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Abstract. The notion of the metrical space
factorization in the tasks of processing a separate space
as well as n- image sets based upon the almost
factorisation of the images of normed separable
topological spaces is exemplified. It is provided by
formulating the notion of the almost factorspace as the
generalization of the topological space factorization. The
almost equivalency class, which gave the possibility of
demonstrating the practical realisation of theoretical
results is considered. The notions of the almost
equivalency and the solution of the task of the
superposition of the sets of equitype images for
continuous and discrete cases are exemplified.
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Introduction

The intensive technological development of the
computer hardware and software caused the increase and
low price of computing power resulting in large
accessible computing resources. They began the
expansion in versatile applied spheres of human
activities giving some impulse for the active
development of already existed scientific areas. The
most significant and dynamically developing sphere is
the artificial intelligence, i.e. signal, language and image
processing. The main criterion of this innovative
processing is its intellectuality aiming at the solution of
many practical tasks in robotics, control systems,
decision making processes, etc. The intellect support
problem raises the need of the active development of
existing methods of previous processing as well as of
new ones for the further use of their results in the applied
tasks of the analysis and synthesis of the artificial
intelligence systems.

Classic methods of image processing developed by
R.Honsales, H.Endryus, M.Tekalp, U.Prett, L.Shapiro,
Ye.Putiatyn, V.Hrytsyk, Sh.Peleg, R.Vorobel are
elaborated enough and provide effective results in
solving the applied image processing tasks. The
development of these methods has reached its peak
because they were directed towards processing a
separate signal.

The development of a new method for building
effective computing tools demands the use of new
approaches to seeking and finding additional information
and knowledge. V. Kozhemiako, R. Tkachenko, E.
Bodianskyi, R. Duda, P. Khart and others have
contributed to this development. Thus the crucial task is
considered to be the development of the effective means
of signal set processing, which demands developing new
models of their representation as well as methods and
algorithms of their processing.

1. Factorisation of topological signal spaces
1.1. THE CASE OF A SEPARATE SIGNAL
Let n-dimensional signal be given

P:R"— R, (1)
which in the discrete representation looks as follows
P: X" — R )

where R" — the continuous space of real numbers, which
in a discrete case was presented as an unlimited set X",
Let the given topology 3 [1, 5] be in the space R" n-
dimensional open areas p, € R" E.g. in the case of
language signals (one-dimensional signals) p,, — are frag-
ments, and in the case of images (two-dimensional signals)
P are fragments. The set Z” ={p,_} is the topo-

me[l,co]

logical space covering (P, J) [1,5],ie. R" < U P, -
me[l,oc]
For the class K(P) [16] of the signal P every element
pm Of the covering Z* corresponds to some integral
characteristic AX e R' of the signal representation

model [16]

Pn = Ap- €)
The representation (3) is exceptionally injected and
gives the possibility for the covering E” to get
individual space (as a rule a normed one)
K _ K
AN = {Am}me[l,oo] ! (4)

which elements AY belong to the space R' in
accordance with [16]. In general case the characteristics
Ay can be multidimensional, but it is compulsory for
them to belong to some normed space.
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The metrics d, (Ax, A% ) of the individual space

A* makes it possible to induce the metrics of the space

©

[1]

VP, P, €E7 AL AL €A, p, > AL P, DAL
d_. (P Py)=dy (AS.AY).
Based upon the metrics (5) of the space =", the

binary ratio of the equivalency ~ [8] may be introduced
as

()

P, B, €E,

. TG
PP P B> A (P P =0 (ArAY) =0
which determines the equivalency class [p.] of the

element py, in the space =~ as follows
[Pn]={PI P2} . ()

k=1;00;k=m

In compliance with [7] the set of all equivalency
classes forms a factor space =“/ ~ of the space =* by

the space A®
271 ~={[p,]l Py €E"m=1.0}.  (8)

The equivalency ratio (6) determines metrics (5) as
semimetrics.

In  practical signal processing tasks the
determination area is considered to be closed and limited
in the space R", i.e. a compact, what gives the possibility
by [1] out of any convergent covering E” to separate
finite subcovering Z" of the dimension N, which is a
covering P and belongs to the topology 3. In case of the

finiteness of the space Z" its factor space ="/~ by the

space AX is finite as well.

The factorization according to formulae (3)-(7) is
exemplified for a continual case (1), but can be applied
for a discrete case. It is taken that the issue of
discretization R" was considered previously. Then, in
practice the task of factorization of the signal [7] is
solved via semimetrics formation (in accordance with
the characteristics of the representation model) for the
finite covering =" of the limited space X" and
formation by this metrics the equivalency class [pn] for
every element p, of the covering =", which form the
factor space ="/ ~ of the space X". The formulation of

the factorization task is alike in the case of the continual
and unlimited area of the signal determination area P.
1.2. THE CASE OF THE SIGNAL SPACE
In the case of the signal space existence

P={RIR:R">R} .. (9

Then alike the case of the covering Z*, when the
topology 3 of the open sets p,m is introduced, for

—o0

every image P, of the set P the set of coverings =
should be considered

g8 = {E?}zs[l,w] - {{ pz'm}mé[l’w]}

Let’s remark that in case of the set P an element p,,
of the topology T can be the whole signal P..

It means that there are equivalency classes in other
spaces of the set &~ (9) for every element p,, except of

©

the equivalency classes [ p,, | ={ P, | P« €57}, o in

k#m

. (10)

Ze[l,oo]

the space =7 of the signal P, calculated by (7), what

gives possibility to consider a total equivalency class in
the space &~

©

[P ]l ==ULPen ]

In compliance with (8) and (11), in the case of the

signal space (9) the factor space &/~ of the signal
space is considered as the equivalency classes set (11)

=1 ~={[Pn)/ i (12)

Practical tasks are characterized with the finiteness
of the set P, i.e. dim P < oo, as well as with closed and

limited determination areas X for every signal P,. The

1)

use of computer calculating environments additionally
demands the discretization of these areas resulted in the
fact that for every signal P, the discrete space X) is
obtained.

Alike the case of the separate signal, for X} the

finite subcovering E" ={Z}"} can be separated, where

N, — the dimension of the finite covering of the signal P..
Then the signal space factorization task P [7] lies in
building the factor space E"/ ~ via introducing into the
spaces Z: by the representation of the model parameter
of the signal P, of the semimetrics (6) and building total
equivalency classes [pzym]/ ~ for every element p, of

the topology 3.

Let’s remark that in the most practical tasks for all
signals P of the set P the identical representation model
is used, and inside this model the identical parameter is
applied. Secondly, for all signals P, the same
determination area is considered, ie.
Vze[lo]: X] =X"is true.

2. Almost factorization of topological signal space
2.1. THE CASE OF A SEPARATE SIGNAL

Let the space Z” of the signal P be determined as
the equivalency ratio (6), i.e. the semimetrics (5) is

given. According to the semimetrics the almost
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equivalency class [pnje] is a class determined almost
everywhere within the spaceZ”, i.e. within the set
[Pn], =[Pnle] the following condition is true

£>0,vp, €[p,],: d.. (R,.R)<e (13)

The condition (13) is the condition of the almost
factorization, and the variable ¢ of the formula (13) is
denominated as the length (parameter) of the almost
factorization.

The almost equivalency class or e-equivalency
[pPrle] is the union of two classes: the equivalency class
(7) and the null measure set [pmlo

[P le]=[Pu]YPn],- (14)
So far the [pn]o set measure is equal to 0 (i.e.,
p([pm]0)=0), then taking into account the measure

additiveness characteristic, the classes [pnle] and [pm]
become equal by the space measure =~

w([pnle])=n([pa]) - (15)

The almost factor space or the &factor space

=7 /% is defined as such a factor space of the

topological space =", where at least one of the space
classes is the almost equivalency class.
Satement 1. The measure of almost factor space

=" /< is equal to the factor space measure =/ ~ .

<l to proof the statement before let’s use the
mathematical method of induction:

1% step. Let’s consider the case of the space =' /<
the dimension

ie. both the set ='/= and

dlm(”“’ [~ ) 1 comprise the same class [pm/€]. Then

(=775 )= n([pale]) =n({pa]) =n(="1 ) 19
Thus, in the case of the space Z'/+ the former

statement is true.

2" step. Let’s assume that in the case=" /%, i.e
when dlm("f’c [~ j N, the previous statement and the

following equality are true

[HN/ j ZH( [P le])= D n(pa))=n(z"/~)

m=1
(17).
3" step. Let’s check the truthfulness for the case of

the space =" /<. If dlm(””/ j N +1 then by the

definition of the almost factor space the following
equality is true

N
BN L =]y, le]ulU[ P €] (18)

Taking into consideration the additiveness measure,
the characteristic (15) and the assumption (17) we will
obtain the following

M(EN”/ij:iJ([ Pl &) +1([ Py L ]) =

m=l

AR E
u(EN/~)+u(El/ ~) :H(E’\M/ ~)

It means that in case of the space =""/< the
measures of factor space and almost factor space are
equal. Thus, the statement has been proved >

In the case of the closed and limited P signal
determination area within the space R" almost
factorization is considered according to the finite

subcovering =" (p.1.1). In the case the almost factor

. (19)

space ZV /< by the space A is finite as well.
The almost factor space should be considered as a
logical development of classical factor spaces. It is

considered to be obvious that e-factor space = /=< is
the continuation (by the value &) of the factor space
E”/~ but only if both exist. Generally, the e-factor
space can exist without factorspace =”, but in the case
its measure is null according to Statement 1. The reverse
situation is acceptable: =" - exists, but for the & set
there is no element determined for which it is possible to

build the set [pm]o, and the almost factor space =* /<

and the factor space Z”/~ converge. Thus, their
dimensions in both finite and non-finite cases are

equal: dim(Ew /ij = dim(E”/ ~). In general we have

dim(aw /ij =dim(2*/ ~)+dim(5°° (g)/i) (20)

where 27 (g)/+ - the set of all almost equivalency

classes.

In the discrete case (2) for the limited determination
area X" of the signal P, the almost factorization task [6,
7] is similar to the factorization task (p.1.1) and lies in

building the almost factor space Z“/% by the
semimetrics (5), determined with the representation
model parameter and built being based on the

semimetrics factor space ="/~ and the class set of the

2 (e)*~.

almost equivalency
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2.2. THE CASE OF SIGNAL SPACE

In the case of the signal space existence (9) and
introduced E~ covering set (10) for every element p,,
together with the equivalency classes [p,m] it is
necessary to consider the almost equivalency classes
[p.m |€] similar to the classes [pmle]. The existence of the
class [p,m |€] for the signal P, of the set P provides the
total almost equivalency class existence

[Punle)==ULpnle].

Then, similar to the definition (12), the almost factor

(1)

space B /< of the signal space P will be determined as

following
U{[ pz,m | 8:|/ ~}Ze[l,oo]

me[l,oc]

© L=~

[

(22)

The space E” /< exists as well in the case of the
finite set P and limited determination areas of the signals
P,. If the signals are discrete, the factorization space
analogy E" ={=]"} of the set P by the definition (22) is
true. Then the signal almost factorization task P [6, 7]

lies in building the almost factor space E"/< via

forming according to the chosen parameters E°/ ~ of
the factor space representation models (in accordance
with the semimetrics (5)) and total almost equivalency

classes [ p,,|&]/~ (under the almost equivalency
condition (13)).

3. Almost factorization in the signal

representation models
3.1. THE MODEL OF STATISTICAL REPRESENTATION

According to the model the parameters of the image
representation are [10, 16]: M = M(P) - mathematical
expectation, D = D(P) - dispersion, ¢ = o(P) - the
deviation of the random value P, resulting in the
appropriate characteristic spaces AM, AP and A° : when
the topology 3 is set and the covering Z=7is
determined, by (3) any object p, of this covering in
every space A, AP and A° can be represented as

Pn—> M, =M(p,);
(23)
Pn = Dp=D(Pn); Pw—6m=0(Pn)

where M,, D, om - appropriate mathematical
expectation, dispersion, the deviation of the random P
within the determination area of the element py,

The semimetrics introduction within the spaces A,
AP and A° gives the possibility to determine the
equivalency ratio (6) in every appropriate class. The
simplest variant of such a semimetrics by [6] is the
certain Euclid’s distance in accordance with the model

representation parameters. For example, in the case of
the characteristic space A such semimetrics looks like

VP P, €57 d_ (P P) =M M| (24)
In the discrete finite case
vpmlanEN dEN(pm’pn):
(25)
R IR e
pm G P Py GEPn

where ¢; — elements of the fragments p, and py, of the

signal P, and N, , N, - dimensions of their

determination areas.
If the objects of the covering E" have the same

dimension, i.e. Np = Np: N,, the semimetrics

determination becomes simpler

Np

VP P €E" 1 Ay (P PY) = (26)

(G =Gin)

The second index below determlnes belonging of the
element ¢; to the appropriate signal fragment.

In general case for different objects of the covering
=N different characteristic spaces can be chosen.
Nevertheless, in the most of practical tasks it is enough
to have one characteristic space. It is conditioned mainly
by the necessity to minimize calculating spendings in
practical signal processing tasks.

In the case of the absence of the characteristic space
to formulate and determine the tasks of separable
=N space factorization and almost factorization it is
enough to set any semimetrics, based upon the
mathematical statistics elements, e.g. the ratio

VP Py €2 dy (P o) =7 (P P -1.27)

where r(pn, pm) — correlation between the elements
of the fragments p, and py, by [6] is the metrics and the

semimetrics of the space Z"“. Then the task of
factorization and almost factorization anticipates the use
of the ratio of equivalency and almost equivalency,
which are based on the semimetrics (27). The main
disadvantage of the metrics (27) is its high calculating
complexity.

If the signal set is given (9), then all exemplified
theoretical statements, in particular the introduction of
the metrics similar to (24), (25) by the parameters of the
representation model or semimetrics (27), are true but
only concerning the whole signal P.,.

3.2. ENERGY THEORY OF LINEAR MODELS
OF STOCHASTIC SIGNALS

The base of the mathematical model of energy
representation is an energy theory of the linear models of
stochastic signals, which is suggested in [3, 12, 16]. In
compliance with the theory the signal P is considered to
be a random process by the abstract function C,

i=1
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indicating the random values within Hilbert space. Then
every image corresponds to such energy parameters [3]:
o for impulse signals (the signal class g, the
characteristic space A®) - it is energy (the space LP —
integrated by Lebeh square function [3] is considered)

P—>e:.[|C(x)|pdx, p>1, (28)
-

where e - the energy of the signal P;

o for signals which don’t fade out (the signal class ,
the characteristic space A™) - it is power (the space BP -
Hilbert space with the metrics of Bora-Bezykovych [3] is

considered)
0

Pon= Iimij|C(x)|pdx,
0= 20
where m — the power of the signal P.

Further, let’s consider only the signal class €. The
samples for the &t class signals will be analogical. If the
topology 3 is set and its covering E” is determined, by
(3) any object py, of this covering of the classes A® is
represented via the energy e, = e(p,) calculated
according to (28). Similar to (24) it is possible to
calculate the equivalency ratio, formulate and solve the
tasks of factorization and almost factorization.

In the finite case the representation model parameter
will be finite energy. If the covering = is finite and
disjunctive, then the representation (28) can be written as
following

(29)

N
P—> €. & =e(p,) P,eE", (30)

i=1

For the signal space (9), similar to the statistical
model case all theoretical samples are possible as well.
The other method suitable for setting the factorization
and almost factorization tasks is to use the known
seminorm of the space LP[3]

e, { flecor e

The seminorm (31) gives the possibility to set the
equivalency ration which is almost everywhere similar to
the signal similarity which precision is equal to null.
Appropriately, the factor space in this case, which is
determined in accordance with the equivalency ratio, is
the almost factor space of some almost factorization
parameter value. Let’s note that the approach of the
seminorm (31) can be used for the cases of both
factorization and almost factorization of a separate signal
of the topological space.

3.3. THE INFORMATION MODEL OF THE SIGNAL
REPRESENTATION

The information model of the signal representation
is based upon the information theory, which
development is dynamic information theory fully set in

(1)

[2, 9, 16]. If the signal P is interpreted as a continual one
within the topological manifold R" or as a random
function or random process C, then by the dynamic
information theory it can correspond with the following
information parameters [2]:

1) informativeness 1°— the quantity of information,
which is a constituent of the realization of the random
process C in the case of its representation by the step
function of the step value equal to & (the characteristic

space A')
Pt I
3y o
2) S-entropy H° — the average value of a random

process change in quanta 8, within the interval Ax — the
measure of the random process change indetermination

c’ (x)‘ dx. (32)

(the characteristic change AR )

P>H’= ax M [d_C} ;

S, dx
3) set -entropy h°- the indetermination change,

which is calculated by the distribution law and is within

(33)

the range (0-1) (the characteristic space A" )
m[c'(x)]
max [C' (x)]

Poh'= (34)

xeR"
If the topology 3 is set and its covering =~ is
determined in accordance with (5), (32)-(34) are metrics
of the characteristic spaces A", A" and A", and the

space E” is following

A" d (P P =[Ta—Tol; A L (P b)) =

SR

Ahb :dEx(pw pn)=|h§1_hi|

The metrics provide setting the factorization and
almost  factorization tasks in the information
representation model case.

In the finite discrete case (2) the representations
(32)-(34) will look like the following

_ 1N 1 N®
PoT? :EZK:IF” =gzk:|ogz(N§k) +1),

. (35)

;o (36)
15y =log, (NG, +1)
8 - 8 W 5
PoH" =3 pylio =2 P log, (Ng, +1),

k=1 k=1 , (37)

N(ﬁk)

P =75

Mol 1))

Po>h = |—|5[|og2 [%+1}J , (38)
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where Ifk) — the quantity of information, which is at the k

level of rating (quantization); s — the signal dimension;
N°®+1, N, - the quantity of quantization levels within

the area of values of the signal P and the k random
value.

In the case of the signal set (9) the parameters (32)-
(34) or (36)-(38) refer to both the elements of every
signal topology P, and the signal P, in general.

3.4. VECTOR REPRESENTATION MODEL

The vector representation model [6, 14, 16] of the
signal P is based upon the hypothesis concerning the
existence of some vector function C determined within
the space R®. Thus, the first parameter of the model is
the stream of the vector C through the hypersurface S

Pod= j C-ds, (39)

ScR"

existing under the following conditions: the vector C is
taken to be directed by the normal towards the surface S
the vector element dS of the surface exists almost
everywhere within S and coincides by the normal with
the direction C. In (5) the instance of the space R® is
considered because in the case of the space R" the stream
visualization is lost partially, nevertheless all the
hypersurface characteristics coincide in accordance with
the theorem of Ostrohradskyi-Hauss. That is why the
surface @ creating the characteristic space A® exists.

The 2™ parameter of the model is a color gradient
which is alike the vector function of Euclid’s space of
the C vector coordinates within the surface S The
gradient diversity forms the vector (potential) field.

Let’s consider different methods of semimetrics
development to solve the tasks of factorization and
almost factorization in the vector representation model.

In compliance with [6, 11, 14] if the topology 3J is
set and its covering =" is determined the expressions
below

(P Py) =@, @,
dEw(pm' pn):|cDm_(Dn| ' (40)
are considered to be a scalar product and the metrics of

the Hilbert space (QC'||'"c,¢)’ which is separable as

well, appropriately. Q. — the normed space of the C

vector function with the norm ||||C® which is

determined through the stream @ as: | p, [, = ®p-

In the case of the finite space X? the dimension Ixh
of [6] we have the following:

- the space (QC’"."C,det) with the determined

norm || p,[. . = |det(Cm)| ;

C,det

- the space (Qc'”'"c,p) with the determined norm

[Palc.,

Frobenius metrics);

- the space (Qc'"'||c,smg|) with the multiplicative

dEN (pm' pn):m.axci (Cm_Cn)

(where oj — the metrics number).

metrics

In accordance with the denomination norms and
metrics Cy, stands for the metrics of the coordinates of
the vector function C within the hypersurface pm, and cn,
G, being its elements.

If (9) is the image set, there is the 3" parameter of
the vector representation model, i.e. Euclid space {®}:

Po{®,} (41)

Semimetrics is to set the tasks of factorization and
almost factorization, which refer to the separate signal
case and can be used for the image set without reserve.

z

4. Factorization and almost factorization on the
example of the solution of the image superposition
task

To realize the former theoretical studies in practice
let’s consider the superposition task in the set of one type
digital images. In the case the images are considered as a
discrete signal determined within two-dimensional
limited area. Then the set (9) looks like

P={P|P,:X* >N} . (42)
z=1K

The superposition task lies in similarity detection
between the set images or between their separate
fragments and in further determination of superposition
parameters, in particular horizontal and vertical
superpositions, turning angle and scaling coefficients,
i.e. the whole set of affine transformations is considered.
To simplify practical realization let’s set limits searching
only for horizontal and vertical superpositions.

Similarity detection algorithms depend on the
characteristics of the stochastic interconnection of the
compared image fragments [4]. Traditionally to realize
the procedure of detecting images superposition the
correlation tether (correlation maximum) of the digital
images is used [6].

The main disadvantage of the correlation tether
method is the great combinatory complexity demanding
significant calculating and time resources. Time
spendings are the most undesirable, so far as they do not
make possible to build image analysis systems in real
time (or approximated to real time). All efforts to
accelerate the correlation tether lay in unparalleling the
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calculating algorithm which is not effective in cases of
large-dimensional sets.

Under the conditions of the task of superposition
concerning the set (42) we have the following data: the
fixed image Ppixe = Ps, the frame

Xiet an (Avtanr Ayt I s s ) (the set of pixels as a

frl,san

rectangular subarea of the determination area X?) and the
corresponding fragment p, .., (the set of integer values of

every pixel color/intensity of the frame X 2 ). Here we

frl,san
have the coordinates of the beginning (a top left angle)
and the length and height A A l¢r, , Ny, OF the

images. The superposition task lies in forming the set P'
in the condition that

P'=PA[R) = (P

Z}z:Z,vK )

x13ag? —ylzan’

and all the images of the set P' are equal with regard to
Pyixe Within a pixel. The topology 3 of the set (42) is a
set with the fragments of the frames [6, 11], which are
equal to the frame X, 2. by their physical dimensions.

fri,zan
Under the set of initial conditions and with the use
of semimetrics separated in p. 3 there are such
superposition methods developed:
- methods based upon the mathematical
expectation and dispersion (semimetrics (26))
[10];
- method based upon the finite energy/average
power (semimetrics (26) but with the parameter
(28)) [12];
- vector method based upon the color vector-
function stream (semimetrics (40));

- method based wupon signal/noise peak
correlation
(semimetrics
d(Pn P,) =|PSRN(p,,)~PSRN(p,)| ) [13];

- method based upon informativeness / entropy /
exemplified entropy (semimetrics (35)) [9];
- vector method based upon the Frobenius

metrics (the space (QC,||~||C’2)) [6];

- vector method based upon the determinated
norm (the space (QC , ||||C o )) [15];

- vector method based upon the singular metrics
(the space (QC|||| C,singl)) [6];

- the method based upon the peak signal / noise
correlation as images similarity measure (semimetric

(5, ), ) -t0
o B o B s (B )

here d. 4, (P, P,) — Frobenius metrics) [13].

The general scheme of all the methods comprises
the following stages:
1% stage. By the elements of the topology 3 of the

set P'the " = {=]" | determination of finite coverings.

2" stage. Via solving the almost factorization task

within the set P' determination of the almost
factorization class
[ 18]/ == {[ P 6],/ 12 2K fane
corresponding frame for every class element.
Here[ p.,.le] /~ is a subclass of the class
[ ..., | €]/ ~, which comprises zimage fragments.

3 stage. Constricting of every subclass

[ i €],/ ~ to the set {p,ma} consisting one element

Xfr;max (sz,max 1 Ay z,max ! lfrl ! hfrl) " The

element p,max IS determined via solving the task of
searching for the correlation maximum within the

subclass [ p.,, [&] /~.

of the frame

4™ stage. For every image P, we search the

horizontal A, , and the vertical A, of the coordinate
superpositions A, ., and A, for the image P,
Ax,(z) = Ax,z,max _Ax,l,';au; Ay,(z) = Ay,z,max _Ay,l,sall .

In Fig.1-3 the results of experiments at the different
input parameters of image sets are exemplified. The
influence of different characteristics upon the rapidity
and quality of the set of equitype images the solution of
the superposition task has been studied. The classic
correlation tether method is chosen for comparison.

In Fig.1 the average values of the work time of the
algorithms are exemplified with the following set
characteristics: the set dimension — K = 99 images; grey
gradation image; the dimension of every image — | = 34;
h = 54 pixels; Py = Po. The parameters of the set
frame are X, 259 AL o = A g, =105 1 =h =10;

fr0,3an
€=0.01.

As you can see in Fig.1 the algorithms built on the
base of the developed methods operate faster then the
algorithms based on the well-known methods.

In Fig.2 the dependence of the operating time of the
algorithms on the set dimension is illustrated.

According to these results we may state that in cases
of small dimension sets it is recommended to use the
superposition methods based upon the mathematical
statistics as the fastest and having satisfactory
superposition results. When the set dimensions are large,
it’s better to use the methods of the image representation
vector model, because the rapidity of the algorithms built
upon the almost factorization of representation vector

x,0,3an y,0,3an
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model Hilbert spaces is increasing more dynamically, if
K is rising.

Correlation — 1523191447

Vector flux [mm—4486,42335

Determinant  p—6203,25
psr-metric  — 15240,4546

PSRN-parameter js—15164,62649
g Entropy 4144,375
= Energy s 13795

Frobenius j—11211,64164
Dispersion s 11887,73623
Deviation m—13814,5
Average _ 1]894,801¢)1
10000,0 15000,0 20000,0
Time, ns

25000,0

Fig. 1. Comparison of work time of image set
superposition by different algorithms (K = 99 images)

L] + L] D Di L Fr
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nergy ntropy parameter n-metric
6000 Dete Ve Cor

rminant ctor flux relation

1000

S===

S2t  dimension, 4 9
images

000

000

Fig. 2. Comparison of time results of image set superposition
methods work at different set dimensions

During experiments the worst correlation values of
the set fragment (standard) square and the general image
square have been determined. The problem of the
standard choice is thoroughly studied in [17] and is not
considered in the paper. Moreover, the practical
experiment results prove that the waste time dynamics is
the lowest in the algorithms built upon the information
model parameters. Thus if the standard dimensions are
close to the critical correlation, it is necessary to use the
methods based upon entropy, set entropy or
informativeness. Furthermore, it is possible to influence
upon the algorithm operating speed in general via the
choice of quantization methods.

The results of the mistakes appeared during the
developed superposition algorithms at different values of
the almost factorization parameter are illustrated in Fig.3
The data obtained certify the dependence of the
operation quality of the superposition algorithms on the
parameter €. Qualitatively the dependence is inversely
proportional to the operation quality of the algorithms.

Fig.3. Quantity of mistakes at different values of almost
factorization parameters
of different superposition algorithms

On the other hand, more mistakes appear if ¢ values
are small. Thus while choosing a method for practical
experiments it is significant to take into consideration
not only the dimensions of the set and fragment but the
parameter .

The developed methods work effectively for both
semitone and color images. To build the parametersof
the base representation model in the superposition
methods the integral color values can be used, since it
accelerates the algorithm performance in general. All
methods together with the image set superposition task
give possibility to solve the classical task of searching
object by the sample given. They can be partially or fully
used while solving the applied tasks of segmentation,
classification and recognition.

Conclusions

The formulated notion of almost factorization of the
topological space signal is the extension of the metrics
space notion, if the topology and the equivalency and
almost equivalency ration is set. It gives the possibility
to generalize separate classical tasks and create the
single system approach in the signal processing area of
the artificial intelligence systems.

The development of the almost factor space can be
considered as an operation, which gives the possibility to
formulate factor spaces within insignificant assumptions.

The task of the one type images set superposition
has been solved basing upon the almost factorization
task setting in the case of finite discrete two-dimensional
signals. The approach used can be considered as basic
for many practical methods of signal and image
processing.

Introducing other semimetricses as well as ratios of
equivalency and almost equivalency, it is possible to
formulate other tasks of factorization and almost factori-
zation and develop new methods of signal processing .
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aBTOMAaTH3U-

®AKTOPU3ALIS TA MAMKE
®AKTOPH3AILIISI HOPMOBAHUX
CEINAPABEJBHUX ITPOCTOPIB B 3AJJAYAX
OBPOBKU CUT'HAJIIB

PosriissHyTo  moHATTS  akTopM3amii  METPUYHOTO
HpOCTOpY B 3aja4ax oOpOOKHM SK OKPEMOro Tak i mpocropy N-
BUMIDHUX CHTHAJiB IS HEHNEPEepBHOIO Ta JUCKPETHOTO
BUIT4/IKiB. 3aIIpOIIOHOBAHO MOHSATTS Maike eKBIBaJIEHTHOCTI Ta
KJacy Maibke eKBIBaJGHTHOCTi, IO JajJ0 MOXJIHMBICTh
chopMymOoBaTH  MOHATTS ~ Maibke  (aKTOPIPOCTOpY  SIK
y3araJibHeHHs (akropu3alii TONOJIONIYHOTO IpocTopy. 3
METO JIEMOHCTpAlii MPaKTUYHOI peanizauil TeOpeTHYHHX
pe3ysbTaTiB  MPHUBEACHO BHPIMICHHSA 3aJa4i  CyMIlICHHS
HaOOpiB  OJHOTUIHUX 300pakeHb Ha  OCHOBI
(axropuzarnii HOpPMOBaHHMX cemapabeNbHUX —TOIOJOTIYHUX
HPOCTOPIB 300pakeHb.
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