Юр'єв С. О., Ющук С. І.*, Ракобовчук Л. М., <u>Сколоздра Р.В.</u>* ДУ "Львівська політехніка", кафедра електронних приладів *ДУ "Львівська політехніка", кафедра фізики

МАГНІТНІ ПОЛЯ НА ЯДРАХ Sn¹¹⁹ У ТВЕРДИХ РОЗЧИНАХ ТіСо_{2-х}Sn (x=0,0...1,0)

© Юр'єв С. О., Ющук С. І., Ракобовчук Л. М., Сколоздра Р.В.

Досліджено ядерний гамма-резонанс на ядрах Sn^{119} у твердих розчинах TiCo_{2-x}Sn (x=0,0; 0,3; 0,6 i 1,0) при T=295 i 80 K. Зеєманівське розщеплення для Sn¹¹⁹ в TiCo₂Sn має місце при T=295 i 80 K, а для складів з x= 0,3...1,0 при T=80. Спостерігається підвищення $H_{e\phi}$ на ядрах Sn¹¹⁹ для складу з x=0,6 порівняно з x=0,3. Установлено, що в твердих розчинах з x=0 i 0,3 всі атоми олова Sn(1) знаходяться в однакових кристалографічних положен-нях і мають близькі значення ізомерного зсуву ($\delta \approx 1,5$ мм/с). У сплавах з x=0,6 i 1,0 з'являється ще один гатунок атомів олова Sn(2), які займають тетраедричні вакансії і характеризуються більшим значенням δ .

The nuclear gamma-resonance on Sn^{119} nuclei in solid solutions $\operatorname{TiCo}_{2-x}\operatorname{Sn} (x=0,0; 0,3; 0,6 \text{ and } 1,0)$ about T=295 and 80 K was investigated. The Zeeman splitting for Sn^{119} in TiCo₂Sn were observed at T=295 and 80 K, and for compounds with x=0,3...1,0 at T=80 K. The increasing of H_{ef} is observing on Sn^{119} nuclei for compound with x=0,6 in comparison with x=0,3. There was found that all Sn(1) atoms in solid solutions with x=0,0 and x=0,3 are dislocated at equivalent crystallographic positions and have close values of isomer shifts ($\delta \approx 1,5$ mm/s). Another kind of Sn(2) atoms appear in alloys with x=0,6 and 1,0, which occupying tetrahedral vacancies and characterized by more δ value.

Вступ

Відомі роботи, наприклад [1,2], в яких методом ядерного гамма-резонансу (ЯГР) на ядрах Sn^{119} досліджені сплави MeCo₂Sn (Me=Ti, Zr, Hf, V). Такі сплави належать до фаз Гейслера, магнітні та електричні властивості яких зумовлено не тільки хімічною природою елементу Me, але і ступенем досконалості їх кристалічної решітки [3]. Сьогодні ще не має однозначного розуміння механізму формування магнітних надтонких взаємодій для немагнітного атома Sn у фазах MeCo₂Sn. Тому дослідження магнітних полів на ядрах атомів олова у сплавах ізоструктурних з фазою MeCo₂Sn є важливими для розв'язання цієї проблеми.

Робота присвячена встановленню взаємозв'язку величини магнітного поля на ядрах олова в твердих розчинах TiCo_{2-x}Sn з їх складом та особливостями кристалічної структури.

Відомо, що сплави TiCo_{2-x}Sn утворюють тверді розчини, область гомогенності яких містить значення x=0,0...1,0 [4]. Крайній сплав з цього ряду – TiCo₂Sn (x=0,0) належить до просторової групи Fm3m [5]. Елементарна комірка TiCo₂Sn наведена на рис.1. У структурі цього сплаву атоми олова, позначимо їх Sn(1), утворюють щільне кубічне упакування, в

Рис. 1. Елементарна комірка сплаву ТіСо₂Sn

якому тетраедричні та октаедричні положення заповнені відповідно атомами Со та Ті. У першій координаційній сфері атома Sn(1) знаходяться вісім атомів Со, в другій – шість атомів Ті. Рентгеноструктурні дослідження показали, що сплав TiCoSn має кристалічну структуру, яка є дефектною похідною від структури сплаву TiCo₂Sn, де атоми Со займають лише по-ловину тетраедричних положень [6]. Друга половина положень, які є незаповнені атомами Со, утворює в кристалічній решітці TiCoSn тетраедричні вакансії. Але, як показали результати прецізійних рентгеноструктурних досліджень та розрахунки структури, у сплаві TiCoSn спостерігається надлишок над стехіометричним складом атомів Со та олова (Sn(2)), кожного на 0,14 ат. часток, які статистично розподіляються по утворених тетраедричних вакансіях [3], позначених на рис.1 великими кружками. Тому у сплаві TiCoSn в найближчому оточенні атома Sn(1) знаходяться чотири атоми Co, які розташовані у вершинах чотирикутної піраміди, та атоми Co i Sn(2), які статистично розподілені в тетраедричних вакансіях. Водночас атоми Sn(2) мають кубічне оточення з чотирьох атомів Ti та чотирьох атомів Sn(1).

Приготування зразків, методи досліджень

Зразки сплавів TiCo_{2-x}Sn (x=0,0; 0,3; 0,6; 1,0) виплавляли в електродуговій печі в атмосфері очищеного аргону з чистих металів, які вміщали не менше ніж 99,99% основного компонента. Гомогенізацію сплавів виконували їх відпалом у вакуумованих кварцових ампулах при T=1070 К протягом 500 год. Рентгеноструктурні дослідження показали, що всі виготовлені зразки є однофазними.

ЯГР-спектри вимірювали на спектрометрі зі сталим прискоренням [7]. Як джерело гамма-квантів використовували BaSn^{119m}O₃ активністю $1,5^{\cdot}10^8$ Бк, яке зна-ходилось при кімнатній температурі. Спектри поглинання отримували при температурах T=295 К та 80 К на зразках, які мали природну концентрацію Sn¹¹⁹. Товщина поглиначів становила 0,1 мг/см² по Sn¹¹⁹.

Експериментальні ЯГР-спектри апроксимувались сумою елементарних резонансних ліній, які мали лоренцівську форму. Обробку ЯГР-спектрів проводили з використанням програми UNIWEM 3.0. Вибрані моделі розрахунку дозволяли отримувати розклад експериметальних спектрів на елементарні при значеннях $\chi^2 = 1,15...1,24$.

Результати експерименту

На рис. 2 і 3 наведені ЯГР-спектри сплавів TiCo_{2-x}Sn (x=0,0; 0,3; 0,7; 1,0), а в таблиці – результати розрахунків їх параметрів на ПЕОМ . Як видно з рис.2,а, спектр поглинання фази TiCo₂Sn при температурі T=295 К характеризується зеєманівською структурою. В центральній частині спектра спостерігається накладання двох окремих резонансних ліній A₁ та A₂ з ізомерними зсувами δ_1 =1,14±0,02 мм/с та δ_2 =2,57±0,02 мм/с. Як показали розрахунки, їх інтенсивності є практично однаковими і кожна становить 7...8% від загальної площі спектра. Походження парамагнітних компонент на рис.2,а викликане наявністю в зразку атомів олова, що не увійшли до фази TiCo₂Sn. Вимірювання ЯГР спектра TiCo₂Sn при T=295 K в зовнішьому полі з індукцією B=1,6 Тл показало, що знак ефективого магнітного поля Н_{еф} на ядрах атомів Sn(1) є додатним.

Рис.2. ЯГР-спектр поглинання сплавів $TiCo_{2-x}Sn$ при T=295 K a – $TiCo_2Sn$; б – $TiCo_{1,7}Sn$; в – $TiCo_{1,4}Sn$; г – TiCoSn

	Т=295 К				Т=80 К			
Сплав	Sn (1)		Sn(2)		Sn(1)		Sn(2)	
	δ,	H _{eф,}						
	мм/с	ĸЕ	мм/с	ĸЕ	мм/с	ĸЕ	мм/с	ĸЕ
TiCo ₂ Sn	1,41(2)	65,5(5)	-	-	1,44(3)	82,2(5)	-	-
TiCo _{1.7} Sn	1,51(3)	-	-	-	1,48(2)	28,1(5)	-	-
TiCo _{1.4} Sn	1,46(2)	-	2,61(3)	-	1,52(3)	50,6(5)	2,99(3)	-
TiCoSn	1,42(2)	-	2,97(2)	-	1,56(3)	19,9(5)	2,99(4)	15,6(8)

Параметри ЯГР-спектрів Sn¹¹⁹ в ТіСо_{2-х}Sn (x=0,0...1,0)

Примітка. Ізомерні зсуви (δ) визначали відносно SnO₂.

Обговорення результатів

У кристалічній структурі фази TiCo_{1,7}Sn порівняно з TiCo₂Sn відсутні близько 15% атомів Co, що призводить до появи в TiCo_{1,7}Sn тетраедричних вакансій. ЯГР-спектр сплаву TiCo_{1,7}Sn при T=295 К має вигляд розширеної ($\Gamma_{1/2}$ =1,54± 0,02 мм/с) одиночної лінії (рис.2,б). Розширення резонансної лінії, очевидно, пов'язане з статистичним розподілом утворених вакансій відносно атомів Sn(1). При переході від сплаву TiCo_{1,7}Sn до TiCo_{1,4}Sn в резонансному спектрі останнього (рис.2,в) з'являється додаткова лінія з більшим значенням ізомерного зсуву (табл.1), що відповідає атомам олова Sn(2).

Зупинимося на аналізі спектра поглинання сплаву TiCoSn (рис. 2,г), в кристалічній структурі якого відсутня вже половина атомів кобальту. Як було зазначено вище, атоми Sn(1) в цій структурі розташовані в центрах пірамід, утворених з чотирьох атомів кобальту, а надлишкові атоми олова Sn(2) та кобальту розміщені статистично в тетраедричних вакансіях. В результаті накладання ліній резонансного поглинання гамма-квантів ядрами атомів Sn(1) і Sn(2) отримано ЯГР-спектр, розкладений на дві одиночні лінії шириною $\Gamma_{1/2}=1,50\pm0,02$ мм/с, які характеризуються різними значеннями інтенсивностей та ізомерних зсувів (табл.1). З наших розрахунків виходить, що в TiCoSn кількість атомів Sn(1) є більшою в 2,85 раза, ніж атомів Sn(2).

Рис.3. ЯГР-спектри поглинання сплавів TiCo_{2-x}Sn при T=80 K: а – TiCo_{1,7}Sn; б – TiCo_{1,4}Sn; в – TiCoSn

Як показано в [3], температури Кюрі сплавів з х=0,0; 0,3; 0,6; 1,0 становлять 372, 218, 160 і 135 К, відповідно. Зеєманівська картина ЯГР-спектрів Sn¹¹⁹ в TiCo₂Sn спостерігається і при T= 80 К [1], а для складів з х=0,3; 0,6 та 1,0 при T=80 К наведена на рис.3, що свідчить про наявність ефективних магнітних полів на ядрах олова та магнітного упорядкування сплавів. Установлено, що при переході від складу з х=0,0 до х=1,0 середні значення ефективних магнітних полів $H_{e\phi}$ на ядрах олова Sn(1) змінюються немонотонно (рис. 4), причому спостерігається підвищення значень $H_{e\phi}$ для зразка з х=0,6, в якому є менше магнітних атомів Со, ніж у зразку з х=0,3. Це підвищення $H_{e\phi}$ узгоджується з найбільшим значенням ефективного магнітного момента на атом кобальту в ряду сплавів $0,3 \le x \le 1,0$ [3].

Рис.4. Залежність $H_{e\phi}(x)$ на ядрах Sn (1) для сплавів TiCo_{2-x}S при T=80 K

У досліджуваних сплавах TiCo_{2-x}Sn магнітний момент мають тільки атоми кобальту. Якщо взяти до уваги, що найближчі відстані між атомами кобальту в TiCo_{2-x}Sn (3,00 Å) перевищують відстані Co-Co в металічному кобальті (2,51 Å), то магнітне упорядкування у сплавах TiCo_{2-x}Sn, очевидно, викликане непрямими обмінними взаємодіями, які мають далекодіючий характер. Такі взаємодії можуть здійснюватись через поляризацію електронів провідності і призводити до появи ефективних магнітних полів на ядрах немагнітних атомів олова [8]. Додатний знак $H_{e\phi}$ на ядрах Sn¹¹⁹ в TiCo₂Sn свідчить про те, що спінова густина створюється електронами провідності, скоріш за все, в зовнішніх s-оболонках атомів олова.

Згідно з результами наших вимірювань, електропровідності сплавів TiCoSn та TiCo₂Sn є близькими. Якщо припустити, що концентрації електронів провідності для обох сплавів також є близькими, то зменшення кількості атомів Co в TiCoSn порівняно з TiCo₂Sn призводить до перерозподілу електронів між атомами Co і створює більшу заповненість 3d-зони в TiCoSn, що обумовлює зменшення магнітного моменту атома Co [9]. Тоді стає зрозумілим наявність невеликих значень магнітних полів на ядрах олова в TiCoSn порівняно з TiCo₂Sn.

[1] Keizo Endo, Akiza Shinogi , Imze Vincze . Hyperfine Fields at Tine Site in Heusler Alloys Co₂TiSn, Co₂ZrSn and Co₂HfSn // J.Phys.Soc. Japan, 1976, v.40, № 3, -P.674-678.

[2] E.A.Görlich, R.Kmыieć, K.Latka, T.Malak, K.Rubenbauer, A.Szytula and K.Tomala. Transferred Hyperfine Fields at the Tin Site in Heusler-Type Alloys Co₂YSn (Y=Ti, Zr,Hf,V)// Phys. Stat.Sol. (a) . 1975,v.30, -P.765-770.

[3] Р.В. Сколоздра, Ю.В. Стаднык, Ю.К.Гореленко, Е.Э.Терлецкая. Влияние вакансий на магнитные и электрические свойства фаз Гейслера Me'Co_{2-x}Sn (Me' =Ti, Zr,Hf) // Физика тердого тела. 1990, Т.32, № 9, -С. 2650-2654.

[4] Yuryev S.A., Yushchuk S.I., Skolozdra R.V., Goryn A.M. Investigation magnetic properties of Heusler phases MeCo_{2-x}Sn (Me=Ti, Zr,Hf)// Progra-me and Digest of European Magnetic materials and Application Conference EMMA'93, 1993, -P. 255.

[5] E.Uhl. Magnetic properties of new alloys $(Cu_{1-x}Co_x)MnSn$ // J.of Magnet. and Magnetic Mater. 1981, v.25, -P.221-227.

[6] С.И.Ющук, С.А.Юрьев, Р.В. Сколоздра, Ю.В.Стаднык. ЯГР- спектроскопия и магнитные свойства нового ферро-магнетика TiCoSn // Тезисы докладов II-го совещания по

ядерно-спектроскопическим исследованиям сверхтонких взаимодействий, Грозный, 1987, - С. 47.

[7] Юрьев С.А., Ющук С.И., Хомяк Г.Е. Цифрвой генератор опорного сигнала для ядерного гамма-резонансного спектрометра на базе многоканального анализатор NTA-1024 // 1986, ПТЭ, №.1, -С. 104-106.

[8] В.С. Литвинов, С.Д.Каракишев, В.В.Овчинников. Ядерная гамма-резонансная спектроскопия сплавов.-М.: Металлургия, 1882. -143 С.

[9] В.В. Чекин. Мёссбауэровская спектроскопия сплавов железа, золота и олова. -М.: Энергоиздат, 1981.-106 С.