
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 6, No. 2, 2021

INVESTIGATION OF SERVERLESS ARCHITECTURE
Vladyslav Lakhai, Ruslan Bachynskyy

Lviv Polytechnic National University, 12, S. Banderу Str., 79013, Ukraine.
Authors’ e-mail: vlad.luckhi@gmail.com, bac_ruslan@ukr.net

https://doi.org/10.23939/acps2021.02.134

Submitted on 01.05.2021

© Lakhai V., Bachynskyy R., 2021

Abstract: Serverless computing is a new and still evolving
type of cloud computing, which brings a new approach to
the development of information systems. The main idea of
serverless is to give an approach of doing computing
without dealing with a server to a user. Such approach
allows to reduce the cost of the system building and system
support. It allows small companies to concentrate on their
own system designing instead of thinking about infra-
structure building and supporting. Also, a big problem of
providing the system security on high level is on cloud’s
provider engineering support service. Serverless approach
allows to start business quickly without huge initial
investment. There is an attempt to completely analyze
features, benefits and drawbacks of serverless approach, its
use cases and main patterns of Serverless architecture.
What is more, different providers have been analyzed.

Index Terms: serverless, cloud computing, architecture

patterns, information systems development, AWS

INTRODUCTION
High level of information technologies distribution

and stable interest in their use led to increasing difficulty
for individuals and organizations to keep their
computing in-house (on their own servers). That is the
main reason of cloud computing rapid growth.

Cloud computing refers to delivering on-demand
computing services, originally storage, and now more
recently processing power and apps, over the internet,
with companies using this on a pay-as-you-go basis. It
relies on sharing of resources to achieve coherence and
economies of scale. Main advantages include cost
savings, increasing productivity, speed, efficiency,
performance and security.

Cloud computing is not a single piece of techno-
logy. There are four traditional types (models) [1]:

IaaS (Infrastructure as a Service)
PaaS (Platform as a Service)
Serverless
SaaS (Software as a Service).
IaaS includes all basic infrastructure components

for information systems development. It gives direct
access to network resources and virtual computers. This
model has the highest level of flexibility. PaaS does not
require administration of basic infrastructure. In most
cases, it represents a platform for creation of auto-
scalable applications. IaaS and PaaS allowed not to think

about any hardware, but there were still a lot of things
which clients were administrating themselves.

Serverless is a cloud computing model in which
client can operate only with code and data. Cloud vendor
is providing and administrating all needed hardware and
software. SaaS is a model in which client can operate
only with data. Serverless and SaaS allow clients to use
exactly what they need without thinking about
underlying hardware and software.

Serverless architecture is an approach to design and
develop information systems [2] using components of
serverless and SaaS cloud computing models [3].

THE RATIONALE OF THE NEED FOR
SERVERLESS ARCHITECTURE

Five years ago, at the start of serverless era, most of
technology adopters were startups who were seeking for
a possibility to scale up and lower the finance entrance
barrier.

Therefore, serverless architecture is extremely good
in rapid prototyping. However, are there any benefits for
long-run development? Yes, but not for every individual
or organization.

Nowadays, even big enterprises start using
serverless architecture. It is suitable to run stateless
applications, such as event-driven functionality, batch
jobs or data transfer. So, the main serverless architecture
use cases are:

• High-traffic information systems. With server-
less, you can make your system high available and
scalable. As a plus, it is often much cheaper and easier in
comparison to traditional architecture.

• Storing huge amounts of data. If there is a need
to store huge amount of data and work with it in non-
blocking way – serverless is one of the best solutions.
For example, Amazon DynamoDB can handle more than
10 trillion requests per day or 20 million per second.

• Internet of Things (IoT). The real-time response
nature of the serverless approach works great for IoT use
cases. IoT devices generate a lot of data from their
environments through sensors and there is a necessity to
process this data in scalable way.

• Prototypes. Serverless is the best approach for
making proof-of-concepts in most of fields.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Investigation of Serverless Architecture 135

FORMULATION OF THE PROBLEM
As serverless is relatively fresh and rapidly

evolving approach with many interesting and useful
features, it is a popular area for investigations [4]. There
are a lot of new methods and instruments. In addition,
main cloud providers positively affect development of
serverless architecture.

There are many papers in this field, separately
describing core concepts, main services, architecture
patterns or providers’ comparison [5, 6]. However, there
is a lack of complete analysis of this approach.

ADVANTAGES AND DRAWBACKS
OF SERVERLESS ARCHITECTURE

Like any other technology, serverless computing
has its advantages and drawbacks. Some of them were
inherited from event-driven architecture (EDA), which is
a basis for serverless architecture.

Main advantages of serverless are:
• Reduced time-to-market. Developers can focus

their attention on product development. The vendor
handles components like network configuration or the
physical security of your servers. As a result,
development process was simplified which led to
reducing time-to-market.

• Lower costs. Serverless approach saves time
and resources in two ways. First, serverless is usually
about pay-as-you-go pay model. That means that you are
charging for resources, which were really used. Idle time
is not billed. Second, you are outsourcing the
responsibilities of managing servers, databases, and
some logic. Besides the actual cost, serverless takes less
computing power and human resources.

• Increased flexibility of scaling. With serverless,
you break down applications into smaller and smaller
pieces, known as decomposition. In addition, you are
using EDA, which means that parts of your system are
loose coupled and as a result independent. So, this gives
an ability to scale them automatically and endlessly.

Main drawbacks:
• Vendor lock-in. Serverless architecture requires

you to be reliant on your provider. You do not have full
control, and changes may affect you without notice. In
addition, it is hard to change your provider. There are
many differences in services with similar functionality
from two cloud providers.

• Increased security risks. As serverless is about
decomposition and multiple independent parts of system,
it leads to a larger attack plain.

• Learning curve. Working with serverless archi-
tecture requires some additional knowledge and
skills.

COMPARATIVE ANALYSIS
OF CLOUD PROVIDERS

Today, there are many cloud providers. The main
are the following: Amazon Web Services (AWS),

Google Cloud Platform (GCP) and Microsoft Azure
(Azure).

Comparative analysis of cloud providers includes
analysis of Gartner (global research and advisory firm)
cloud providers’ investigation report and comparison of
relative search volume.

Gartner is making investigation of cloud providers
market on regular basis. One of the main features of this
investigation is forming of “magic quadrant” – graphic
comparison of cloud providers by two criteria:
completeness of vision and ability to execute.

There are four sections in this quadrant:
• Leaders. They execute well against their current

vision and are well positioned for tomorrow.
• Visionaries. They understand where the market

is going, but do not execute well now.
• Niche Players. They are focused on a small

segment and have there some success or unfocused and
do not outperform others.

• Challengers. They execute well against their
current vision or successfully focused on a large
segment, but are bad positioned for tomorrow.

Gartner cloud providers magic quadrant is shown in
Fig. 1.

Fig. 1. Gartner cloud provider’s magic quadrant

Using Gartner cloud providers “magic quadrant”
from research by 2020 (Fig. 1), we can make next
conclusions:

• Amazon Web Services is a leader in both
criteria.

• Microsoft Azure takes second place.
• Google Cloud Platform takes third place.
• There are no visionaries or challengers.
• All other cloud providers are in niche players

section which means that they are successfully
focused on a small segment or unfocused and do

not outperform leaders.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Vladyslav Lakhai, Ruslan Bachynskyy 136

Google Trends is a service by Google for search
analysis. It gives an ability to compare and analyze the
popularity of different search queries in Google Search.
Google Trends comparison is shown in Fig. 2.

Fig. 2. Google Trends comparison

Using Google Trends comparison of cloud
providers search queries popularity, we can make next
conclusions:

• Amazon Web Services is a leader in search
frequency.

• Microsoft Azure takes second place.
• Google Cloud Platform takes third place and

has a big lag from AWS and Azure.
As a pioneer in field of cloud computing, AWS had

enough time to form a complete vision on evolution of
cloud technologies. Amazon had more than enough
power and resources to implement this vision. For now,
it takes first place in most of cloud providers’ compari-
sons and provide the widest number of available
services.

COMPONENTS OF SERVERLESS
ARCHITECTURE

In this paper, serverless architecture will be
investigated in conjunction with Amazon Web Services.

AWS divides its serverless services into three
categories [4]:

• Compute
• Application integration
• Data store
Compute category represents services that provide

computing resources. AWS refers Amazon Fargate to
serverless computing, but this service will not be
overviewed in paper because of its CaaS (Container as a
Service) nature.

Main model of serverless computing for many
years is FaaS (Function as a Service) and in AWS there
is implementation of this model – AWS Lambda.

AWS Lambda is a serverless computing service that
allows clients to run code with zero administration
(without provisioning or managing infrastructure). Lamb-
da scales automatically to each event and natively sup-
ports Java, Go, PowerShell, Node.js, C#, Python, and Ru-
by code. AWS Glue architecture icon is shown in Fig. 3.

AWS Glue is a serverless data integration tool for
creating, running and monitoring ETL (Extract,
transform, load) workflows for data engineering, ana-
lytics and machine learning. It provides both visual and
code-base interfaces. With code, you can run Python,
Spark or PySpark environments. AWS Glue automates
much of the effort required for data engineering and
supports flexible scaling. AWS Glue architecture icon is
shown in Fig. 3.

Main integration services are Amazon API
Gateway, Amazon SQS, Amazon SNS, Amazon Cognito
and Amazon CloudFront.

Amazon CloudFront is a fast content delivery
network service for delivering data, videos, applications
and APIs to customers. CloudFront provides low
latency, high level of secure and transfer speeds. It has
deep integration with AWS and more than 225 points of
presence all over the world for ultra-low latency.
Amazon Cognito architecture icon is shown in Fig. 3.

Fig. 3. AWS architecture icons (Lambda, Glue, Cognito)

Amazon API Gateway – is a service for creating,
publishing, maintaining, monitoring and securing APIs,
including RESTful. API Gateway provides these at any
scale and with low latency. 6. Amazon API Gateway
architecture icon is shown in Fig. 4.

Amazon SQS (Simple Queue Service) is a message
queuing service for publishing, storing and receiving
messages at any volume. It helps to decouple and scale
serverless applications, microservices and distributed sys-
tems. Amazon SQS architecture icon is shown in Fig. 4.

Amazon SNS (Simple Notification Service) is a
messaging push-based many-to-many service for both
A2A (Application to application) and A2P (Application
to person) communication. Key units are topic, publisher
and subscriber. Possible subscribers: SQS, Lambda,
HTTPS endpoint, Kinesis, email, SMS, mobile push and
many others. Amazon SNS architecture icon is shown in
Fig. 4.

Amazon Cognito is a service for users’ sign-up,
sign-in and access control to AWS resources. Service
scales to millions of users and supports sign-in with

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Investigation of Serverless Architecture 137

social identity providers. Amazon Cognito architecture
icon is shown in Fig. 5.

Fig. 4. AWS architecture icons (API Gateway, SQS, SNS)

Amazon S3 (Simple Storage Service) is a service
for storing and protecting any amount of data (objects).
It provides industry-leading security, performance and
durability level. Amazon S3 architecture icon is shown
in Fig. 5.

Amazon DynamoDB – “key-value” and document
database. It provides extremely high performance,
durability and security. In addition, database can handle
more than 10 trillion requests per day. DynamoDB is
automatically scalable and serverless. Amazon Dyna-
moDB architecture icon is shown in Fig. 5.

Amazon Aurora Serverless – auto-scaling confi-
guration for Amazon Aurora that enables to run database
in the cloud without managing any database capacity.
Aurora is a MySQL and PostgreSQL-compatible
relational database. It is five times faster than standard
MySQL and three than PostgreSQL. Amazon Aurora
architecture icon is shown in Fig. 5.

Fig 5. AWS architecture icons
(Cognito, S3, DynamoDB, Aurora)

VII. SERVERLESS ARCHITECTURE PATTERNS
Architecture pattern is a solution, which can be

reusable for solving widespread architectural problems.
Web-application is the most popular use-case of

serverless architecture and it is the reason to overview
serverless architecture patterns for web-applications
development.

Interface is the key component of every app.
Interface objects (html, css, js files and other mul-
timedia) can be stored and accessed using Amazon S3.
For providing low-latency it is recommended to use
Amazon CloudFront. So, simple web-application con-
sists of those two components. Architecture schema of
simple web-application is shown in Fig. 6.

For most of modern apps it is not enough to
provide only interface – they need communication
between the client and application business-logic.
Usually, this communication is provided by API requests
and Amazon API Gateway can deal with it. As business-
logic runner, it’s better to use AWS Lambda. We should

remember that our code is stateless and we should
provide access to stored data. As database in examples,
we will use Amazon DynamoDB. So, combining these
five components, we can get nearly standard web-
application. Architecture schema of standard web-
application is shown in Fig. 7.

Fig. 6. Architecture schema of simple web-application

Fig. 7. Architecture schema of standard web-application

The last necessary for most web-application thing
is access control. Amazon Cognito can provide it. This is
a service for users’ sign-in, sign-up and control access. It
supports sign-in with social identity providers.
Architecture schema of web-application Architecture
schema of web-application is shown in Fig. 8.

Fig. 8. Architecture schema of web-application

VIII. SERVERLESS ARCHITECTURE DESIGN
OF DEMONSTRATION SYSTEM

Serverless architecture is an excellent choice for
startups. They are seeking for a possibility to scale up

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Vladyslav Lakhai, Ruslan Bachynskyy 138

and lower the finance entrance barrier and serverless
approach can provide all of it.

Therefore, it will be justified to choose startup-like
system as a demonstration system to design. It is a
geolocation system-service for family groups codenamed
“Luckhi family” [7]. Service main goal is to make
people confident that everything is ok with their
relatives. It is a bit similar to “Weasley Clock” from
Harry Potter. Customers are able to see information
about their relatives’ geolocation in real time to keep
them on track.

First step of designing architecture is to perform
functional requirements analysis of service prototype (or
MVP, most viable product). To do this, we need to
define basic functional.

This service should be able to handle next actions:
• Registration of user
• Authorization of user
• Creation of family groups
• Joining already created group
• Editing family zones
• Sending geolocation from Owntracks app on

users’ mobile device
• Getting geolocation of all family group

members in appropriate form
After defining basic functional, we can form

functional requirements to designed system:
• Low development cost. In most cases, start-ups

are limited with money amount they can spend on
system prototype (MVP or most valued product)
development.

• High scalability. For start-ups, it is important to
have ability to scale as fast as their customers’ amount
grow.

• High response speed. Complex customer
requests also should be handled fast. There is no need for
customers to know how complex some operations are,
but they definitely want to get result fast.

• Ability to integrate with other service. For
example, service is positioning itself as a platform that
can connect with any third-party geolocation provider. In
this demonstration system, we will use Owntracks
application as a geolocation provider mainly because of
its economic battery consumption.

Next step is creation of general architecture. In case
of cloud-native services, it consists of choosing cloud
provider and main services.

For demonstration system Amazon Web Services
cloud provider will be used. AWS is a big player at
cloud providers market and it provides the widest range
of services that support serverless approach.

According to functional requirements analysis we
can choose main services. As a compute service for
running business-logic a good variant is AWS Lambda.
As a database service – Amazon DynamoDB,
automatically scalable NoSQL database. As a service for
communication by REST API between client and
“server” – Amazon API Gateway.

As there are some third-party services to integrate
with, it is not the best solution to use Amazon Cognito.
As an alternative, web-clients authentication can be
handled with JWT tokens [8]. For correct identification
of requests provided by third-party services, a good
practice is to use separate user-manageable secret token.

In previous parts of this paper, it was mentioned
that using Amazon Cloud Front and Amazon S3 for
frontend content storing and accessing is considered a
best practice. Therefore, it is justified to include this
solution in our architecture. Architecture schema of
demonstration system is shown in the Fig. 9.

All this components-services support serverless
approach complies with previously defined functional
requirements. Shema of designed general architecture:

Fig. 9. Architecture schema of demonstration system

Another possible part of architecture design is
database design. It is not popular at all, but we have high
response speed requirement. Without correct database
design, there are some difficulties to fully satisfy this
requirement. We are using NoSQL database and it is
important to remember that there is no optimal JOIN
operation support in such databases. It means that stored
data should be normalized so minimally as it is possible.
According to all this conditions and service functio-
nality, it seems justified to have three tables:

• Users. This table is for storing full data about
user, including data required for authentication.

• Families. This table should not only store
general information about families, but also main
information of its members (name), family zones infor-
mation and updated in real time location information
(location and its update timestamp). Main idea is to
make complex in most cases getting operation as fast as
possible to raise response speed.

• Locations. Separate table for storing only
location information (user, location, timestamp). In
contrast to table Families, which have only “present”
location data, table Locations stores it in a historical
way. It will be useful for future functionality like data

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Investigation of Serverless Architecture 139

analytics, processing or even applying machine learning
algorithms [9 ,10].

Shema of database design is shown in Fig. 10.

Fig. 10. Schema of database design

CONCLUSIONS
Provided analysis showed that serverless approach

is changing all we know about information systems
architecture. For now, in most cases there is no need to
provide and maintain infrastructure by ourselves. We can
fully outsource it to cloud providers and focus on
important and valuable things like developing business-
logic. Serverless architecture resembles Lego construc-
tor – to get a result you should just combine
components-services, your business-logic and data.

To be honest, there are some limitations of this
approach. Some of them, for example as inability of
serverless services to perform well at long compute-
intensive tasks, were successfully overcome with
approach evolution (AWS Glue serverless ETL service).

It is a relatively fresh field of cloud computing and
there is definitely some space for improvements. This

approach is widely used both in startups and enterprises.
It helps to save costs, simplify development process and
forget about problems with scalability. For sure, it is not
a silver bullet and it is unjustified to use this approach
literally in all cases, but it will definitely be a part of our
future.

REFERENCES
[1] https://aws.amazon.com/types-of-cloud-computing/
[2] https://aws.amazon.com/serverless/
[3] Li, L., Ge, R., Zhou, S. and Valerdi, R. (2012). Guest Editorial

Integrated Healthcare Information Systems. In IEEE
Transactions on Information Technology in Biomedicine, vol.
16, no. 4, pp. 515–517. DOI: 10.1109/TITB.2012.2198317.

[4] Shen, J., Zhou, T., He, D., Zhang, Y., Sun, X. and Xiang, Y.
(2019). Block Design-Based Key Agreement for Group Data
Sharing. In Cloud Computing in IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 6, pp. 996–
1010. DOI: 10.1109/TDSC.2017.2725953.

[5] Ramasubramaniam, K. S., Annamalai, G. and Krishna, A.
(2015). System architecture patterns a domain-based
proposition. International Symposium on ConsumerElectronics
(ISCE), pp. 1–2. Available at: https://ur.booksc.eu.

[6] Wang, Q., Ma, H., Ke, Q., Wang, C. and Wang, X. (2009).
Spatial Analysis of Regional Sustainable Development Based on
Geographic Information System and Relative Carrying Capacity
of Resources. International Conference on Environmental
Science and Information Application Technology, pp. 437–440.
Available at: https://doi.org/10.3390/su12093923.

[7] Sudharsan, D., Adinarayana, J. and Tripathy, A. K. (2009). Geo-
information Services to Rural Extension Community for Rural
Development Planning – A Framewor. International Conference
on Advanced Geographic Information Systems & Web Services,
pp. 54–59. DOI 10.1109/GEOWS.2009.9.

[8] Wang, Q. Z. and Liu, J. (2006). Project Uncertainty,
Management Practice and Project Performance: An Empirical
Analysis on Customized Information Systems Development
Projects. International Engineering Management Conference,
pp. 341–345. DOI: 10.1109/IEMC.2006.4279882.

[9] Satyanarayana, G., Bhuvana, J. and Balamurugan, M. (2020).
Sentimental Analysis on voice using AWS Comprehend,
International Conference on Computer Communication and
Informatics (ICCCI), pp. 1–4. DOI: 10.1109/
ICCCI48352.2020.9104105

[10] Massa, D. and Evans, N. R. (2008). The angular separation of
the components of the Cepheid AW Per. In Monthly Notices of
the Royal Astronomical Society, vol. 383, no. 1, pp. 139–149.
Available at: https://doi.org/10.1111/j.1365-2966.2007.12520.x

Ruslan Bachynskyy obtained his
Ph.D. degree in Computer systems and
components at Lviv Polytechnic
National University in 2008. He is
interested in Embedded systems,
Digital Signal Processing, FPGA-based
designing.

Vladyslav Lakhai is a fourth-year
computer engineering student of Lviv
Polytechnic National University. He has
production experience in the following
fields: Clouds, Serverless and Data
Engineering. Interested in IoT and Data
Sciences.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

