of 
the factorization task is alike in the case of the continual 
and unlimited area of the signal determination area P.  

1.2. THE CASE OF THE SIGNAL SPACE 
In the case of the signal space existence  

[ ]1,{ | : }n
z z zP P ∈ ∞= → 1P R R .  (9)  

Then alike the case of the covering ∞Ξ , when the 
topology  ℑ  of the open sets pz,m is  introduced, for 

every image Pz of the set P the set of coverings ∞Ξ  
should be considered  

{ } [ ] { } [ ]{ }
[ ]

, 1,1, 1,
z z m mz z

p∞ ∞

∈ ∞∈ ∞ ∈ ∞
= Ξ =Ξ .  (10)  

Let’s remark that in case of the set Р an element pz,m  
of the topology ℑ  can be the whole signal Pz. 

It means that there are equivalency classes in other 
spaces of the set ∞Ξ (9) for every element pz,m except of 
the equivalency classes { } ____, , , 1;

|z m z k z k z k
k m

p p p ∞

= ∞
≠

⎡ ⎤ = ∈ Ξ⎣ ⎦  in 

the space z
∞Ξ  of the signal Pz, calculated by (7), what 

gives possibility to consider a total equivalency class in 
the space ∞Ξ   

, ,
1

/ ~z m z m
z

p p
∞

=

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦U    (11) 

In compliance with (8) and (11), in the case of the 
signal space (9) the factor space / ~∞Ξ  of the signal 
space is considered as the equivalency classes set (11) 

{ } [ ]
[ ]
1,,
1,

/ ~ / ~ zz m
m

p∞
∈ ∞
∈ ∞

⎡ ⎤= ⎣ ⎦Ξ .   (12)  

Practical tasks are characterized with the finiteness 
of the set P, i.e. dim P < ∞, as well as with closed and 
limited determination areas n

zX  for every signal Pz. The 
use of computer calculating environments additionally 
demands the discretization of these areas resulted in the 
fact that for every signal Pz the discrete space n

zX
 
is 

obtained.  
Alike the case of the separate signal, for n

zX  the 

finite subcovering { }zNN
z= ΞΞ  can be separated, where 

Nz – the dimension of the finite covering of the signal Pz. 
Then the signal space factorization task P [7] lies in 
building the factor space / ~NΞ  via introducing into the 
spaces zN

zΞ  by the representation of the model parameter 
of the signal Pz of the semimetrics (6) and building total 
equivalency classes , / ~z mp⎡ ⎤⎣ ⎦  for every element ,z mp of 

the topology ℑ .  
Let’s remark that in the most practical tasks for all 

signals Pz of the set P the identical representation model 
is used, and inside this model the identical parameter is 
applied. Secondly, for all signals Pz the same 
determination area is considered, i.e. 

[ ]1, : n n
zz∀ ∈ ∞ =X X is true. 

 
2. Almost factorization of topological signal space 
2.1. THE CASE OF A SEPARATE SIGNAL 
Let the space ∞Ξ  of the signal P be determined as 

the equivalency ratio (6), i.e. the semimetrics (5) is 
given. According to the semimetrics the almost 
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equivalency class [pm|ε] is a class determined almost 
everywhere within the space ∞Ξ , i.e. within the set  
[ ] [ ]0

|m mp p⊂ ε   the following condition is true 

[ ] ( )0
0, : ,n m т np p d P P∞Ξ

ε > ∀ ∈ ≤ ε .   (13) 

The condition (13) is the condition of the almost 
factorization, and the variable ε of the formula (13) is 
denominated as the length (parameter) of the almost 
factorization. 

The almost equivalency class or ε-equivalency 
[pm|ε] is the union of two classes: the equivalency class 
(7) and the null measure set [pm]0 

[ ] [ ] [ ]0
|m m mp p pε = ∪ .   (14) 

So far the [pm]0 set measure is equal to 0  (i.e., 
[ ]( )0

0mpμ = ), then taking into account the measure 

additiveness characteristic, the classes [pm|ε] and [pm] 
become equal by the space measure ∞Ξ  

[ ]( ) [ ]( )|m mp pμ ε = μ  .   (15) 

The almost factor space or the ε-factor space 

/ ~ε∞Ξ  is defined as such a factor space of the 
topological space ∞Ξ , where at least one of the space 
classes is the almost equivalency class.  

Statement 1. The measure of almost factor space 

/ ~ε∞Ξ  is equal to the factor space measure / ~∞Ξ .  
 to proof the statement before let’s use the 

mathematical method of induction: 

1st step. Let’s consider the case of the space 1 / ~εΞ , 

i.e. both the set 1 / ~εΞ   and the dimension 

dim / ~ 1ε∞⎛ ⎞Ξ =⎜ ⎟
⎝ ⎠

 comprise the same class [pm|ε]. Тhen 

[ ]( ) [ ]( ) ( )/ ~ | / ~m mp pε∞ ∞⎛ ⎞μ Ξ = μ ε = μ = μ Ξ⎜ ⎟
⎝ ⎠

 (16)  

Thus, in the case of the space 1 / ~εΞ  the former 
statement is true. 

2nd step. Let’s assume that in the case / ~N εΞ , i.e. 

when dim / ~ Nε∞⎛ ⎞Ξ =⎜ ⎟
⎝ ⎠

, the previous statement and the 

following equality are true  

[ ]( ) [ ]( ) ( )
1 1

/ ~ | / ~
N N

N N
m m

m m
p pε

= =

⎛ ⎞μ Ξ = μ ε = μ = μ Ξ⎜ ⎟
⎝ ⎠

∑ ∑
(17).  

3rd step. Let’s check the truthfulness for the case of 

the space 1 / ~N ε+Ξ . If dim / ~ 1Nε∞⎛ ⎞Ξ = +⎜ ⎟
⎝ ⎠

 then by the 

definition of the almost factor space the following 
equality is true  

[ ] [ ]1
1/ ~ | |

N
N

N m
m

p pε+
+Ξ = ε ∪ εU   (18) 

Taking into consideration the additiveness measure, 
the characteristic (15) and the assumption (17) we will 
obtain the following 

[ ]( ) [ ]( )

[ ]( ) [ ]( )

( ) ( ) ( )

1
1

1

1
1

1 1

/~ | |

|

/ ~ / ~ / ~

N
N

m N
m

N

m N
m

N N

p p

p p

ε+
+

=

+
=

+

⎛ ⎞μ Ξ = μ ε +μ ε =⎜ ⎟
⎝ ⎠

μ ε +μ =

μ Ξ +μ Ξ ==μ Ξ

∑

∑ .  (19) 

It means that in case of the space 1 / ~N ε+Ξ  the 
measures of factor space and almost factor space are 
equal. Thus, the statement has been proved   

In the case of the closed and limited Р signal 
determination area within the space Rn almost 
factorization is considered according to the finite 
subcovering NΞ (p.1.1). In the case the almost factor 

space / ~N εΞ  by the space ΚΔ  is finite as well.  
The almost factor space should be considered as a 

logical development of classical factor spaces. It is 

considered to be obvious that ε-factor space / ~ε∞Ξ  is 
the continuation (by the value ε) of the factor space 

/ ~∞Ξ  but only if both exist.  Generally, the ε-factor 
space can exist without factorspace ∞Ξ , but in the case 
its measure is null according to Statement 1.  The reverse 
situation is acceptable:  ∞Ξ  – exists, but for the ε set 
there is no element determined for which it is possible to 

build the set [pm]0, and the almost factor space / ~ε∞Ξ  
and the factor space / ~∞Ξ  converge. Thus, their 
dimensions in both finite and non-finite cases are 

equal: ( )dim / ~ dim / ~ε∞ ∞⎛ ⎞Ξ = Ξ⎜ ⎟
⎝ ⎠

. In general we have   

( ) ( )dim / ~ dim / ~ dim / ~ε ε∞ ∞ ∞⎛ ⎞ ⎛ ⎞Ξ = Ξ + Ξ ε⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,(20) 

where ( ) / ~ε∞Ξ ε  – the set of all almost equivalency 

classes. 
In the discrete case (2) for the limited determination 

area Xn  of the signal P, the almost factorization task [6, 
7] is similar to the factorization task (p.1.1) and lies in 

building the almost factor space / ~N εΞ  by the 
semimetrics (5), determined with the representation 
model parameter and built being based on the 
semimetrics factor space / ~NΞ  and the class set of the 

almost equivalency ( ) / ~ε∞Ξ ε . 
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2.2. THE CASE OF SIGNAL SPACE 
In the case of the signal space existence (9) and 

introduced ∞Ξ covering set (10) for every element pz,m, 
together with the equivalency classes [pz,m] it is 
necessary to consider the almost equivalency classes  
[pz,m |ε] similar to the classes  [pm|ε]. The existence of the 
class [pz,m |ε] for the signal Pz of the set P provides the 
total almost equivalency class existence  

, ,
1

| / ~ |z m i m
i

p p
∞

=

⎡ ⎤ ⎡ ⎤ε = ε⎣ ⎦ ⎣ ⎦U .  (21) 

Then, similar to the definition (12), the almost factor 

space / ~ε∞Ξ  of the signal space P will be determined as 
following 

{ } [ ]
[ ]
1,,
1,

/ ~ / ~ | / ~ zz m
m

pε∞ ∞
∈ ∞
∈ ∞

⎡ ⎤= ∪ ε⎣ ⎦Ξ Ξ   (22)  

The space / ~ε∞Ξ  exists as well in the case of the 
finite set P and limited determination areas of the signals 
Pz. If the signals are discrete, the factorization space 
analogy { }zNN

z= ΞΞ  of the set P by the definition (22) is 

true.  Then the signal almost factorization task Р [6, 7] 

lies in building the almost factor space / ~N εΞ  via 
forming according to the chosen parameters / ~∞Ξ   of 
the factor space representation models (in accordance 
with the semimetrics (5)) and total almost equivalency 
classes , | / ~z mp⎡ ⎤ε⎣ ⎦  (under the almost equivalency 

condition (13)). 
 
3. Almost factorization in the signal 

representation models 
3.1. THE MODEL OF STATISTICAL REPRESENTATION  

According to the model the parameters of the image 
representation are [10, 16]:  M = M(P)  – mathematical 
expectation, D = D(P)  – dispersion, σ  = σ(P)  – the 
deviation of the random value P, resulting in the 
appropriate characteristic spaces ΔM, ΔD and Δσ : when 
the topology  ℑ   is set and the covering ∞Ξ is 
determined, by (3) any object pm of this covering in 
every space ΔM, ΔD and Δσ  can be represented as  

( )
( ) ( )

;

;
m m m

m m m m m m

p M M p

p D D p p p

→ =

→ = → σ = σ
 (23) 

where Mm,  Dm, σm  – appropriate mathematical 
expectation, dispersion, the deviation of the random P 
within the determination area of the element pm. 

The semimetrics introduction within the spaces ΔM, 
ΔD and Δσ gives the possibility to determine the 
equivalency ratio (6) in every appropriate class. The 
simplest variant of such a semimetrics by [6] is the 
certain Euclid’s distance in accordance with the model 

representation parameters. For example, in the case of 
the characteristic space ΔM such semimetrics looks like  

( ), : , .m n m n m np p d p p M M∞
∞

Ξ
∀ ∈ Ξ = −  (24) 

In the discrete finite case 
( ), : ,

1 1 .

N

i m i nm n

N
m n m n

i i
c p c pp p

p p d p p

c c
N N

Ξ

∈ ∈

∀ ∈ Ξ =

= −∑ ∑
  (25) 

where сі – elements of the fragments pn and pm of the 
signal P, and 

mpN , 
npN  – dimensions of their 

determination areas.  
If the objects of the covering NΞ  have the same 

dimension, i.e. 
mpN = 

npN = pN , the semimetrics 

determination becomes simpler  

( ) ( ), ,
1

1, : , .
p

M

N
M

m n m n i m i n
ip

p p d p p c c
NΞ

=

∀ ∈ Ξ = −∑  (26)  

The second index below determines belonging of the 
element сі to the appropriate signal fragment. 

In general case for different objects of the covering 
NΞ  different characteristic spaces can be chosen. 

Nevertheless, in the most of practical tasks it is enough 
to have one characteristic space. It is conditioned mainly 
by the necessity to minimize calculating spendings in 
practical signal processing tasks.  

In the case of the absence of the characteristic space 
to formulate and determine the tasks of separable 

NΞ space factorization and almost factorization it is 
enough to set any semimetrics, based upon the 
mathematical statistics elements, e.g. the ratio    

( ) ( ), : , , 1M
M

m n m n m np p d p p r p p
Ξ

∀ ∈ Ξ = − ,(27)  

where r(pn, pm) – correlation between the elements 
of the fragments pn and pm by [6] is the metrics and the 
semimetrics of the space NΞ . Then the task of 
factorization and almost factorization anticipates the use 
of the ratio of equivalency and almost equivalency, 
which are based on the semimetrics (27). The main 
disadvantage of the metrics (27) is its high calculating 
complexity. 

If the signal set is given (9), then all exemplified 
theoretical statements, in particular the introduction of 
the metrics similar to (24), (25) by the parameters of the 
representation model or semimetrics (27), are true but 
only concerning the whole signal Pz. 

3.2. ENERGY THEORY OF LINEAR MODELS  
OF STOCHASTIC SIGNALS 

The base of the mathematical model of energy 
representation is an energy theory of the linear models of 
stochastic signals, which is suggested in [3, 12, 16]. In 
compliance with the theory the signal P is considered to 
be a random process by the abstract function С, 
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indicating the random values within Hilbert space. Then 
every image corresponds to such energy parameters [3]: 

• for impulse signals (the signal class ε, the 
characteristic space Δε)  – it is energy (the space Lp – 
integrated by Lebeh square function [3] is considered)  

( ) , 1
n

p
P e C x dx p→ = >∫

R

,     (28) 

where e – the energy of the signal P; 
• for signals which don’t fade out (the signal class π, 

the characteristic space Δπ)  – it is power (the space Bp – 
Hilbert space with the metrics of Bora-Bezykovych [3] is 
considered)  

( )1п lim
2

p
P C x dx

θ

θ→∞
−θ

→ =
θ ∫ ,   (29) 

where п – the power of the signal P. 
Further, let’s consider only the signal class ε. The 

samples for the π class signals will be analogical.  If the 
topology ℑ  is set and its covering ∞Ξ  is determined, by 
(3) any object pm of this covering of the classes Δε is 
represented via the energy em = e(pm) calculated 
according to (28). Similar to (24) it is possible to 
calculate the equivalency ratio, formulate and solve the 
tasks of factorization and almost factorization. 

In the finite case the representation model parameter 
will be finite energy. If the covering ∞Ξ is finite and 
disjunctive, then the representation (28) can be written as 
following 

( )
1

, ,
N

N
m m m m

i
P e e e p p

=

→ = ∈ Ξ∑ ,  (30) 

For the signal space (9), similar to the statistical 
model case all theoretical samples are possible as well. 
The other method suitable for setting the factorization 
and almost factorization tasks is to use the known 
seminorm of the space Lp[3] 

( )
1

n

pp
z p

P C x dx
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∫

R

,  (31) 

The seminorm (31) gives the possibility to set the 
equivalency ration which is almost everywhere similar to 
the signal similarity which precision is equal to null.  
Appropriately, the factor space in this case, which is 
determined in accordance with the equivalency ratio, is 
the almost factor space of some almost factorization 
parameter value. Let’s note that the approach of the 
seminorm (31) can be used for the cases of both 
factorization and almost factorization of a separate signal 
of the topological space.  

3.3. THE INFORMATION MODEL OF THE SIGNAL 
REPRESENTATION  

The information model of the signal representation  
is based upon the information theory, which 
development is dynamic information theory fully set in 

[2, 9, 16]. If the signal P is interpreted as a continual one 
within the topological manifold Rn or as a random 
function or random process С, then by the dynamic 
information theory it can correspond with the following 
information parameters [2]:  

1) informativeness I δ – the quantity of information, 
which is a constituent of the realization of the random 
process C  in the case of its representation by the step 
function of the step value equal to δx (the characteristic 
space I δ

Δ )  

( )1
nx

P I C x dxδ ′→ =
δ ∫

R

.  (32) 

2) δ-entropy H δ  – the average value of a random 
process change in quanta δx within the interval Δx – the 
measure of the random process change indetermination 
(the characteristic change H δ

Δ ) 

M
x

x dCP H
dx

δ Δ ⎡ ⎤→ = ⎢ ⎥δ ⎣ ⎦
;  (33) 

3) set δ-entropy hδ – the indetermination change, 
which is calculated by the distribution law and is within 
the range (0-1) (the characteristic space hδ

Δ ) 

( )

( )

M

max
nx

C x
P h

C x
δ

∈

⎡ ⎤′
⎣ ⎦→ =
⎡ ⎤′
⎣ ⎦R

  (34)  

If the topology ℑ  is set and its covering ∞Ξ  is 
determined in accordance with (5), (32)-(34) are metrics 
of the characteristic spaces I δ

Δ , H δ

Δ and hδ

Δ , and the 
space ∞Ξ  is following 

( ) ( )

( )

: , ; : ,

;

: ,

I H
m n m m m n

m m

h
m n m m

d p p I I d p p

H H

d p p h h

δ δ

∞ ∞

δ

∞

δ δ
Ξ Ξ

δ δ

δ δ
Ξ

Δ = − Δ =

= −

Δ = −

.  (35) 

The metrics provide setting the factorization and 
almost factorization tasks in the information 
representation model case.  

In the finite discrete case (2) the representations 
(32)-(34) will look like the following 

( ) ( )( )
( ) ( )( )

2

2

1 1 log 1 ;

log 1

N N

k k
k k

k k

P I I N
s s

I N

δ δ

δ δ δ

δ δ

→ = = +

= +

∑ ∑
; (36) 

( ) ( ) ( )

( )

( ) 2 ( )
1 1

( )

log 1 ,
N N

k kk k
k k

k
k

P H p I p N

N
p

s

δ δ

δ δ δ

= =

δ

→ = = +

=

∑ ∑
; (37) 

1

max
2log 1

x

x
P h H

−

δ δ
⎛ ⎞⎛ ⎞

→ = +⎜ ⎟⎜ ⎟⎜ ⎟δ⎝ ⎠⎝ ⎠
,  (38)  
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where ( )kI δ – the quantity of information, which is at the k 

level of rating (quantization); s – the signal dimension; 
1N δ + , ( )kN δ  – the quantity of quantization levels within 

the area of values of the signal P and the  k random 
value.  

In the case of the signal set (9) the parameters (32)-
(34) or (36)-(38) refer to both the elements of every 
signal topology Pz and the signal Pz in general. 

3.4. VECTOR REPRESENTATION MODEL 
The vector representation model [6, 14, 16] of the 

signal P is based upon the hypothesis concerning the 
existence of some vector function С determined within 
the space R3. Thus, the first parameter of the model is 
the stream of the vector C through the hypersurface S 

nS

P dS
⊂

→ Φ = ⋅∫
R

C ,   (39)  

existing under the following conditions: the vector C is 
taken to be directed by the normal towards the surface S; 
the vector element dS of the surface exists almost 
everywhere within S and coincides by the normal with 
the direction C. In (5) the instance of the space R3 is 
considered because in the case of the space Rn the stream 
visualization is lost partially, nevertheless all the 
hypersurface characteristics coincide in accordance with 
the theorem of Ostrohradskyi-Hauss. That is why the 
surface Ф creating the characteristic space ΔФ exists. 

The 2nd parameter of the model is a color gradient 
which is alike the vector function of Euclid’s space of 
the C vector coordinates within the surface S. The 
gradient diversity forms the vector (potential) field.  

Let’s consider different methods of semimetrics 
development to solve the tasks of factorization and 
almost factorization in the vector representation model.  

In compliance with [6, 11, 14] if the topology ℑ  is 
set and its covering NΞ  is determined the expressions 
below   

, Ф Фm n m np p = ; 

( ), Ф Фm n m nd p p∞Ξ
= − ,           (40) 

are considered to be a scalar product and the metrics of 

the Hilbert space ( ),Ф
,Ω ⋅С C

, which is separable as 

well, appropriately. ΩС  –  the normed space of the C 

vector function with the norm 
,Ф

⋅
C

, which is 

determined through the stream Ф as: 
,Фm mp = Φ

C
. 

In the case of the finite space X2  the dimension  l×h 
of [6] we have the following: 

- the space ( ),det
,Ω ⋅С C

 with the determined 

norm ( ),det
detm mp C=

C
; 

- the space ( ),
,

p
Ω ⋅С C

 with the determined norm 

( )( ), ,,
1 1

h l p
p

m m i jp
j i

p c
= =

= ∑∑C
 (if  p = 2 – 

Frobenius metrics);   

- the space ( ),singl
,Ω ⋅С C

 with the multiplicative 

metrics ( ) ( ), maxN m n i m ni
d p p C C

Ξ
= σ −  

(where σi – the metrics number). 
In accordance with the denomination norms and 

metrics Сm stands for the metrics of the coordinates of 
the vector function С within the hypersurface pm, and  сm 

(i, j)  being its elements. 
If (9) is the image set, there is the 3rd parameter of 

the vector representation model, i.e. Euclid space {Фz}:  
{ }z z→ ΦP    (41)  

Semimetrics is to set the tasks of factorization and 
almost factorization, which refer to the separate signal 
case and can be used for the image set without reserve.   

 
4. Factorization and almost factorization on the 

example of the solution of the image superposition 
task  

To realize the former theoretical studies in practice 
let’s consider the superposition task in the set of one type 
digital images. In the case the images are considered as a 
discrete signal determined within two-dimensional 
limited area. Then the set (9) looks like 

_____
2

1,
{ | : }z z

z K
P P

=
= →P X N .   (42)  

The superposition task lies in similarity detection 
between the set images or between their separate 
fragments and in further determination of superposition 
parameters, in particular horizontal and vertical 
superpositions, turning angle and scaling coefficients, 
i.e. the whole set of affine transformations is considered. 
To simplify practical realization let’s set limits searching 
only for horizontal and vertical superpositions.  

Similarity detection algorithms depend on the 
characteristics of the stochastic interconnection of the 
compared image fragments [4]. Traditionally to realize 
the procedure of detecting images superposition the 
correlation tether (correlation maximum) of the digital 
images is used [6]. 

The main disadvantage of the correlation tether 
method is the great combinatory complexity demanding 
significant calculating and time resources. Time 
spendings are the most undesirable, so far as they do not 
make possible to build image analysis systems in real 
time (or approximated to real time). All efforts to 
accelerate the correlation tether lay in unparalleling the 
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calculating algorithm which is not effective in cases of 
large-dimensional sets.  

Under the conditions of the task of superposition 
concerning the set (42) we have the following data: the 
fixed image Pфікс = P1, the frame 

( )2
1,зад 1,зад 1,зад 1 1, , ,x y l hΔ Δfr fr frX (the set of pixels as a 

rectangular subarea of the determination area Х2) and the 
corresponding fragment p1,зад (the set of integer values of 
every pixel color/intensity of the frame 2

1,задfrX ). Here we 

have the coordinates of the beginning (a top left angle) 
and the length and height 1,зад 1,зад 1 1, , ,x y l hΔ Δ fr fr of the 

images.  The superposition task lies in forming the set P' 
in the condition that  

{ } { } _____
1 2,

' \ z z KP P
=

= =P P .  

and all the images of the set P' are equal with regard to 
Pфікс within a pixel. The topology ℑ  of the set (42) is a 
set with the fragments of the frames [6, 11], which are 
equal to the frame 2

1,задfrX  by their physical dimensions. 

Under the set of initial conditions and with the use 
of semimetrics separated in p. 3 there are such 
superposition methods developed: 

- methods based upon the mathematical 
expectation and dispersion (semimetrics (26)) 
[10]; 

- method based upon the finite energy/average 
power (semimetrics (26) but with the parameter 
(28)) [12]; 

- vector method based upon the color vector-
function stream (semimetrics (40)); 

- method based upon signal/noise peak 
correlation 
(semimetrics

( ) ( ) ( ), PSRN PSRNm n m nd p p p p= − ) [13]; 

- method based upon informativeness / entropy / 
exemplified entropy (semimetrics (35)) [9]; 

- vector method based upon the Frobenius 

metrics (the space ( ),2
,Ω ⋅С C

) [6]; 

- vector method based upon the determinated 

norm (the space ( ),det
,Ω ⋅С C

) [15]; 

- vector method based upon the singular metrics 

(the space ( ),singl
,Ω ⋅С C

) [6]; 

- the method based upon the peak signal / noise 
correlation as images similarity measure (semimetric 

( ) ( ) ( ) ( )

( )

2
1 1 ,,

psnr
,Фрб

max
, psnr , 10lg

,

z i ji j
m n m n

m n

h l c
d p p p p

d p p

⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎝ ⎠

fr fr

C

, 

here ( ),Фрб ,m nd p pC  – Frobenius metrics) [13]. 

The general scheme of all the methods comprises 
the following stages: 

1st stage. By the elements of the topology ℑ  of the 
set P' the { }zNN

z= ΞΞ determination of finite coverings. 

2nd stage. Via solving the almost factorization task 
within the set P' determination of the almost 
factorization class  

_____

1,зад 1,зад| / ~ | / ~| 2,
z

p p z K⎧ ⎫⎡ ⎤ ⎡ ⎤ε = ε =⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
and 

corresponding frame for every class element. 
Here 1,зад | / ~

z
p⎡ ⎤ε⎣ ⎦  is a subclass of the class 

1,зад | / ~p⎡ ⎤ε⎣ ⎦ , which comprises z image fragments. 

3rd stage. Constricting of every subclass 

1,зад | / ~
z

p⎡ ⎤ε⎣ ⎦  to the set {pz,max} consisting one element 

of the frame ( )2
,max ,max ,max 1 1, , ,z x z y z l hΔ Δfr fr frX . The 

element pz,max is determined via solving the task of 
searching for the correlation maximum within the 
subclass 1,зад | / ~

z
p⎡ ⎤ε⎣ ⎦ . 

4th stage. For every image Pz we search the 
horizontal ( ),x zΔ  and the vertical ( ),y zΔ  of the coordinate 

superpositions ( ), 1,x zΔ  and ( ), 1,y zΔ  for the image Pz 

( ) ( ), ,max ,1,зад , ,max ,1,зад, ,;x z x y z yx z y zΔ = Δ − Δ Δ = Δ − Δ .  

In Fig.1-3 the results of experiments at the different 
input parameters of image sets are exemplified. The 
influence of different characteristics upon the rapidity 
and quality of the set of equitype images the solution of 
the superposition task has been studied. The classic 
correlation tether method is chosen for comparison.  

In Fig.1 the average values of the work time of the 
algorithms are exemplified with the following set 
characteristics: the set dimension – K = 99 images; grey 
gradation image; the dimension of every image – l = 34; 
h = 54 pixels; Pфікс = P0.  The parameters of the set 
frame are 2, ,

0,зад
d+

frX : ,0,зад ,0,зад 10x yΔ = Δ = ;  0l =fr 0 10h =fr ; 

ε = 0.01. 
As you can see in Fig.1 the algorithms built on the 

base of the developed methods operate faster then the 
algorithms based on the well-known methods. 

In Fig.2 the dependence of  the operating time of the 
algorithms on the set dimension is illustrated.  

According to these results we may state that in cases 
of small dimension sets it is recommended to use the 
superposition methods based upon the mathematical 
statistics as the fastest and having satisfactory 
superposition results. When the set dimensions are large, 
it’s better to use the methods of the image representation 
vector model, because the rapidity of the algorithms built 
upon the almost factorization of representation vector 
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model Hilbert spaces is increasing more dynamically, if 
K is rising. 
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Fig. 1. Comparison of work time of image set 
superposition by different algorithms (K = 99 images) 

 

 
 

Fig. 2. Comparison of time results of image set superposition 
methods work at different set dimensions  

 
During experiments the worst correlation values of 

the set fragment (standard) square and the general image 
square have been determined. The problem of the 
standard choice is thoroughly studied in [17] and is not 
considered in the paper. Moreover, the practical 
experiment results prove that the waste time dynamics is 
the lowest in the algorithms built upon the information 
model parameters. Thus if the standard dimensions are 
close to the critical correlation, it is necessary to use the 
methods based upon entropy, set entropy or 
informativeness. Furthermore, it is possible to influence 
upon the algorithm operating speed in general via the 
choice of quantization methods.  

The results of the mistakes appeared during the 
developed superposition algorithms at different values of 
the almost factorization parameter are illustrated in Fig.3 
The data obtained certify the dependence of the 
operation quality of the superposition algorithms on the 
parameter ε. Qualitatively the dependence is inversely 
proportional to the operation quality of the algorithms.  

 
 

Fig.3. Quantity of mistakes at different values of almost 
factorization parameters  

of different superposition algorithms  
 
On the other hand, more mistakes appear if ε values 

are small. Thus while choosing a method for practical 
experiments it is significant to take into consideration 
not only the dimensions of the set and fragment but the 
parameter  ε. 

The developed methods work effectively for both 
semitone and color images. To build the parametersof 
the base representation model in the superposition 
methods the integral color values can be used, since it 
accelerates the algorithm performance in general. All 
methods together with the image set superposition task 
give possibility to solve the classical task of searching 
object by the sample given. They can be partially or fully 
used while solving the applied tasks of segmentation, 
classification and recognition.  

 
Сonclusions 
The formulated notion of almost factorization of the 

topological space signal is the extension of the metrics 
space notion, if the topology and the equivalency and 
almost equivalency ration is set. It gives the possibility 
to generalize separate classical tasks and create the 
single system approach in the signal processing area of 
the artificial intelligence systems.  

The development of the almost factor space can be 
considered as an operation, which gives the possibility to 
formulate factor spaces within insignificant assumptions.  

The task of the one type images set superposition  
has been solved basing upon the almost factorization 
task setting in the case of finite discrete two-dimensional 
signals.  The approach used can be considered as basic 
for many practical methods of signal and image 
processing.  

Introducing other semimetricses as well as ratios of 
equivalency and almost equivalency, it is possible to 
formulate other tasks of factorization and almost factori-
zation and develop new methods of signal processing .  
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ФАКТОРИЗАЦІЯ ТА МАЙЖЕ 
ФАКТОРИЗАЦІЯ НОРМОВАНИХ 

СЕПАРАБЕЛЬНИХ ПРОСТОРІВ В ЗАДАЧАХ 
ОБРОБКИ СИГНАЛІВ 

 
Розглянуто поняття факторизації метричного 

простору в задачах обробки як окремого так і простору n-
вимірних сигналів для неперервного та дискретного 
випадків. Запропоновано поняття майже еквівалентності та 
класу майже еквівалентності, що дало можливість 
сформулювати поняття майже факторпростору як 
узагальнення факторизації топологічного простору. З 
метою демонстрації практичної реалізації теоретичних 
результатів приведено вирішення задачі суміщення 
наборів однотипних зображень на основі майже 
факторизації нормованих сепарабельних топологічних 
просторів зображень. 
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