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Effect of magnetic field on quantum capacitance of the nanoobject
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Quantum capacity of nanoplate in a quantizing magnetic field is studied. Investigation
shows that quantum capacitance of nanoplate has step-like dependence on the Fermi level
or potential bias This form is caused, practically, only by the dimensional quantized states.
Landau quantization is manifested only at low temperatures as slight renormalization of
steps without changing their sizes.
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Recently, quantum capacitance is the subject of intense of fundamental and applied researches.
For the first time the concept was introduced in the [1] studying the behavior of electrons in two-
dimensional structures. This and subsequent works showed that the effect is shown in low-dimensional
structures and nanoobjects. One of the main reasons appearance of the quantum capacitance is the
specificity of the electronic spectrum in such structures (see, f.ex., [2–6]). The discrete nature of the
electronic spectrum in nanostructures is the cause of features of their capacitance other than in bulk
crystals. The discrete nature of electronic spectrum in nanostructures creates capacitance, unlike the
capacitance in bulk crystals. If we analyze the spectrum band of bulk crystal with orthogonal symmetry
in the effective mass approximation (Fig. 1a), then the spectrum in nanoplate, cut out of the crystal,
becomes a set of two-dimensional minizones (Fig. 1b).

a b c

Fig. 1. Dispersion law of electrons in bulk crystal (a), in nanoplate, cut out of the crystal (b), electron states
of the nanoplates in external magnetic field (c).

Applied magnetic field along the normal to the plate generates Landau quantization of each mini-
bands (Fig. 1c). External quantizing magnetic field is widely used in the study in optical, magneto-
optical properties of nanostructures [6–9]. Below we consider effect of magnetic field in quantum
capacitance of nanoobjects.
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1. Model

The dispersion law of the carriers in semiconductors near the bottom of the conduction band or near
the top of the valence band, and at low carrier concentrations in metal (see Fig. 1a) is well described
by parabolic dependence:
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~
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+
~
2k2y
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+
~
2k2z
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, (1)

where k(kx, ky, kz) is the quasimomentum, and m∗
x,m

∗
y,m

∗
z are the effective masses along the corre-

sponding axes. Further, consider a plate of the thickness a, cut out along OZ of the crystal. When
the potential, which limits plate, is an infinitely deep well, the solution of the stationary Schrödinger
equation [10] takes form:
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~
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2
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These are the stationary states with the more pronounced discreteness for the narrower width of the
well. So in general, the dispersion law takes the form

Enk‖
=

~
2k2‖

2m∗
t

+
~
2π2

2m∗
za

2
n2

(here we consider an isotropic in the ХОY crystal plane with m∗
x = m∗

y = m∗
t ; k‖(kx, ky), ρ (x, y).

Thus, the transition from the 3-dimensional crystal to the plate generates the minibands, i.e. the
discrete states with the 2-dimensional bands in the plate plane. This is so-called quantum-size effect.
Consider effects caused by the applied magnetic field B along OZ of the 3-dimensional crystal. The
behavior of an electron in the ХОY plane is similar to the behavior of a harmonic oscillator that
oscillates around the equilibrium position [11] with the energy

Eν = ~ωB

(
ν +

1

2

)
, ν = 0, 1, 2, . . . (3)

Here ωB =
eB

cm∗
t

is cyclotron frequency.

a b c

Fig. 2. Infinitely deep wells which simulate nanoplates: (a) metal; (b) semiconductor; (c) semimetal (EF is the
Fermi level, and a is the width of the well).

In the case of an isotropic in the crystal plane ХОY and uniform magnetic field B each quantum

state Eν is N(ν, ky)-multiple degenerate N(ν, ky) =
LxLymtωB

2π~
=
LxLyeB

2πc~
; Lx, Ly are the crystal

sizes in the ХОY plane). For kz in the range kz, · · · kz + dkz, the total number of possible states per
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unit volume of the crystal is N (ν, ky, kz) dkz = Bρdkz where ρ =
e

4π2c~
is the density of states. Thus,

the magnetic field applied to plate ensures an additional to the size quantization discreteness of states:

Ev,kz = ~ωB

(
ν +

1

2

)
+

~
2π2

2m∗
l a

2
n2 (4)

It is important to note that the discreteness of spectrum of the plate is uniquely determined by its
size, while an applied magnetic field allows us to easily change such discreteness.

Use an infinitely deep rectangular well for simulation of low-dimensional plates of various electrical
nature, namely metal, semiconductor, semimetal ones. Fig. 2 shows their potentials. Here we use the
presented above electron energy states to analyze the quantum capacitance in such nanoplates.

2. Calculation of quantum capacitance

In the general case, the capacitance C is defined as

C =
dQ

dV
, (5)

that is, a change of the charge Q caused by the applied electrostatic field V . Here

Q = e
∑

n

f (En) (6)

where e is a module of electron charge, and

f (En) =
1

exp
(
En−µ+eV

kT

)
+ 1

is the Fermi-Dirac distribution (µ is a chemical potential or Fermi level). The summation in (6) is over
all quantum states of the system. It is easy to see that (1) can be represented alternatively as

C =
dQ

dV
⇒ −edQ

dµ
.

Thus, V and µ up to a factor identically determine the capacitance. In other words, the effect of its
change can be realized by the potential shift, since the increase in V shifts upward the zone and thus
lifts EF . The discrete nature of the electronic spectrum in nanostructures is the cause of features
of their capacitance other than in bulk crystals. Before the calculations, let us make preliminary
comments:

1. The necessary condition for experimental observation of the magnetic field effect is ~ωc ≫ kT . As
we consider the magnetic field in the region B ∈ (0, 10] T, even at its maximum value ~ωc ≈ 10−3

eV, this corresponds to T ≈ 10K. Thus, manifestations of magnetic field can be expected at
temperatures of about few units of Kelvin.

2. We will examine plate of the thickness of 8 and 10 nm. In this case, the quantized levels in them,
according to (4), are ∼ 4 · 10−3n2 eV at a = 8 nm and ∼ 6 · 10−3n2 eV at a = 10 nm.
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2.1. Metal nanoplate

The expression for the quantum capacitance, taking into account formulas (3) and (4), in this case
takes the following form:

Cq = e
d

dV

∑

n

1

exp
(
En−µ+eV

kT

)
+ 1

= − e2

4kT

∑

n

cosh−2

(
En − µ+ eV

2kT

)
(7)

a b c

Fig. 3. Dependence of the quantum capacitance on the EF position in a metal nanoplate nm at T = 5 K in
magnetic field: (a) B = 5 T with thickness a = 8 nm; (b) B = 10 T with thickness a = 8 nm; (c) B = 5 T with
thickness a = 20 nm. Bias voltage V = 0.

The obtained dependence of quantum capacitance on the Fermi level position in a metal nanoplate
with thickness a = 8 nm and at T = 5 K is presented in Fig. 3a, 3b. It is seen that in both cases the
curves have stair-like form. One can assume that their steps are the result of size quantization. The
curve Cq (EF ) at thickness a = 20 nm and at B = 10 T in Fig. 3c confirms this assumption. Indeed,
in this case, the distances between the size quantized states become shorter in comparison with those
of the previous case (Fig. 3b), and hence, the length of the steps is reduced.

Fig. 4. Dependence of the quantum capaci-
tance Cq(B) of a metal nanoplate at a) T =
= 1 K, b) T = 10 K. Bias potential V = 0.
EF = 0.01 eV. a = 8 nm.

At T = 5 K (Fig. 3b, 3c) steps have periodically or-
dered structure; the higher the step is, the higher the den-
sity of its periodicity is. The cause of this phenomenon
is existence of the Landau level. The described density
is due to the fact that to the Landau levels of the n-th
quantum-dimensional miniband the Landau levels of the
(n − 1) lower minibands are added. It worth noting that
with the exception of the ordered structure, observed at
B = 10 T (Fig. 3b), the value of these steps and their po-
sition are the same as in the case of B = 5 T (Fig. 3a).
The cause for the lack of manifestations of Landau lev-
els at B = 5 T we discussed above. In particular, the
curve Cq(B) in Fig. 4 shows the significant dependence of
its value on the magnetic field.

Calculations at higher temperatures indicate a fuzzy
stair-like dependence of Cq (EF ) .

Fig. 5 shows that Cq (EF ) substantial depends on tem-
perature.
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Fig. 5. Dependence of Cq on EF at B = 10 T and: T = 5 K (a), T = 10 K (b), T = 50 K (c).

2.2. Semiconductor nanoplate

Consider a nanoplate of the semiconductor with symmetric conduction and valence bands (Fig. 1b).
In this case, the Fermi level EF is in the middle of the band gap Eg. Choose this position as a datum
point. Then charge caused by applied field is determined by the formula [11]:

Q = e

∞∑

s=1

{
f

(
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− f

(
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2
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)}

and the quantum capacitance by

Cq = − e2

4kT
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As it is stated above, here summation is over all quantum states of the semiconductor nanoplate. Since
the Fermi level is fixed in the middle of the band gap, the filling of states in both zones is due to the
“tails” of the Fermi-Dirac distribution.

a b

Fig. 6. Dependence of the quantum capacitance Cq of a semiconductor nanoplate on the bias potential V at
B = 10 Т at temperatures: T = 5 K (a), T = 10 K (b) a = 10 nm.
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Fig. 6 shows the quantum capacitance Cq(V ) in the magnetic field B = 10 T at different tempera-
tures.

Comparison of these curves enables us to make the following conclusions:
The curves Cq(V ) are of stair-like form; they are is more fuzzy at higher temperature (T = 10 K).
The nearly zero value of Cq(V ) starts to increase after V = 0.05 eV, i.e. when the Fermi level

crosses the top of the valence band or the conduction band bottom (depending on the applied field).
Manifestations of the Landau levels are similar to those in metallic nanoplate.

2.3. Semimetal nanoplate

Quantum capacitance in this case can be analyzed using the formula (5) taking into account the fact
that the conduction band bottom (valence band top) is −Eg/2 (Eg/2) (see Fig. 2c). Shown in Fig. 7

a b

Fig. 7. Dependence of the quantum capacitance Cq of a semimetal nanoplate on the bias potential V in the
magnetic field B = 10 T at the gap Eg = −0.1 еV and temperatures: (a) T = 5 K and (b) T = 10 K. a = 10
nm.

dependence of quantum capacitance Cq(V ) at the overlapping zones Eg = −0.1 eV reminds one in
previous cases, with the only exception of the range V ∈ [0, . . . 0.05] eV. Such nontrivial dependence
is connected with the coexistence of electrons and holes in this range, and therefore their annihilation
takes place. After the reaching V = 0.05, when the bottom of the conduction band (or the top of the
valence band) coincides with EF , then stair-like form of Cq(V ) is the result of the dimension quantized
states in the valence band (conduction band).

3. Dicussion, conclusions

We start with the choice of an isotropic crystal (metal, semiconductor, or semimetal) with a parabolic
symmetric dispersion law. A nanoplate, which is cut-out from it, has minibands, i.e. a set of two-
dimensional zones at each quantum-dimensional discrete level. The magnetic field which is normally
applied to the plate leads to additional quantization of band states also in its plane. In our case, it is
a set of equally spaced levels (Landau levels).

Since the discreteness of spectrum is the one of the determining factors in the specific properties of
nanoobjects, the application of a magnetic field is an additional factor of influence on these properties.
Investigation of quantum capacitance of nanoplate as a function of the Fermi level position or potential
bias has found its stair-like form; the lower the temperature is, the more pronounced such form is. This
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form is caused, practically, only by the size quantized states. Landau quantization is manifested only
at low temperatures as slight renormalization of steps without changing their sizes.

[1] Luryi S. Quantum Capacitance Devices. Appl. Phys. Lett. 52, 501–503 (1988).

[2] John D. C., Castro L. C., Pulfrey D. L. Quantum Capacitance in Nanoscale Device Modelling. Appl. Phys.
Lett. 96, 5180–51843 (2004).
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Вплив магнiтного поля на квантову ємнiсть нанооб’єктiв

ЛукiянецьБ.А., МатулкаД.В.

Нацiональний унiверситет «Львiвська полiтехнiка»

вул. С. Бандери, 12, 79013, Львiв, Україна

Аналiзується квантова ємнiсть металiчної, напiвпровiдникової та напiвметалiчної на-
нопластинок у квантуючому магнiтному полi. Показано, що така ємнiсть має сходин-
кову залежнiсть вiд положення рiвня Фермi чи потенцiалу змiщення, що визначається
майже винятково просторово-розмiрними станами. Квантування Ландау проявля-
ється за низьких температур як незначне перенормування сходинок без змiни їхнiх
розмiрiв.
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