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In the paper, we illuminate the connection between diffusion processes and partial differ-
ential equations of parabolic type. The emphasis is on degenerate parabolic equations with
real-valued coefficients. These equations are the generalization of the classical Kolmogorov
equation of diffusion with inertia, which may be treated as Fokker–Planck–Kolmogorov
equations for the corresponding degenerate diffusion processes. A fundamental solution
of the Cauchy problem for Fokker–Planck–Kolmogorov equation determines the transition
probabilities to the corresponding diffusion process. The conditions on the coefficients
under which there exists the classical fundamental solution are formulated. The basic
properties of fundamental solutions are proved. The application of the fundamental solu-
tion to the investigation of correct solvability for the Cauchy problem is presented.
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1. Introduction

In this paper, we consider equations from the class E22 (definition of this class is given in monograph [1])
with real-valued coefficients. These equations often appear in the investigations of various physical
phenomena in the so-called diffusion approximation. In many important cases (for example, in the
study of the Brownian motion) these mathematical models describe natural phenomena adequately and
in a relatively simple way. Usually such equations, used systematically from the beginning of the last
century, are called the Fokker–Planck equations. These equations often determine the continuous time
evolution of a Markov stochastic process. Studying models of the Brownian motion, Kolmogorov [2]
selected the class of continuous Markov processes, which later get the name of diffusion processes.
In the mentioned work, Kolmogorov showed that diffusion processes are closely connected with the
second-order partial differential equations of the parabolic type. Namely, if the function P (s, x, t,Γ)
determines the transition density to the diffusion process with the drift vector a and diffusion matrix b,
then under such conditions, the function

u(s, x) :=

∫

Rm

ϕ (y)P (s, x, t, dy) (1)

is a solution in layer {(s, x)|s ∈ [0, t) , x ∈ Rm} for the equation

∂su+
1

2

m∑

j,k=1

bjk(s, x) ∂xj∂xku+
m∑

j=1

aj(s, x) ∂xju = 0 (2)

with the initial condition
lim
s→t+

u(s, x) = ϕ(x). (3)

Here bjk(s) are the elements of the matrix b, aj are coordinates of a vector a, and xj are coordinates
of a vector x. From the diffusion view on the phenomenon, the drift vector a is a macroscopic velocity
of liquid, and the diffusion matrix b characterizes random movement of a participle, which are the
result of collisions with molecules of liquid, which are in a thermomotion.
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Besides the inverse equation (2), the so-called direct equation is obtained in this work, too. Both
equations are the second-order partial differential equations of parabolic type.

Let us pay attention to the fact that direct equations for some special cases have been got by the
physicists Fokker and Planck a bit earlier, who studied phenomenon of diffusion. That is why it is also
called the Fokker–Planck equation.

In the classical theory of the Brownian motion developed by Einstein and Smoluchowski [3, 4] the
inertia of a Brownian particle is neglected, that is the mass of a particle is actually assumed to equal 0.
Therefore, a Brownian particle in the Einstein–Smoluchowski theory cannot have a finite velocity.
Brownian motion of a physical system in the Einstein–Smoluchowski approximation is a continuous
Markov process on the coordinate space (the Wiener process, for the case of a free particle).

The fact of non-differentiability of Brownian paths in the Einstein–Smoluchowski theory is closely
connected with an idealization made in this theory (the neglect of inertia) making it invalid on small
time intervals. For the simplest case of the Brownian motion of a free particle, a theory taking
inertia into account was developed as early as in 1930 by Uhlenbeck and Ornstein [5]. In this more
precise theory, paths are already differentiable (but do not have the second derivative, so that now the
acceleration becomes infinite).

In fact, the same generalization is contained in the paper [6] by A.N.Kolmogorov. He considered
the general case of the Brownian motion for an arbitrary physical system with n degrees of freedom.
According to Kolmogorov, inertia is taken into account if a state of the system is described by values
of n coordinates q1, . . . , qn and n their time derivatives (velocities) q̇1, . . . , q̇n. Here the model of the
Brownian motion is a continuous Markov process in the 2n-dimensional phase space of coordinates and
velocities.

In the paper [6] is assumed that, whenever we know the values of q := (q1, . . . , qn) and q̇ :=
(q̇1, . . . , q̇n) at an instant of time t, we can find the probability density G(t, q, q̇; t′, q′, q̇′) of possible
values q and q̇ of the coordinates and their time derivatives at an arbitrary instant t′ > t. It is assumed
that G does not depend on the behavior of the system before the instant t (there is no aftereffect,
the process is of the Markov type). It is proved that the function G is a fundamental solution of the
Cauchy problem (FSCP) for the Fokker–Planck differential equation. Thus, it is natural to call them
the Fokker–Planck–Kolmogorov equations for the corresponding degenerate diffusion processes. Such
equations belong to a class ultraparabolic or elliptic-parabolic equations.

The development of the theory for ultraparabolic equations of the Kolmogorov type, subsequent
investigations aimed at finding as a more weak conditions as possible for the existence of a FSCP,
obtaining its precise estimates, considering equations with a more complicated structure. Investiga-
tion of FSCP and correct solvability of the Cauchy problem for degenerate parabolic equations of
the Kolmogorov type under different assumption for coefficients of equations worked out M.Weber,
A.M. Il’in, I.M. Sonin, Ya. I. Shatyro, L. P.Kuptsov, S.D.Eidelman, A.P.Malitska, L.M.Tychinska.
S.D. Ivasyshen, L.N.Androsova and V. S.Dron’ (see monograph [1]).

Well known [7–9], that nondegenerate diffusion processes with sufficiently regular characteristics
possess smooth transition densities. In general, a degeneration of the diffusion matrix leads to the
nonexistence of a density of the transition probability. However there exist some classes of degenerate
processes with smooth transition densities. The processes of the Brownian motion with inertia consid-
ered by A.N.Kolmogorov, A.M. Il’in, R. Z.Khasminsky and others are among such processes. In the
paper [10] I.M. Sonin studied a natural generalization of the process of diffusion with inertia. For the
class of processes considered the transition densities are constructed as FSCP for the equations

∂tu =

(
1

2

n∑

j,l=1

ajl(t, x, y, z)∂yj∂yl+
n∑

j=1

aj(t, x, y, z)∂yj

+
n∑

j=1

bj(t, x, y, z)∂xj +
n∑

j=1

cj(t, x, y, z)∂zj

)
u, {x, y, z} ⊂ Rn, (4)

where bj(t, x, y, z) behave “approximately” like yj, and cj(t, x, y, z) as xj. Existing a FSCP for the
equation (4) under condition that coefficients of the equation are sufficiently smooth functions is
proved.
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Note that, the results of constructing and investigation properties of a FSCP for the equations,
which have the form (4) under more weakly conditions for their coefficients is contained in the mono-
graph [1] and the paper [11]. Some newly results about FSCP and correct solvability of the Cauchy
problem for the equations type of (4) we will announce in the following sections. Interest in obtaining
results for equations from the class E22 is not academic. Some motivations for studying ultraparabolic
equations of Kolmogorov type from the stochastic theory of diffusion processes, statistical physics, fi-
nancial mathematics and especially option theory are given in papers [1,11–19]. Different properties of
the probability solutions for linear and nonlinear Fokker–Planck–Kolmogorov equations are presented
in [20] and [21].

2. FSCP for the Fokker–Planck–Kolmogorov equations of degenerate diffusion pro-
cesses

The main object of our study, in this section the FSCP for some degenerate parabolic equations,
can be interpreted in a natural way as a transition density of a respectively diffusion process with a
value from n-dimension phase space Rn of points x with three different groups of phase coordinates
xs := (xs1, . . . , xsns) ∈ Rns , s ∈ {1, 2, 3}, n = n1 + n2 + n3, 1 6 n3 6 n2 6 n1.

We consider the equation with real-valued coefficients

S −

n1∑

j,l=1

ajl(t, x) ∂x1j∂x1l −
n1∑

j=1

aj(t, x)∂x1j − a0(t, x)


u(t, x) = f(t, x), (t, x) ∈ Π(0,T ], (5)

and the corresponding adjoint equation

S∗v(τ, ξ) −
n1∑

j,l=1

∂ξ1j∂ξ1l (ajl(τ, ξ) v(τ, ξ)) +

n1∑

j=1

∂ξ1j (aj(τ, ξ) v(τ, ξ))

− a0(τ, ξ) v(τ, ξ) = g(τ, ξ), (τ, ξ) ∈ Π[0,T ). (6)

where ΠH := {(t, x)|t ∈ H,x ∈ Rn}, if H ⊂ R; T is given positive number; S is differential expression,
which determine by formula

S := ∂t −
n2∑

j=1

x1j∂x2j −
n3∑

j=1

x2j∂x3j

or Li derivative respect to vector field define this expression, and S∗ is adjoint expression to S.
We shall use the Green–Ostrogradsky formula which, for the present situation, takes the form

∫ t2

t1

dθ

∫

BR

(vLu− uL∗v)(θ, y)dy =

∫

BR

(vu)(θ, y)
∣∣∣
t2

θ=t1
dy

−
∫ t2

t1

dθ

∫

ΓR

( n2∑

j=1

y1jµ2j +

n3∑

j=1

y2jµ3j

)
(vu)(θ, y)dSy +

∫ t2

t1

dθ

∫

ΓR

n1∑

j=1

Bj[v, u](θ, y)µ1jdSy, (7)

where t1 < t2, BR is the ball {y ∈ Rn| |y| 6 R}, ΓR is its boundary, (µ11, . . . , µ1n1 , µ21, . . . , µ2n2 , µ31, . . . ,
µ3n3) is the unit vector of the outer normal to ΓR, L and L∗ are the differential expressions from (5)
and (6), Bj[v, u], j ∈ {1, . . . , n1}, are bilinear forms containing derivatives in y1 of v and u of the
orders not exceeding 1.

Bj[v, u] := −
n1∑

l=1

(ajl∂y1luv − u∂y1l(ajlv)) + ajuv, j ∈ {1, . . . , n1}.
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Passing to the limit, as R→∞, we obtain, for appropriate functions u and v, that

∫ t2

t1

dθ

∫

Rn

(vLu− uL∗v)(θ, y)dy =

∫

Rn

(vu)(θ, y)
∣∣∣
t2

θ=t1
dy. (8)

This formula will be used frequently.
Before making an assumptions on the coefficients for the equation (5), we need to introduce the

following notations: ∆z
xf(·, x, ·) := f(·, x, ·) − f(·, z, ·), ∆zs

xsf(·, x, ·) := ∆z(s)
x f(·, x, ·), s ∈ N3, ξ(0) := ξ,

ξ(1) := (ξ1, x2, x3), ξ(2) := (x1, ξ2, x3), ξ(3) := (x1, x2, ξ3); ξ(0) := x, z(1) := (z1, x2, x3), z(2) :=
(x1, z2, x3), z(3) := (x1, x2, z3); x(1) := (x1, z2, z3), x(2) := (x1, x2, z3); X(t) := (X1(t),X2(t),X3(t)),
X(1)(t) := (λ1,X2(t),X3(t)), X(2)(t) := (λ1, λ2,X3(t)), X1(t) := x1, X2(t) := x2 + tx̂1, X3(t) :=
x3 + tx′2 + 2−1t2x′1, t ∈ R, x̂1 := (x11, . . . , x1n2), x′1 := (x11, . . . , x1n3), x′2 := (x21, . . . , x2n3), Z(s)(t) :=
X(t)|xs=zs , s ∈ N3, Z(0)(t) := X(t).

For real-valued coefficients of equation (5) we shall use the following conditions:
1) there exists such a constant δ > 0, that for any (t, x) ∈ Π[0,T ] and σ1 ∈ Rn1 the following inequality
is valid

n1∑

j,l=1

ajl(t, x)σ1jσ1l > δ|σ1|2; (9)

2) the coefficients ajl, aj and a0 are bounded and Hölder continuous in following sense:

∃H1 > 0 ∃α1 ∈ (0, 1) ∀{(t, x), (t, z(1))} ⊂ Π[0,T ] : |∆z1
x1a(t, x)| 6 H1|x1 − z1|α1 , (10)

∃H2 > 0 ∃α2 ∈ (1/3, 2/3] ∀{(t, x), (t, z(2))} ⊂ Π[0,T ] ∀h ∈ [0, T ] :

|∆z2
x2a(t, x)| 6 H2(h

m2α2 + |X2(h) − z2|α2), (11)

∃H3 > 0 ∃α3 ∈ (3/5, 2/3] ∀{(t, x), (t, z(3))} ⊂ Π[0,T ] ∀h ∈ [0, T ] :

|∆z3
x3a(t, x)| 6 H3(h

m3α3 + |X3(h) − z3|α3), (12)

where a ∈ {ajl, aj , a0};
3) ∃H4 > 0 ∀{(t, x), (t, ξ(i)), (t, z(s)) | i < s, i ∈ {1, 2}, s ∈ {2, 3}} ⊂ Π[0,T ] ∀h ∈ [0, T ] :

|∆zi
xi∆

ξs
xsajl(t, x)| 6 H4|xi − zi|αi (hmsαs + |Xs(h)− ξs|αs) ; (13)

4) there exist bounded and Hölder continuous in the sense (10)–(12) in Π[0,T ] derivatives ∂x1j∂x1lajl
and ∂x1jaj.

The following theorem is valid.

Theorem 1. If the conditions 1–3 are satisfied, then there exists a classical FSCP Z for the equation
(5) with the estimates ∣∣∂kxZ(t, x; τ, ξ)

∣∣ 6 C(t− τ)−M−MkEc(t, x; τ, ξ),
∣∣SZ(t, x; τ, ξ)

∣∣ 6 C(t− τ)−M−1Ec(t, x; τ, ξ), (14)

where 0 6 τ < t 6 T , {x, ξ} ⊂ Rn, C and c are positive constants, mj := j − 1/2, j ∈ {1, 2, 3},
M := m1n1 + m2n2 + m3n3, Mk := m1|k1| + m2|k2| + m3|k3|, k ∈ Zn+, |kj | := kj1 + . . . + kjnj

,

Ec(t, x; τ, ξ) := exp
{
− c∑3

s=1 (t− τ)1−2s|Xs(t− τ)− ξ|2
}
, m1|k1|+ |k2|+ |k3| 6 1.

Proof. The proof of the theorem 1 uses the Levi method [22] and for more general case (complex-valued
coefficients of equation (5)) is given in papers [23, 24]. �

If addition, the condition 4 is satisfied then a FSCP Z has such properties:
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Property 1 (normality). Let Z be a FSCP for the initial equation (5), and Z∗ be a FSCP for the
adjoint equation (6). Then

Z∗(τ, ξ; t, x) = Z(t, x; τ, ξ), 0 6 τ < t 6 T, {ξ, x} ⊂ Rn. (15)

A FSCP Z satisfying this equality is called a normal FSCP (NFSCP).

Proof. By virtue of the estimates (6) for Z and similar estimates for Z∗, the formula (6) is valid. In
this formula we set u(θ, y) = Z(θ, y; τ, ξ), v(θ, y) = Z∗(θ, y; t, x), t1 = τ + ε, and t2 = t− ε, where ε is
a sufficiently small positive number. Then we obtain the equality

∫

Rn

Z∗(τ + ε, y; t, x)Z(τ + ε, y; τ, ξ)dy =

∫

Rn

Z∗(t− ε, y; t, x)Z(t− ε, y; τ, ξ)dy, (16)

which, after passing to the limit, as ε→ 0, implies the required equality (15). �

Property 2 (the convolution formula). The function Z is a solution of the functional equation

Z(t, x; τ, ξ) =

∫

Rn

Z(t, x;λ, y)Z(λ, y; τ, ξ)dy, 0 6 τ < t 6 T, {x, ξ} ⊂ Rn. (17)

Proof. Just as in the proof of Property 1, we come to the equality
∫

Rn

Z∗(λ, y; t, x)Z(λ, y; τ, ξ)dy =

∫

Rn

Z∗(t− ε, y; t, x)Z(t − ε, y; τ, ξ)dy. (18)

The equality (17) is obtained when we pass to the limit in (18), as ε→ 0, and use the formula (15). �

The equation (17) is called the Chapman–Kolmogorov equation. It expresses an important fact
that a stochastic process is of the Markov type (a process without aftereffect). An investigation of the
process can be based on the equation (17).

Property 3 (the uniqueness of the NFSCP). There exists only one NFSCP for the equation (5)
satisfying the estimates (14).

Proof. Let Z1 and Z2 be two NFSCPs for the equation (5), both satisfying (14). We use the formula (8)
setting u(θ, y) = Z1(θ, y; τ, ξ), v(θ, y) = Z2(t, x; θ, y). Then

∫

Rn

Z1(t2, y; τ, ξ)Z2(t, x; t2, y)dy =

∫

Rn

Z1(t1, y; τ, ξ)Z2(t, x; t1, y)dy.

Since t1 and t2 from the interval (τ, t) are arbitrary, the last equality means that the function
∫

Rn

Z1(θ, y; τ, ξ)Z2(t, x; θ, y)dy, θ ∈ (τ, t), {x, ξ} ⊂ Rn,

does not depend on θ. Denote this function by Φ(t, x; τ, ξ). Thus,

Φ(t, x; τ, ξ) =

∫

Rn

Z1(θ, y; τ, ξ)Z2(t, x; θ, y)dy. (19)

Letting in the equality (19) first θ → τ , and then θ → t, we find that
Φ(t, x; τ, ξ) = Z2(t, x; τ, ξ) = Z1(t, x; τ, ξ), 0 6 τ < t 6 T, {x, ξ} ⊂ Rn. �

Our diffusion process is characterized by the diffusion matrix A(t, x) := (ajl(t, x))n1,n1

j=1,l=1, (t, x) ∈
Π(0,T ], and the drift vector a(t, x) := (a1(t, x), . . . , an1(t, x)), (t, x) ∈ Π(0,T ], whose elements are the
appropriate coefficients of the equation (5). Let us express these important characteristics via the
transition density of the stochastic process, that is the FSCP Z.
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Property 4 (a representation of the diffusion matrix and the drift vector via the func-
tion Z). The following formulas are valid:

a(t, x) = lim
τ→t

(
(t− τ)−1

∫

Rn

(y1 − x1)Z(t, x; τ, y)dy

)
,

A(t, x) =

(
2−1 lim

τ→t

(
(t− τ)−1

∫

Rn

(y1j − x1j)(y1l − x1l)Z(t, x; τ, y)dy

))n1,n1

j=1,l=1

, (t, x) ∈ Π(0,T ].

Proof. It is sufficient to give the proof for the first coordinate a1 of the vector a and the element a11
of the matrix A. Let us prove, for (t, x) ∈ Π(0,T ], the formulas

a1(t, x) = lim
τ→t

(
(t− τ)−1

∫

Rn

(y11 − x11)Z(t, x; τ, y)dy

)
, (20)

a11(t, x) = 2−1 lim
τ→t

(
(t− τ)−1

∫

Rn

(y11 − x11)2 Z(t, x; τ, y)dy

)
. (21)

Their proof is based on the formula (8), in which we set u(θ, y) = y11 − x11 and v(θ, y) = Z(t, x; θ, y).
Then we obtain the equality

−
∫ t2

t1

dθ

∫

Rn

Z(t, x; θ, y)
(
a1(θ, y) + a0(θ, y)(y11 − x11)

)
dy =

∫

Rn

(y11 − x11)Z(t, x; θ, y)
∣∣∣
t2

θ=t1
dy. (22)

Next in (22) we put t1 = τ , t2 = t− ε, pass to the limit, as ε → 0, divide the result by t− τ and
obtain the equality

(t− τ)−1

∫ t

τ
dθ

∫

Rn

Z(t, x; θ, y) a1(θ, y)dy = (t− τ)−1

∫

Rn

(y11 − x11)Z(t, x; τ, y)dy

− (t− τ)−1

∫ t

τ
dθ

∫

Rn

Z(t, x; θ, y) a0(θ, y)(y11 − x11)dy. (23)

The equality (20) follows directly from (23), since the limit of the left-hand side, as τ → t, coincides
with a1(t, x) due to properties of the FSCP Z and the mean value theorem for integrals, while the
second summand of the right-hand side of the equality (23) tends to zero by our assumptions regarding
the function a0. In order to prove (21), in the formula (8) we set u(θ, y) = (y11 − x11)2 and v(θ, y) =
Z(t, x; θ, y). Then this formula can be re-written as

−
∫ t2

t1

dθ

∫

Rn

Z(t, x; θ, y)
(
2a11(θ, y) + 2a1(θ, y)(y11 − x11) + a0(θ, y)(y11 − x11)2

)
dy

=

∫

Rn

(y11 − x11)2Z(t, x; θ, y)
∣∣∣
t2

θ=t1
dy.

Then we repeat the reasoning from the previous case and come to the equality

(t− τ)−1

∫ t

τ
dθ

∫

Rn

Z(t, x; θ, y)a11(θ, y)dy = (2(t − τ))−1

∫

Rn

(y11 − x11)2Z(t, x; τ, y)dy

− (t− τ)−1

∫ t

τ
dθ

∫

Rn

(
a1(θ, y)(y11 − x11) + 2−1a0(θ, y)(y11 − x11)2

)
Z(t, x; θ, y)dy,

which, after the above arguments, implies the formula (21). �
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Similar reasoning leads to a representation via the function Z for the function −a0, the absorption
coefficient of the diffusion process whose evolution is described by the Fokker–Planck–Kolmogorov
equation (5).

Property 5 (a representation of the coefficient a0 via the function Z). The following formula
is valid:

a0(t, x) = lim
τ→t

(
(t− τ)−1

(∫ t

τ
dθ

∫

Rn

Z(t, x; θ, y)dy − 1
))

, (t, x) ∈ Π(0,T ].

Property 6 (positivity of the function Z). The following inequality is valid

Z(t, x; τ, ξ) > 0, 0 6 τ < t 6 T, {x, ξ} ⊂ Rn.

Proof. Let g be a continuous non-negative function with a compact support. Consider the function

v(t, x) :=

∫

Rn

Z(t, x; τ, ξ)g(ξ)dξ, (t, x) ∈ Π(τ,T ]. (24)

The function v satisfies the conditions of [1, p.208, Theorem 3.16]. Indeed, it is a solution of the
equation (5), that is (Lv)(t, x) = 0, (t, x) ∈ Π(τ,T ], satisfies the conditions v(τ, x) = g(x) > 0,
x ∈ Rn, and lim

|x|→∞
v(t, x) > 0, t ∈ (τ, T ]. Therefore, by [1, p. 208, Theorem 3.16] we have v(t, x) > 0,

(t, x) ∈ Π(τ,T ].
Now we take a delta-like sequence of functions gν , ν > 1, such that gν(ξ) = 0 for |ξ − ξ0| > 1/ν,

and
∫
Rn gν(ξ)dξ = 1, and denote by vν the function (24) corresponding to g = gν and τ = τ0. Then

for arbitrary fixed points (t0, x0) and (τ0, ξ0), with τ0 < t0, we have lim
ν→∞

vν(t0, x0) = Z(t0, x0; τ0, ξ0).

Since vν(t0, x0) > 0 for all ν > 1, we find that Z(t0, x0; τ0, ξ0) > 0. Finally, observing that for every
fixed point (τ, ξ) the function Z(t, x; τ, ξ), (t, x) ∈ Π(τ,T ], is not a constant identically, and using the
strong maximum principle, we come to the strict positivity of the function Z. �

Property 7 (a lower estimate of the function Z). There exists such a number ∆ ∈ (0, T ) that
for any t0 ∈ [0, T −∆], (t, x) ∈ Π(t0,t0+∆], and δ ∈ (0, t− t0) there exist such numbers ω > 0 and γ > 0
that

Z(t, x; τ, ξ) > ω exp
{
−γ|ξ|2

}
, (τ, ξ) ∈ Π[t0,t−δ].

Proof. The proof is similar to proof of the property 3.13 [1, p. 214]. �

3. Correct solvability of the Cauchy problem

The results from Section 2 and paper [25] allow us to investigate properties of the potentials generating
by FSCP Z and based on these properties prove different theorems about correct solvability of the
Cauchy problem for the equation (5). Present some of them. The FSCP Z generates generalized heat
potential – the Poisson integral.

u1(t, x) := (Pϕ)(t, x) :=

∫

Rn

Z(t, x; 0, ξ)ϕ(ξ)dξ, (t, x) ∈ Π(0,T ], (25)

of a function ϕ, the Poisson integral

u0(t, x) := (Pµ)(t, x) :=

∫

Rn

Z(t, x; 0, ξ)dµ(ξ), (t, x) ∈ Π(0,T ], (26)

of a generalized measure µ.
The exact estimates of the FSCP make it possible to prove precise theorems of the correct solvability

of the Cauchy problem. The construction given below is a general framework for such theorems, and
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also for the theorems on the representation of solutions defined on an open layer Π(0,T ], in terms of
their limit values on the hyperplane {t = 0}. The essence of the construction is a characterization of
the evolution of a solution of the Cauchy problem in t by their belonging to a family of Banach spaces
(a specific space for each value of t).

Consider the equation (5) with the condition on the lower boundary of the layer Π(0,T ] (the initial
condition)

u|t=0 = ϕ. (27)

Denote by Φ such a space of initial data that for any Φ there exists a classical solution u of the
Cauchy problem (5), (27). Let U be the space of all such solutions u.

Φ is the space of functions increasing exponentially as |x| → ∞, then the appropriate space U
consists of functions which increase exponentially for |x| → ∞ as functions of x, for every fixed
t ∈ (0, T ]. The type of growth may depend on t. That means that a solution u(t, x), (t, x) ∈ Π(0,T ], as
a function of x for each fixed t ∈ (0, T ], belongs to a certain space Ut. Hence the temporal evolution
of solutions of the problem (5), (27) can be described by their belonging to the appropriate spaces Ut.

We shall use necessary norms and spaces. Define the functions

k (t,a) := (k1(t, a1), k2(t, a2), k3(t, a3)) ; ℓ(t) := (ℓ1(t), ℓ2(t), ℓ3(t)) ;

ks (t, as) := c0as
(
c0 − ast2s−1

)−1
, s ∈ {1, 2, 3} ;

ℓ1(t) := k1(t, a1) + 2t2k2(t, a2) + t4k3(t, a3),

ℓ2(t) := 2k2(t, a2) + 4t2k3(t, a3), ℓ3(t) := 4k3(t, a3), t ∈ [0, T ],

where c0 ∈ (0, c), c is the constant from estimates FSCP (21), a := (a1, a2, a3) are such set nonnegative
numbers that T 6 min

s∈{1,2,3}
(c0/as)

1/(2s−1).

Let us p ∈ [1,∞] and u(t, x), (t, x) ∈ Π[0,T ] be a given function, measurable in x for any t ∈ [0, T ].
For every t ∈ [0, T ] we define the norms

‖u(t, ·)‖k(t,a)p :=

∥∥∥∥∥u(t, x) exp

{
−

3∑

s=1

ks(t, as)|Xs(t)|2
}∥∥∥∥∥

Lp(Rn)

,

‖u(t, ·)‖ℓ(t)p :=

∥∥∥∥∥u(t, x) exp

{
−

3∑

s=1

ℓs(t)|xs|2
}∥∥∥∥∥

Lp(Rn)

.

We shall use the following spaces: Lk(t,a)
p , t ∈ [0, T ], p ∈ [1,∞], the spaces of measurable functions

ϕ : Rn → R, with finite norms ‖ϕ‖k(t,a)p ; La
p := L

k(0,a)
p ; Ma is the space of generalized Borel measures

µ on Rn satisfying the condition

‖µ‖a :=

∫

Rn

exp

{
−

3∑

s=1

as|xs|2
}
d|µ|(x) <∞,

where |µ| is the total variation of µ; L−ℓ(T )
1 is the space of measurable functions ψ : Rn → R with a

finite norm ∥∥∥∥∥ψ(x) exp

{
3∑

s=1

ℓs(T )|xs|2
}∥∥∥∥∥

L1(Rn)

;

C
−ℓ(T )
0 is the space of continuous functions ψ : Rn → R, such that |ψ(x)| exp

{∑3
s=1 ℓs(T )|xs|2

}
→ 0,

as |x| → ∞.
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Theorem 2. Suppose that the conditions 1–4 are satisfied. Then:
1) for each function ϕ ∈ La

p , p ∈ [1,∞], the formula (25) determines the unique solution of the
equation (5), for which

‖u1(t, ·)‖k(t,a)p 6 C‖ϕ‖ap , t ∈ (0, T ], (28)

and
lim
t→0
‖u1(t, ·)− ϕ(·)‖ℓ(t)p = 0, (29)

if p ∈ [1,∞), or

lim
t→0

∫

Rn

ψ(x) u1(t, x)dx =

∫

Rn

ψ(x)ϕ(x)dx (30)

for any function ψ ∈ L−ℓ(T )
1 if p =∞;

2) for each generalized measure µ ∈ Ma, the formula (26) determines the unique solution of the
equation (5), for which

‖u0(t, ·)‖k(t,a)1 6 C‖µ‖a, t ∈ (0, T ], (31)

and

lim
t→0

∫

Rn

ψ(x) u1(t, x)dx =

∫

Rn

ψ(x)ϕ(x)dx (32)

and for any function ψ ∈ C−ℓ(T )
0 .

Constant C > 0 does not depend on a function ϕ ∈ La
p and on a generalized measure µ ∈ Ma

in (28), (31).

The following theorem is inverse (in same sense) to the theorem 2.

Theorem 3. Suppose that the coefficients of equation (5) satisfy the conditions 1–4, and the solution
u is defined in the layer Π(0,T ] and satisfies following conditions

‖u(t, ·)‖k(t,a)p 6 C, t ∈ (0, T ], (33)

with some constants C > 0 and p ∈ [1,∞]. Then, if p ∈ (1,∞], then exists a unique function ϕ ∈ La
p ,

and if p = 1, then exists a unique generalized measure µ ∈Ma such that the solution u is represented
by the formula (26) or (27).

From the theorem 2 and the theorem 3, under conditions 1–4 on the coefficients of the equation (5),
follow such statements:

Corollary 1. The spaces La
p and Ma are the sets of initial values of the solutions for the equation (5)

if and only if these solutions satisfy condition (33) with p ∈ (1,∞] and p = 1, respectively.

Corollary 2. The solution u of the equation (5) has representations in the form (26) or (27) with
φ ∈ La

p and µ ∈Ma if and only if condition (33) is valid.

Corollary 3. Under the condition (33), solutions of the equation (5) satisfy initial condition with
t=0 in the sense of (29), (30) and (32), respectively.

In the end, formulate one theorem the proof of which is based on maximum principal for solutions
of the equation (5).

Theorem 4. Suppose that conditions 1–4 are satisfied. Then the Cauchy problem for the equa-
tion (5), cannot have more then one nonnegative solution.
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Про властивостi розв’язкiв рiвнянь Фоккера–Планка–Колмогорова

Мединський I. П.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

У статтi висвiтлюється зв’язок мiж дифузiйними процесами i диференцiальними рiв-
няннями з частинними похiдними параболiчного типу. Зроблено акцент на виродже-
них параболiчних рiвняннях з дiйсними коефiцiєнтами. Цi рiвняння є узагальнен-
ням класичного рiвняння дифузiї з iнерцiєю Колмогорова. Такi рiвняння природно
розглядати як рiвняння Фоккера–Планка–Колмогорова для вiдповiдних виродже-
них дифузiйних процесiв. Фундаментальний розв’язок задачi Кошi для рiвняння
Фоккера–Планка–Колмогорова визначає густину перехiдних iмовiрностей вiдповiд-
ного дифузiйного процесу. Сформульовано умови на коефiцiєнти рiвняння за яких
iснує класичний фундаментальний розв’язок задачi Кошi i доведено ряд його основ-
них властивостей, а також наведено застосування фундаментального розв’язку до
дослiдження коректної розв’язностi задачi Кошi.

Ключовi слова: дифузiйний процес, перехiдна ймовiрнiсть процесу, рiвняння

Фоккера–Планка–Колмогорова, вироджене параболiчне рiвняння, фундаментальний

розв’язок, задача Кошi.
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