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Abstract. The main aim of this study is to predict the elastic and damping properties of 
composite laminated plates. Some approximate methods for the stress state predictions for laminated 
plates are presented. For simple uniform bending and transverse loading conditions, this problem has 
an exact elasticity solution. This paper presents a new stress analysis method for the accurate 
determination of the detailed stress distributions in laminated plates subjected to cylindrical bending. 
The present method is adaptive and does not rely on strong assumptions about the model of the 
plate. The theoretical model described here incorporates deformations of each sheet of the lamina, 
which account for the effects of transverse shear deformation, transverse normal strain-stress and 
nonlinear variation of displacements with respect to the thickness coordinate. Dynamic and damping 
predictions of laminated plates for various geometrical, mechanical and fastening properties are 
defined. The comparison with the Timoshenko beam theory is systematically done for analytical and 
approximation variants. 

The values of damping are got at a bend in three- and five-layered plates. For the three-
layered plates the equivalent beam of Timoshenko exactly approximates a “sandwich” (with a soft 
damping kernel) dynamic properties of sandwich in a wide frequency range. For a plate with soft 
external layers the equivalent beam needs to be found in every frequency range separately. A hard 
bounded layer multiplies damping in a plate with soft external layers, however only at higher 
frequency of vibrations. For the high-frequency vibrations of plates the anomalous areas of 
diminishing of damping (for sandwiches) and increase are got for plates with soft covers. At the 
moderate amount of approximations the exact divisions of tensions are got in the layers of plates, 
thus the stresses continuity   and surface terms are approximated exactly enough. Unlike the 
widespread theories of plates with the terms set a priori on surfaces (as a rule levels to the zero 
tensions) the offered equations allow to satisfy and complicated boundary conditions, instead of only 
free fastened plates. It allowed to explore the row of important examples for plates fastened in a hard 
holder and to explore influence of not only plates but also construction of holder on damping. 

Keywords: composite materials, laminated plates, Timoshenko beam, stress distribution, damping. 

Introduction 
Noise and vibration are of concern with many mechanical systems including industrial machines, 

home appliances, surface vehicle transportation systems, aerospace systems, and building structures. Many 
such mechanical structural system components are comprised of beam and plate like elements. The 
vibration of beam and plate structural systems can be reduced by the use of passive damping, once the 
system parameters, such as dynamic stiffness of the plate or beam, have been identified. In some cases of 
forced vibration, the passive damping that can be provided is insufficient and the use of active damping has 
become attractive. Active damping is still mostly only used with high first cost items such as automobiles 
and aircraft, since it is still too expensive to use with low cost  items such a household appliances. 

Structures composed of laminated materials are among the most important systems used in modern 
engineering and, especially, in the automobile and aerospace industries. The rapid increase in the industrial 
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use of these structures has necessitated the development of new analytical and numerical tools that are 
suitable for the analysis and study of the mechanical behaviour of such structures. The determination of 
stiffness parameters for complex materials such as fiber-reinforced composites is much more complicated 
than for isotropic materials, since composites are anisotropic and non-homogeneous. Many different 
approaches have now been produced for the identification of the physical parameters which directly 
characterize structural behaviour. 

Since the late 1950s, many papers have been published on the vibration of sandwich structures [1–
4]. All of the models discussed so far are based on the following assumptions: a) the viscoelastic layer  
undergoes only shear deformation and hence the extensional energy of the core is neglected; b) the face 
sheets are elastic and isotropic and their contribution to the shear energy is neglected, and c) in the face-
sheets, plane sections remain plane and normal to the deformed centre lines of the face-sheets. However, as 
the frequency increases, the results calculated from these models disagree strongly with measurements. 

For modelling laminated composite plates, it is important to have an effective general theory for 
accurately evaluating the effects of transverse shear stresses on the plate performance. It has long been 
recognized that higher- order laminated plate theories may provide an effective solution tool for accurately 
predicting the deformation behaviour of composite laminates subjected to bending loads [5–9]. It is well 
known that higher-order theories, which account for transverse shear and transverse normal stresses, 
generally provide a reasonable compromise between accuracy and simplicity although they are usually 
associated with higher-order boundary conditions that are difficult to interpret in practical engineering 
applications. Simple theories for laminated plates are most often incapable of determining the three-
dimensional (3-D) stress field in the laminates. Thus, the analysis of composite laminates may require the 
use of a laminate-independent theory or a 3-D elasticity theory. Exact 3-D solutions [10–13] have shown 
the fundamental role played by the continuity conditions for the displacements and the transverse stress 
components at the interfaces between two adjacent layers for making an accurate analysis of multilayered 
composite thick plates. Further, these elasticity solutions demonstrate that the transverse normal stress 
plays a predominant role in these analyses. However, accurate solutions based on 3-D elasticity theory are 
often intractable. But this classical refined theory has some limitations. For comparatively thick plates, it is 
not sufficiently precise. Other limitations of this theory are found with investigations not only with freely 
supported plates, but with also rigidly or elastically clamped ones. This is caused by the assumption in this 
theory of zero free surface stresses. For rigidly clamped plates, the exact 3-D solution near the clamped 
edges is not submerged. 

The unification of formulation of schemes of calculations, which order of equalizations is 
unreserved, are offered in (the arbitrary number of approximations, which are examined on the thickness of 
plate) [14-16]. A review of refined theories of laminated composite plates has been presented at [17–19]. A 
review of vibration damping in sandwich composite structures has been presented in [20]. 

Nevertheless, this classical refined theory has some limitations. For the comparatively thick plates it 
is not sufficiently precisely [9]. Other limitation of this theory is by investigations not only freely 
supported plates, but also rigidly or elastically clamped. This is caused by postulation in this theory the 
zero free surfaces stresses. For the rigidly clamped plate the exact 3-d solution near the edge of clamp has 
the un- discreteness. 

However, accurate solutions based on 3-D elasticity theory are often intractable. The limitation in 
the analysis which based on the displacement formulation has motivated some recent researches in which it 
has been used the theorem of mixed variation for the dynamic analysis of multilayered plates [21, 22]. 

Damping analysis of composite materials and structures has been presented at [23–35]. However, 
this classical refined theory has some limitations. Other limitations of this theory are found with 
investigations not only with freely supported plates, but with also rigidly or elastically clamped ones. This 
is caused by the assumption in this theory of zero free surface stresses. For rigidly clamped plates, the 
exact 3-D solution near the clamped edges is not submerged. In [36-40] of a stable identification algorithm 
allowing one to uniquely determine the elastic modules, including the transverse ones are elaborated. 
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This study aims to predict the elastic and damping properties of composite laminated plates. The 
present method for the modelling of laminated composite plates does not rely on strong assumptions about 
the model of the plate. In this paper, numerical evaluations obtained for vibrations in isotropic, orthotropic 
and composite laminated plates have been used to determine the displacement field for the efficient 
analysis of vibrations in laminated composite plates. A semi-analytical method has been developed to 
obtain the natural frequencies of vibration of simply-supported laminated composite cross-ply plates. The 
continuity of the transverse stresses as well as the displacements has been explicitly satisfied at the lamina 
interfaces in these models. Further, these models have been formulated by considering a local Cartesian 
coordinate system at the mid-surface of each individual layer. Six degrees of freedom: three displacement 
components, u , v  and w  (along the x , y  and z  axis directions, respectively) and three transverse stress 
components are expressed at the bottom as well as the top surface of each individual layer. The time 
dependent axial and transverse displacements along the x , y  and z  axis directions at any point can be 
expressed using power series expansions. 

Certain aspects of the laminated elements parametric discretization 
We will consider the discretization of the laminated thin-walled element Α  in some detail. The 

parameters of 1 2, ,...,
RNλ λ λ describe the geometrical form of Α , the number and thickness of the layers, 

and the mechanical properties of the materials of the layers. Their amount is limited. For composite 
materials, it is often necessary to determine the mechanical properties from the structural properties of the 
materials. In such cases, some of the parameters of 1 2, ,...,

RNλ λ λ  will be derived from a great number of 

primary parameters of 1 2, ,...,
PNξ ξ ξ , which characterize the mechanical properties of the fibers, the 

structure of composition of the material and some features of the process of polymerization. It should be 
noted that the thin-walled element Α  properties not directly dependent on the aggregate of the 
parameters 1 2, ,...,

RNλ λ λ , but only on a certain combination of these parameters. It is actually possible to 

consider only the optimization of the parameters 1 2, ,...,
CNσ σ σ  which depend on 1 2, ,...,

RNλ λ λ . If we 

consider the set accordingly: 
, ,i i iξ λ σ∈Ξ ∈Λ ∈ Ζ , 

then the surjective reflections  (when one element iλ of Λ  corresponds a few ( elements 1 2, ,...,
PNξ ξ ξ  of 

Ξ  and every element iλ  has a prototype) of ,A BΩ Ω  will take place 

A BΩ Ω
Ξ →Λ →Ζ . 

The actual calculation and consequently the optimization will be conducted in the set of Ζ , which is 
far narrower than Λ , and even narrower than Ξ . Numerical schemes (NS) using hypotheses for the entire 
package of the laminated elements will especially demonstrate this narrowing. The scheme for the 
condensed modelling of the sandwich element wit the honeycomb core is presented in Fig. 1. 

   
a b c 

Fig. 1. Heterogeneous 3-D model (a); heterogeneous 2-D model (b); homogeneous 2-D model (c)  
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Detailed description of various types of sandwich panel theories may be found in [1–40]. A 
historical review of the available zigzag theories for elastic laminated plates and shells has been presented 
in [17–19]. 

Analytical modelling of the cylindrical bending of laminated plates 
Exact solutions may be obtained in only a few cases for the deformations of laminated plates. These 

exact solutions exist in the case of static cylindrical bending of composite laminas. 
3.1. Cylindrical bending of laminated plates subjected to loading by a moment. 
The governing equations for the stresses are (the axis x is oriented along the middle line of the plate 

and the axis z is oriented normal to it). 

0, 0xx xz xz zz
x z x z

σ τ τ σ∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
. (1) 

The solutions which express Hooke’s law with respect to the stress components have the form 
, ,xx xx xx xz zz zz zx xx zz zzC C C Cσ ε ε σ ε ε= + = +  .xz xzGτ γ=  (2) 

For pure bending, the stress-strain state is uniform, thus 

0 0xz xx
xzand

z x
τ σ

τ
∂ ∂

= − = =
∂ ∂

, (3) 

0 0xzzz
zzand

z x
τσ

σ
∂∂

= − = =
∂ ∂

. (4) 

If the stress xxσ  is not equal to zero, the following assumption must be made 
( )xx S zσ = . (5) 

The expressions for the displacements and the stress are obtained from Eqs. (1)-(5). The result is as 
follows. 

u xz= , 2 20.5( )w z xα= − + , 
( )xx xx xzz C Cσ α= − , 

(6) 

where /xz zzC Cα = . 
For the bending moment we obtain 

( )2
p

p

H

xx xz
H

M z C C dzα
−

= −∫ , (7) 

where pH  is one-half of the thickness of a lamina. 

Since the materials may be non-homogeneous, ( ) ( ), , ( )xx xzC z z C zα  may all be functions of z . For 
a uniform Timoshenko beam of the same thickness, an equation for the bending rigidity of a uniform 

equivalent beam may be written with regard to the condition 1d
dx
γ

= . 

( )
1

2
p

p

H

T xx xz
H

dE I M z C C dz
dx
γ

α
−

−

 = = − 
 

∫ . (8) 

3.2. Cylindrical bending of laminated plates subjected to loading by a force. 
In this case the primary assumptions are 

( ) ( ),xx xzxS z T zσ τ= = . (9) 
The following expressions are obtained from Hooke’s law 

* *
1, ,xx zz

u wxS xS
x z

ε ε α
∂ ∂

= = = = −
∂ ∂

 

( )
( )

( )
( )

*
1 2

1 2

( ) , , .
1

xz xz

xx zz

C z C zS zS
C z C z

α α
α α

= = =
−

 
(10) 
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Next, by integrating Eq. (10) for the displacement we obtain 

( ) ( )
2

* *
1

0
,

2

zxu S z w x S dz xφ α ψ= + = − +∫ . (11) 

By substituting Eq. (11) into Eq. (1), we can derive the following equation for a symmetrically 
laminated plate. It also holds for plates with arbitrary laminations 

2 3
1 2 1 2

1 2 1 2
0 0 0

,
2 6

z z z
xz

xx xx xx xx

c x z z c x zu c dz dz c z w c x dz c x
C C G C C

τα α 
= + + − = − − +  

 
∫ ∫ ∫ , (12) 

where for the tangential stress xzτ  and the constant 2c  we have 

( ) 1 2
1 1 2 2

0 0
1 ,

pHH z
xz

xz
p xxz

c zc zdz c dz dz dz
H C G

τα
τ α α

 
= − − = +  

 
∫ ∫ ∫ . (13) 

In the above equations, 1c  is an arbitrary constant. If the tangential force Q  is equated to unity, then 
the following equation may be obtained from Eqs. (12) and (13) 

1
p

p

H

xz
H

Q dzτ
−

= =∫  ⇒  ( )
1

1 1 21
p p

p

H H

H z
c zdz dzα α

−

−

  
  = −
  

  
∫ ∫ . (14) 

Thus, by comparison with a uniform Timoshenko beam of the same cross section, we may write an 
equation for the transverse rigidity of a uniform equivalent beam 

2 2 1 2
1 2 1

0 0 0 0

1
2

pHz z z
xz

p T xx xx p xx

z z c zc dz c c dz dz dz dz
H G C C H C G

τα α α 
= − + = − + +  

 
∫ ∫ ∫ ∫ . (15) 

Here the value xzτ  is given by Eq. (13); TG  and TE  denote the Timoshenko beam moduli. It may 
be seen that the same bending rigidity is obtained from Eq. (12) as in Eq. (8). 

Higher order asymptotic approach 
Various high-order displacement models have been developed in the literature by considering 

combinations of displacement fields for in-plane and transverse displacements inside a mathematical sub-
layer. In order to obtain more accurate results for the local responses, another class of laminate theories, 
commonly named as the layer-wise theories, approximate the kinematics of individual layers rather than a 
total laminate using the 2-D theories.  These models have been used to investigate the phenomena of wave 
propagation as well as vibrations in laminated composite plates. Numerical evaluations obtained for wave 
propagation and vibrations in isotropic, orthotropic and composite laminated plates have been used to 
determine the efficient displacement field for economic analysis of wave propagation and vibration. The 
numerical method developed in this paper follows a semi-analytical approach with an analytical field 
applied in the longitudinal direction and a layer-wise power series displacement field employed in the 
transverse direction. The goal of the present paper is to develop a simple numerical technique, which can 
produce very accurate results compared with the available analytical solution. The goal is also to provide 
one with the ability to decide upon the level of refinement in higher order theory that is needed for accurate 
and efficient analysis. 

Let us consider now such kinematic assumptions ( )e dU U U= −  for a symmetrical three-layered 

plate of thickness 2 рН  (only cylindrical bending is considered): 

( )

( )

2 1

,
2 2

,

,

,

e i
ik k

i k
e e i

ik k
i k

u u z x

U
w w z x

φ

γ

−

−

 =
− 

=


∑

∑
      

0 ,
0 ,

z H
x L

< <
< <

 (16) 
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( ) ( )

( ) ( )
,

,

,id
ik k

i k
d id

ik k
i k

u u z H x

U
w w z H x

φ

γ

 = −
− 
 = −


∑

∑
      

,

0 .
pH z H

x L

< <

< <
 (17) 

Here ( )k xφ , ( )k xγ – are a priory known coordinate functions (for every beam clamp conditions), 
e

iku  , e
ikw , e

iku , e
ikw – unknown set of parameters. 

By substituting Eqs. (16) by (2) into the Hamilton-Ostrogradsky variation equation 
2 2

1 1

( )
t t

xx xx zz zz xz xz
t V t S

u u w w dVdt P U
t t t t

σ δε σ δε τ δε ρ δ ρ δ δ
∂ ∂ ∂ ∂

+ + − − =
∂ ∂ ∂ ∂∫ ∫ ∫ ∫ , (18) 

and also assuming single frequency vibration ( , , ,e e i t e e i t d d i t d d i t
ik ik ik ik ik ik ik iku u e w w e u u e w w eω ω ω ω= = = = ) we 

obtain the set of linear algebraic equations for the amplitudes (matrixes Ai are given in Appendix A) 

1

2
[ ] d e

T
dd

A A U
A U f

UA A

   
= =   

    
. (19) 

For a greater number of lamina this equation has the following form for each additional layer 

( ) ( )

( ) ( )

( )

,

( )

,

,

,

in
ik k

i kn
d in n

ik k
i k

u u z H x

U
w w z H x

φ

γ


= −

− 
 = −


∑

∑
    

,
0 ,

1, ..., ,

n PH z H
x L

n N

< <
< <
=

 (20) 

Here nH  are the low bounds of the n -th layer, respectively. Matrix [ ]A  is found by double 
integration through the thickness and along the length of the beam (see Appendix A, B).  Note that, 1N =  
and 2N =  represent the cases of symmetrical three- and five-layered plates, respectively. 

The corresponding frequency equation for the material with the viscous damping should be written such 

[ ] [ ] [ ] [ ]2 M U i C U K U A U fω ω− + + = = . (21) 
This is the traditional frequency domain method which is normally used in linear elastic system 

investigations. By taken into account first terms in (16) we obtain the kinematic assumptions of 
Timoshenko beam. 

Numerical example – three-layered symmetrical beam (sandwich) 
Let us consider a three-layered symmetrical beam. (See Fig. 2.) Its mechanical properties are chosen 

to be: core material (honeycomb polymer filled structure): the compressive modulus is 1.076 GPa; tensile 
modulus is 3.96 GPa; flexural modulus – 1.020 GPa; and shear modulus is 0.638 GPa. Face material (fibre 
composite material): tensile modulus is 26 GPa; flexural modulus ≈ 6 GPa; and shear modulus ≈ 0.6 GPa. 
These properties are concerned with the sandwich beam with the honeycomb filled core. Face fiber 
polymer material are rigid and the core is very soft in the tangential direction. In the calculations, the 
arithmetic mean value of the compressive modulus and the tensile modulus was chosen. 

The values of the elastic constants ,T TE G  of an equivalent Timoshenko beam are presented in Fig. 
3b. For the identification of the elastic modulus, a procedure was used which compares the elastic energy 
of the two beams: one of them – non-uniform, and other – uniform. The iso-lines given in Fig. 3 represent 
constant values of the difference between the Timoshenko beam elastic energy and the energy of an 
analytically modeled beam ( )xx xx zz zz xz xz

V
dVσ δε σ δε τ δε+ +∫ . Two methods were applied: (a) 

analytical Eqs. (1)–(15), and (b) approximate Eqs. (16)–(21). Fig. 3 presents the theoretically derived 
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elasticity constants ,T TE G (corresponding to the minimum difference in the energies) for the Timoshenko 
beam analogue of the sample beam described above. The small difference in the values is caused by the 
different elastic energy components, which are taken into account in the two cases. In the approximate 
method the transverse energy component ( )zz zz

V
dVσ δε∫ ) is very small and is not taken into account. For a 

symmetrical structure with identical face layers, the equivalent rigidity may be found from the Timoshenko 
beam theory by the use of Eqs. (8) and (15). 

 
Fig. 2. The sandwich beam with inner viscoelastic layer (1) (core) and identical face layers (2) 
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* 
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a b 

Fig. 3. Equivalent moduli TE  and TG : a – analytical approach; b – approximate approach 

All of these properties are found in the first eigen-frequency region. But it is well known that the 
rigidity and damping properties of composite plates are frequency dependent. This phenomenon may be 
caused by a frequency dependent visco-elastic modulus or by a frequency dependent stress distribution 
through the plate thickness. The second case will be considered now. 

Eigen-frequency of a uniform beam 
Clamped-free beam. Dynamic properties of clamped-free beam are identical to centrally clamped 

symmetrical beam of the double length. A range of numerical experiments must be made to ensure that this 
theoretical approach is correct. Let us compare the eigen-frequencies of a clamped-free uniform isotropic 
beam for the following geometrical parameters: length L was chosen to be 0.3 m, thickness was chosen to 
be 0.0130H =  m. The elastic moduli were assumed to be as follows: 240xx zzC C= =  MPa, 

120G =  MPa, and 103xzC =  MPa (ν = 0.3). The eigen-frequencies were obtained by means of FEM and 

Eqs. (21) by the cinematic assumption ( ( )k xφ = ( ) ( )sin 2k x k x Lγ π= ) for clamped-free beam (see  
Tables 1–4). The elements of system matrixes in (21) are calculated as in Appendixes A and B. 

In the Table 1, in the first row, the mesh of the FEM grid in the X, Z plane is presented. In the last 
column, the mesh in the Y direction was doubled (Ny = 20). In Tables 2-4, the first row presents the number 
of approximations in the X and Z directions (see Eq. (16)). The modes of vibration are presented in Fig. 4. 

In Tables 1–4 the rate of convergence of two methods and the agreement between the results may be 
seen (see the last column in Tables 1 and 4). 
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Beam simply supported at the ends. Let us consider simply supported at the ends beam. The modes 
of vibration for 3d-beam obtained by FEM are presented in Fig. 5.  Length L was chosen to be 0.58 m, 
thickness was chosen to be 0.0116H =  m. The elastic moduli were assumed to be as follows: 

230xx zzC C= =  MPa, 90G =  MPa, and ν = 0.3. 

Table 1 
Eigen-frequencies of a clamped-free uniform isotropic beam obtained by means of FEM 

Nf (Nx×Nz) 60×9 150×9 300×9 600×9 600×9 (2) 
1 20.5  19.9  19.7  19.6  19.2 
2 128.3  124.3  123.2  122.9  120.4  
3 356.7  345.4  342.3  341.4  335.4  
4 690.0  667.7  661.6  659.9  649.8  
5 1121.1  1083.7  1073.6  1070.9  1056.4  
6 1641.0  1584.0  1568.8  1564.7  1546.1  
7 2240.8  2159.3  2137.7  2131.9  2109.5  
8 2954.5  2800.6  2771.2  2763.4  2737.5  

Table 2 
Eigen-frequencies of a clamped-free uniform isotropic beam obtained by means of Eqs. (22), Nz = 1 

Nf Nx = 17, Nz  = 1 Nx = 23, Nz  = 1 Nx = 27, Nz = 1 Nx = 29, Nz = 1 Nx = 31, Nz  = 1 
1 
2 
3 
4 
5 
6 
7 
8 

21.8 
135.6 
375.7 
725.7 

1178.7 
1728.4 
2363.6 
3084.4 

21.5 
134.2 
371.5 
717.4 

1165.0 
1702.9 
2327.7 
3024.6 

21.5 
133.8 
370.3 
715.8 

1161.8 
1699.0 
2318.8 
3011.0 

21.4 
133.4 
369.7 
714.1 

1159.7 
1697.8 
2315.8 
3006.0 

21.4 
133.4 
369.7 
714.1 

1158.7 
1696.5 
2312.8 
3002.6 

Table 3 
Eigen-frequencies of a clamped-free uniform isotropic beam obtained by means of Eqs. (22), Nz = 2 

Nf  Nx = 17, Nz  = 2 Nx = 23, Nz  = 2 Nx = 27, Nz  = 2 Nx = 29, Nz  = 2 Nx = 31, Nz  = 2 
1 
2 
3 
4 
5 
6 
7 
8 

19.8 
122.7 
340.7 
659.1 

1073.1 
1574.1 
2158.1 
2819.2 

19.5 
121.7 
337.3 
652.0 

1061.0 
1554.6 
2126.6 
2760.5 

19.5 
121.3 
336.1 
650.5 

1057.0 
1548.5 
2115.2 
2750.8 

19.4 
121.0 
335.6 
648.9 

1055.0 
1546.1 
2112.4 
2745.9 

19.4 
121.0 
335.6 
648.9 

1053.9 
1543.6 
2109.5 
2742.7 

Table 4 
Eigen-frequencies of a clamped-free uniform isotropic beam obtained by means of Eqs. (22), Nz = 3 

Nf  Nx = 17, Nz = 3 Nx = 23, Nz = 3 Nx = 27, Nz  = 3 Nx = 29, Nz = 3 Nx = 31, Nz  = 3 
1 
2 
3 
4 
5 
6 
7 
8 

19.9 
124.0 
343.5 
671.1 
1066.0 
1563.1 
2153.8 
2816.0 

19.5 
121.7 
337.3 
652.8 

1061.0 
1554.6 
2123.8 
2763.8 

19.5 
121.3 
336.1 
650.5 

1057.0 
1547.3 
2115.2 
2750.8 

19.5 
121.0 
336.1 
649.7 

1056.0 
1544.8 
2112.4 
2745.9 

19.4 
121.0 
335.6 
648.1 

1053.9 
1543.6 
2109.5 
2742.7 
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a b 

Fig. 4. Modes of beam vibration: a – the third mode, b – the sixth mode 

  
a b 

  
с d 

  
e f 

Fig. 5. Modes of beam vibration: a, c, e – symmetrical, b, d, f – asymmetrical modes 
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g h 

  
k l 

Сontinuation of fig. 5. Modes of beam vibration: g, k – symmetrical; h, l – asymmetrical modes 

The modes of vibration for 2d-beam obtained by FEM are presented in Fig. 6. 

  
k l 

Fig. 6. Symmetrical modes of beam vibration: a – the first mode; b – mode twelve 

The eigen-frequencies obtained by means of Eqs. (21) by ( ) ( )( )sin 2 1 2k x k x Lφ π= −  

( ) ( )( )cos 2 1 2k x k x Lγ π= − ) in (20) and FEM are presented in Table 5. 
As expected, the 3-d FEM dates are more exact and near to a precise analytical solution. For the  

1-layer approximation the deviations for one layer theory are grater than for three layer theory. For the 
uniform beam result obtained by various beam theories are identical for 2ZN ≥ . The layers in the uniform 
beam are chosen arbitrarily. The numerical results are practically identical for an arbitrary layers thickness. 
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Table 5 
Eigen-frequencies of a simply supported  uniform isotropic beam obtained  

by means of FEM and analytical approximations 
FEM One layer theory Three layer theory 

2-d beam 3-d beam 1=ZN  2=ZN  1=ZN  2=ZN  3=ZN  
13.13 
118.43 
330.32 
650.82 
1082.18 
1626.45 
2285.87 
3060.29 
3952.38 
4962.48 
6092.56 

– 
– 
– 

12.56 
112.16 
308.88 
600.46 
981.29 
1441.97 
1974.18 
2569.30 
3220.46 

– 
– 
– 
– 
– 

13.30 
116.49 
316.80 
622.96 
1021.92 
1519.14 
2114.61 
2792.21 
3545.67 
5300.08 
6272.83 
7327.49 
8436.04 
9592.79 

12.22 
110.01 
306.05 
592.91 
983.32 
1460.33 
2017.65 
2664.88 
3401.99 
4209.22 
5080.55 
6033.80 
7043.35 
8103.51 

12.22 
110.01 
306.05 
600.35 
992.90 
1472.00 
2045.12 
2696.43 
3419.79 
4248.85 
5124.09 
6081.23 
7094.60 
8158.47 

12.22 
110.01 
306.05 
592.91 
983.32 
1460.33 
2017.65 
2664.88 
3401.99 
4209.22 
5080.55 
6033.80 
7043.35 
8103.51 

12.22 
110.01 
306.05 
592.91 
983.32 
1460.33 
2017.65 
2664.88 
3401.99 
4209.22 
5080.55 
6033.80 
7043.35 
8103.51 

The eigen-frequencies obtained by means of Eqs. (21) by ( )k xφ = ( ) ( )sin 2k x k x Lγ π=  (clamped-
free beam) in (20) and FEM are presented in Tables 6 as for one-layer theory so for layered theory. 

Table 6 
Eigen-frequencies of a clamped-free beam, analytical approximations 

One layer theory Three layer theory 
1=ZN  2=ZN  3=ZN  4=ZN  1=ZN  2=ZN  3=ZN  

23.28 
135.81 
740.39 
1438.47 
2098.96 
2776.33 
3428.85 
4072.38 
4715.51 
5346.46 
6017.01 
6628.00 
7268.54 
7902.61 

22.91 
133.00 
703.30 
1322.40 
1934.63 
2531.60 
3129.56 
3733.34 
4328.43 
4934.52 
6136.55 
6757.72 
7368.52 
7984.78 

22.91 
133.00 
684.78 
1288.52 
1873.25 
2461.31 
3025.50 
3605.51 
4175.53 
4738.83 
5864.11 
6452.81 
7010.65 
7591.61 

22.91 
130.32 
684.78 
1280.12 
1863.12 
2438.10 
2999.76 
3563.39 
4130.20 
4690.53 
5252.45 
5810.36 
6358.97 
6932.33 

22.91 
30.32 
678.66 
1271.75 
1842.93 
2415.00 
2974.13 
3535.45 
4100.12 
4658.47 
5218.52 
5774.66 
6340.28 
6893.33 

23.04 
131.87 
677.58 
1265.23 
1844.18 
2411.21 
2968.48 
3521.59 
4077.49 
4638.61 
5191.45 
5739.73 
6296.55 
6846.65 

23.04 
131.87 
677.58 
1265.23 
1844.18 
2411.21 
2968.48 
3521.59 
4077.49 
4638.61 
5191.45 
5739.73 
6296.55 
6846.65 

It is necessary to note that in practice the refined theory produces asymptotic estimated values for 
the natural frequencies when the degree of approximation in the thickness direction 2zN ≥  for layer-wise 
theory. One-layer theory overestimates the eigen-frequencies for lower degree of approximation in the 
thickness direction. 

Let us consider now the vibration testing of an anisotropic beam having the following geometrical 
parameters: length L varied from 0.6 m to 0.2 m and thickness 0.0127H =  m. The elastic moduli are 
assumed to be as follows: 250xx zzC C= =  MPa, 58G =  MPa, and 40xzC =  MPa (foam material). The 
frequency response functions (FRF) for these beams are presented in Fig. 7 (Eqs. (16)–(21) were used). 
These functions were obtained for various ranges of approximations for various frequency domains 
(various beam lengths). 
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Fig. 7. FRF dependence for: 
a – beam with length 0.6L m= ; b – beam with length 0.2L m=  

From the results obtained, it follows that the Euler beam theory overestimates the natural frequency 
values. It can be observed that the Timoshenko beam theory also overestimates the natural frequency 
values but less so than the Euler theory. Note that in practice the refined theory produces asymptotic 
estimated values for the natural frequencies when the degree of approximation in the longitudinal 
direction 13xN >  and in the thickness direction 2zN ≥ . 

Influence of anisotropy of elastic properties of the beam on its FRF 
Let us investigate the effect of anisotropy of elastic properties of the beam on its amplitude-

frequency response function. First, we will consider a homogeneous beam with the values of elastic 
constants given earlier; those values were assumed as initial, but the other parameters were varied. Fig. 8 
shows the FRFs of beams with different elastic constants. The FRFs were calculated for a clamped-free 
beam, with excitation at its central clamped point. As seen from the Fig. 8, the effect of the elastic moduli 

XXC  and G on the FRF is marked over the entire range of frequencies, while the effect of the modulus 

ZZC  and XZ XXC Cν=  is observed only at the highest frequencies. 
Next, we will consider a symmetric three-layer beam and examine the influence of anisotropy 

of layer materials on the FRF. The outer layers of the beam are rigid and have the following 
characteristics: h = H2 = =0.0005 m, XXC  = 17 GPa, ZZC  =1.5 GPa, G = 580 MPa, and  

XZC  = 700 MPa. The inner layer of thickness H = 0.0254 m has the initial elastic moduli  

XXC  = 920 MPa, ZZC  = 100 MPa, XZC  = 100 MPa, and G = 30 MPa. Fig. 9 illustrates the effect of 
anisotropy of the inner layer on the FRF of the beam. As seen, in this case, only a change in the 
shear modulus IG  of the inner layer significantly affected the FRF. 

The data in Fig. 10 illustrate the effect of anisotropy of the outer layer of the beam on its FRF. 
A numerical analysis showed that only a change in the modulus XXC  of the outer, rigid layers 

did affect the FRF of the layered beam noticeably. It should be noted that the influence of their 
shear modulus fG  (see Fig. 10) was insignificant. A similar picture was also observed for the 

elastic constants XZC  and ZZC . 
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Fig. 8. FRFs for the elastic constants of the inner layer: xxC  (a); zzC  (b); xzC  (c) and G  (d) 
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Fig. 9. FRFs for the elastic constants of the inner layer: xxC  (a); zzC  (b); xzC  (c) and G  (d) 
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Fig. 10. FRFs for the elastic constants of the outer layer: xxC  (a); G  (b) 

Damping properties in the frequency domain 
Analogue theories and order-dependent results may be obtained also for the prediction of damping 

[39-41]. This result may be achieved by direct computation by use of the stiffness matrix if the damping 
matrix is congruent to the stiffness matrix. 

min min
1 2

max min max min

( , , ) ( , )( , , ) N S V N П S V ПC S V
N N П П

σ
σ α α

    − −
= ⋅ + ⋅     − −    

, (22) 

where [ ]K  is the stiffness matrix, q  is a vector of displacement components, [ ]iK  is a stiffness matrix 

component corresponding to (ith) layer ( [ ] [ ]i
i

K K= ∑ ). Components of damping matrix C are usually taken 

proportional to components of the rigidity matrix: [ ]i i iC Kη= . In the previous section of this paper, the 
frequency influence on the properties of sandwich panels may be seen. For this purpose, fewer 
investigations were made for damping properties investigation in the frequency domain. 

Near the FRF and damping areas presented for the sandwich with the damping core ( 0, 1)i iη = ≠  

for simply supported centrally loaded beam ( ( ) ( )2 1sin 2k
k xx L

πφ  − =  
 

, ( ) ( )2 1cos 2k
k xx L

πγ  − =  
 

) 

for the following geometrical parameters: length L was chosen to be 0.1 m, core thickness was chosen to 
be 0.030H =  m. The core elastic moduli were assumed to be as follows: 180xxC =  MPa, 

150zzC =  MPa, 40G =  MPa, and 75xzC =  MPa (ν =0.3); density 3240 /kg mρ = . Face layers 
thickness was chosen to be 0.002H =  m. The elastic moduli were assumed to be as follows: 

5400xxC =  MPa, 750zzC =  MPa, 200G =  MPa, and 375xzC =  MPa; 32400 /kg mρ = . 
In the case of dynamic tests, the error function is chosen in the form of quadratic deviation of 

Timoshenko beam eigen-frequencies T
if  from calculated c

if  values of vibration eigen-frequencies: 

( )
2

exp

,f
T cN i T T i

c
i i

f E G f
F

f

 − =   
 

∑ . (23) 

Here ,T TE G  is Young and shear module of an equivalent beam. The numerical calculation of 
vibration eigenfrequencies was performed on the basis of relations (16-21), with account of elastic and 
inertial properties of the beam. Fig. 11 shows the E G−  maps – the level lines of error function (23) upon 
variation of the moduli of homogeneous beams. 
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Fig. 11. T TE G−  maps — the level lines of error function (23) upon variation of the moduli  
of homogeneous beams for various face sheets thickness: a – one face sheets, 0,0005 ;=FH m  

b – two face sheets, 0,001 ;=FH m  c – four face sheets, 0,002FH m=  

In Fig. 12, sandwich beam FRF, damping and equivalent Timoshenko beam FRF are presented. Core 
damping was 1.2 %. 
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Fig. 12. Sandwich beam and equivalent Timoshenko beam  FRF (a);  relative damping and Bolzman approximation  
of damping.: a – one face sheets, 0,0005 ;=FH m  b – two face sheets, 0,001FH m=  
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Сontinuation of fig. 12. (c) – four face sheets, 0,002FH m=  

Here for the relative damping / Cη ηΣ  – the relation of the howl sandwich damping to the core 
damping the Boltzman approximation is done. 

1 2

01 exp

A Ay
x x

dx

−
=

− +   

. 
(24) 

In Fig. 13, damping for the centrally clamped and simply supported sandwich beams with various 
lengths is presented. 
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Fig. 13. Centrally clamped beams with the lengths 0.6, 0.4, 0.2L m= (a); Simply supported beams damping (b) 

For the centrally clamped beams as for simply supported beams damping decreasing is seen at the 
lower frequency range. 

In Fig. 14, the values of FRF and damping are presented for the symmetrical three-layered beam 
with the damping face sheets. The core and face layers mechanical characteristics were assumed to be 
identical to the face layers and core characteristics us above for sandwich. 

In Fig. 15 centrally clamped beams damping with the rigid core thickness: (a) 0.002CH m= ; (b) – 
0.004CH m=  are presented. 
Fig. 16 shows the E G−  maps – the level lines of error function (23) upon variation of the moduli 

of homogeneous Timoshenko beams for various face sheets thickness: (a) – 0,001FH m= ; (b) – two face 
sheets, 0,001FH m= ; (c) – four face sheets, 0,002FH m= . 
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Fig. 14. FRF and damping for the symmetrical three-layered beam with the damping face sheets 
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Fig. 15. Centrally clamped beams damping with the rigid core thickness (a): a – 0.002CH m= ;  
b – 0.004CH m=  
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Fig. 16. E G−  maps – the level lines of error function (23) upon variation of the moduli of homogeneous beams for 

various core thickness: a – 0,001 ;=CH m  b – 0,002 ;=CH m  c – 0,004 ;=CH m  d – 0,008CH m=  

In spite of sandwich beam, for the beam with thick damping face sheets the approximation by 
Timoshenko beam may be found only in the narrow frequency range (Fig. 17). 
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Fig. 17. Approximation of the beam with thick damping face sheets  

by Timoshenko beam 

Only in the lower frequency range 100 600Hz f Hz< < Timoshenko beam approximate the beam 
with the thick soft damping face sheets. For the other frequency intervals another Timoshenko beam 
approximation may be found. 

Fife-layered beam 
In Fig.18 the values of FRF and damping are presented for the symmetrical fife-layered beam with 

the damping interlaminate sheets. The core and face layers mechanical characteristics were assumed to be 
identical to the face layers characteristics us above for sandwich and for interlaminate sheets identical to 
core. The values of damping of three layer beam with the soft face sheets equal thickness  to damping 
interlaminate sheets (rhombus) are also shown. 
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Fig. 18. FRF and damping (triangles) for the symmetrical fife-layered beam with the damping interlaminate sheets 

and damping (rhombs) of three layer beam with the soft face sheets equal thickness 

In Fig. 19 the values of damping are presented for the symmetrical fife-layered beam (2H = 0.02 m) with 
the damping various thickness interlaminate sheets (triangles) and damping of three layer beam with the soft face 
sheets equal thickness. Interlaminate sheets damping was η = 1 %. Rigid inner face sheets – η =  0.1 %. 

For the smaller thickness DEMPH  of the interlaminate sheets damping in the symmetrical fife-
layered beam (2H = 0.02 m) with the various damping interlaminate sheets thickness DEMPH  and 
damping (small marks) of three layer beam with the soft face sheets equal thickness are presented. 
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Fig. 19. Damping  in the symmetrical fife-layered beam (2H=0.02 m)  

with the various damping interlaminate sheets thickness DEMPH  and damping (small marks)  
of three layer beam with the soft face sheets equal thickness 

 
As expected, the damping in the beam with the constrained damping sheets is higher. Only for the 

thick damping sheets, the damping of the fife-layered beam is less than in three-layered beam in the lower 
frequency range (Fig. 18, 19). 

In [42] it is shown that clamped end conditions seem to imply a higher apparent loss factor than the 
simply supported case, and free end conditions seem to imply a lower loss factor. In Fig. 20 damping is 
presented for free supported and centrally clamped beams. 
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Fig. 20. Damping for free supported and centrally clamped beams: a – beams with the damping core, 
0.0254 ;=CH m  b – damping thick face layers, 0.001CH m=  

In spite of [42] here damping in the free supported beam is higher than in   centrally clamped beam. 
In [43] the through-thickness modal response of a [0/f/0] sandwich beam with Gl/Pl composite faces 

and foam core was studied. The beam was 0.50 m long, had a thickness 0.035m. In Fig. 21 sandwich beam 
FRF and damping are presented. Here x is a point of measuring on the length of the beam. 

Fig. 22 shows distributions of the interlaminar strain, respectively, through the thickness at 
L=0.125m at the frequencies (500, 1000, 1455 Hz) at FRF intersection of horizontal line (A=-1.4, Fig. 17, a) for 
the following parameters: the core elastic moduli were assumed to be as follows [43]: 
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35, 35xx zzC C= =  MPa, 12G =  MPa, and 12xzC =  MPa (ν =0.4); density 345 /kg mρ = . Face layers 
thickness was chosen to be 0.0025H =  m. The elastic moduli were assumed to be as follows: 

8700xxC =  MPa, 8700zzC =  MPa, 3500G =  MPa, and 31672 /kg mρ = . The core damping 0.03Cη = , 
face layers damping 0.0065Fη = . 
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Fig. 21. Sandwich beam FRF (a) and damping (b) 
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Fig. 22. Distributions of the interlaminar strain, respectively, through the thickness at L=0.125 m:  
a – Xσ ; b – XZτ ; c – Zσ ; d – all stresses at f = 1000 Hz 
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In [43] for the face three layers face sheets [0/f/0] three layers FEM approximation was applied. It 
seems to be superfluous for the relative thin rigid face sheets. As been shown above (Fig. 10) only the 
longitudinal face sheets module influence on the sandwich FRF. Distinct face sheets layers longitudinal 
moduli may be summarized as an arithmetical mean of sublayers or found by translation to the 1-order 
theory of Timoshenko beam, as above.  In spite of FEM in [43], the approximations of order 3ZN ≥  give 
not only the transversal stress distribution with boundary zero values, but also continuous on interlaminates 
lines and smooth. 

High frequency diapason 
In Fig. 23, influence of the theoretical order ZN on the damping prediction accuracy in the high 

frequency diapason is presented for the sandwich with the damping core ( 0, 1)i iη = ≠ for different orders 

of approximations in (16,17). for simply supported centrally loaded beam ( ( ) ( )2 1sin 2k
k xx L

πφ  − =  
 

, 

( ) ( )2 1cos 2k
k xx L

πγ  − =  
 

 ) for the following geometrical parameters: length L was chosen to be 0.1 m, 

core thickness was chosen to be 0.030H =  m. The core elastic moduli were assumed to be as follows: 
180xxC =  MPa, 150zzC =  MPa, 40G =  MPa, and 75xzC =  MPa (ν =0.3); density 3240 /kg mρ = . 

Face layers thickness was chosen to be 0.002H =  m. The elastic moduli were assumed to be as follows: 
5400xxC =  MPa, 750zzC =  MPa, 200G =  MPa, and 375xzC =  MPa; 32400 /kg mρ = . 
Here / Cη ηΣ  is the ratio of the whole damping of sandwich to the damping in core layer. The 

behavior of these curves is not similar to the ones in the lower frequency range. For the sandwich beam 
with thick damping core, the damping is seen to decrease just above 1,700 Hz. 

In Fig. 24, the values of damping is presented for the symmetrical three-layered beam with the 
damping face sheets ( 0, 1)i iη = = (us above the influence of the orders of approximations in (16,17)  is 
practically equivalent for 2ZN ≥ ). Here core thickness was chosen to be 0.008H =  m, face layers 
thickness was 0.016H =  m. The core and face layers mechanical characteristics were assumed to be 
identical to the face layers and core characteristics us above for sandwich. Damping fluctuations also may 
be seen. Now consider this region in more detail. 
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Fig. 23. Relative damping / CΣη η  fluctuations 

(sandwich) 
Fig. 24. Relative damping / CΣη η  fluctuations  

(soft face sheets) 

In Fig. 25 stress distributions through one-half of the beam thickness are presented for this 
symmetrical beams in the region of the damping fluctuations (f = 680 Hz) and in the region of small 
damping (f = 250 Hz). 
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Fig. 25. Normal stress Xσ  distributions through one-half of the beam thickness:  
a – in the region of the damping fluctuations (f = 685 Hz); b – near f = 250 Hz 

It can be seen in Fig. 25, b, that the stresses in the damping layer (damping is nonzero only in the 
face layers: 4 mm < H < 20 mm) are small compared to the stresses presented in Fig. 25, a. 

Elastically fixed cantilever beam 
Finally, let us consider a homogeneous orthotropic elastically fixed cantilever beam, important in 

many technical applications (Fig. 26). 

 
Fig. 25. Plate in an elastic holder 

The equations of dynamic equilibrium are obtained by inserting Eqs. (2) and kinematic 
approximations (16) and (17) into the Hamilton–Ostrogradski variational equation with an elastic fastening 
of Winckler type with a modulus of subgrade reaction K 

2

1

( ) 0
K P

t

xx xx zz zz xz xz
t V S S

u u w w dV KU UdS P UdS dt
t t t t

σ δε σ δε τ δε ρ δ ρ δ δ δ
 ∂ ∂ ∂ ∂ + + − − + − =

∂ ∂ ∂ ∂ 
 

∫ ∫ ∫ ∫ . (25) 

where V is the volume of the plate, SK is the surface of the elastic fastening, SP is the surface with known 
forces, and [t1, t2] is an hour interval. 

Let us first consider a homogeneous orthotropic elastically fixed cantilever beam with  L = 0.3 m 
and H = 0.0127 m. The elastic characteristics of the beam material (MPa) are XXC  = 160, ZZC  = 160,  
G = 35, and XZC  = 60. Fig. 27 depicts the diagrams the first three eigen-frequencies if  as functions of the 
rigidity K of the elastic fastening. The eigen-frequencies of the beam if  are found on the basis of Eqs. 
(16)-(21). In calculating the eigen-frequencies according to the method described, the coordinate functions 
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were given by the trigonometric functions ( ) ( )( ) sin 2k
kpxx x Lφ γ= =  (see Appendix B). The calculation 

results presented in Fig. 27 show that, in the case of strong anisotropy (G is decreased tenfold), the 
influence of the parameters of rigid fixation is considerably more pronounced. The calculation results 
presented in [20] show that, in the case of strong anisotropy XXC  is increased tenfold), the influence of the 
parameters of rigid fixation is considerably more pronounced, and the region of maximum normal strains is 
greater. This is illustrated in Fig. 27, b. Here the length of fastening is L = 0.05 m. In Fig. 27, the eigen-
frequencies if  as functions of the rigidity K of the elastic fastening and bounds of this frequencies are 
presented for beam without the elastic fastening of length L = 0.3 m, L = 0.25 m. The upper bound is the 
eigen-frequency of shot beam – beam mines clamping zone. 
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Fig. 27. First three eigen-frequencies if  as functions of the rigidity K of the elastic fastening (a); Influence  

of beam anisotropy on the first eigen-frequency 1f  (b) 

In Fig. 28, a–c the analogues values for the thinner beam (H = 0.00635 m) are presented. Here, 
vertical signs present the bounds calculated for the Timoshenko theory. 
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Fig. 28. The analogues values for the thinner beam (H = 0.00635 m) 

First three eigen-frequencies if  as functions of the rigidity K of the elastic sandwich fastening are 
shown in Fig. 29, a–c. The results are presented for various friction coefficients Tk  in the clamp region. 
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Fig. 29. First three eigen-frequencies if  as functions of the rigidity K of the elastic fastening 
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In Fig. 30, a–c first three beam eigen-frequencies if  as functions of the rigidity K of the elastic 
three-layered soft face layers beam with the fastening are shown. Mechanical properties of the soft layers 
are as above. The elastic characteristics of the beam the rigid layers material (MPa) are XXC  = 9120,  

ZZC  = 480 , G = 145, and XZC  = 180. Here, as evidently, the influence of fastening is greater. For 
clamped sandwich the first eigen-frequency variation for the clamp without friction is small. 
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Fig. 30. First three eigen-frequencies if  as functions of the rigidity K of the elastic fastening 

Let us consider now the damping in sandwich and the three-layered beam with the thick soft layers 
damping vs the rigidity of the elastic fastening K (Fig. 31). Here the additional damping in elastic clamp may be 
found as for the beam by (22). For the elastic fastening as Winkler foundation additional deformation energy is 

( )2

0
, / 2

ZL

CLAMPU K w x H dx= ∫  and the additional losses are ( )2

0
, / 2

ZL

CLAMPloss CLAMPU K w x H dxη= ∫ . 

The first term must be added to denominator and second to numerator for the clamp damping account in 
(22). In Fig. 31 the damping increasing with the rigidity increasing of damping clamp may be seen. For the 
values of K grater than 100 MPa the summary damping is increasing. Here the rubber made clamp layers 
damping is 0,3Cη = . As for the sandwich so for the beam with the thick face soft layers the damping 
increasing with the rigidity increasing of damping clamp may be seen, but only to some value of K. 
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Fig. 31. Elastically clamped beams vs the rigidity of the elastic fastening rigidity Ek and damping in fastening  
layers – 0,3Cη = : a –sandwich beam; b – three-layered beam with the thick face soft layers 

Conclusions 
Theoretical models for the dynamics and damping of laminated structures have been developed. 

With the small number of parameters studied so far this approach predicts the dynamic behavior of the 
beams investigated. Using this model for layered beams, higher order modeling was carried out, not only 
for the damping caused by the shear strain in the core, but also for the damping caused by normal and 
bending deformation. This is important for the middle and high frequency analysis of the damping 
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properties of sandwich structures. The main advantage of the present method is that it does not rely on 
strong assumptions about the model of the plate. The key feature is that series of models can be 
applied for different vibration conditions of the plate by use of a suitable analytical or approximate 
method. Different cases of beam fastening were examined. Important in many technical applications 
elastically fixed cantilever beam, was under discussion. The summary damping of the stratification 
was found for various damping layers distribution for various beams fastening in the wide frequency 
range, among them taking into account damping in a clamp. By the numerical experiment very near 
results for adaptive numerical schemes of lower approximation degree in normal direction are 
established. The equivalent Timoshenko beam for an arbitrary layered beam was found. For the 
sandwich type beam an equivalent beam may be found with dynamic properties practically identical in 
the wide frequency range. Found equivalent Timoshenko beams may be applied in many numerical 
technical applications: in the dynamic vibroprotecting and vibroabsorbing systems, in the lower 
frequency sound insulation systems. 

Appendix A. The structure of a system matrix 
The vector of the unknown parameters is 

11 12 1 11 12 1 21 22 2 21 22 2

1 2 1 2

11 12 1 11 12 1 21 22 2 21 22

, ,..., , , ,..., ; , ,..., , , ,..., ;...

, ,..., , , ,..., ;

, ,..., , , ,..., ; , ,..., , ,

x x x x

z z z x z z z x

x x x

e e e e e e e e e e e e
N N N N

e e e e e e
N N N N N N N N

d d d d d d d d d d d
N N N

u u u w w w u u u w w w
u u u w w w

U
u u u w w w u u u w w

=
2

1 2 1 2

,..., ;...

, ,..., , , ,..., .
x

z z z x z z z x

d
N

d d d d d d
N N N N N N N N

w
u u u w w w

 
 
 
 
 
   

. (A1) 

Matrices of integrals of the products of the longitudinal functions are: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1
0 0 0

2 1 2 2 2
1 0 0 0

1 2
0 0 0

...

...

... ... ... ...

...

X

X

X X X X

L L L
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X N

L L L
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x x dx x x dx x x dx
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φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

 
 
 
 
   =   
 
 
 
 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1
0 0 0

2 1 2 2 2
1 0 0 0

1 2
0 0 0
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...
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N

L L L
X N
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φ φ φ φ φ φ

 
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 
 
 ′ ′ ′  =   
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 
 ′ ′ ′ 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

, 

( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1
0 0 0

2 1 2 2 2
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1 2
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(A2) 
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The same forms have matrices 1
X
PB 

   , 1
X
PB 

  , 1
X
PB 

  , only functions ( )k xφ  must be substituted 

by ( )k xγ . Matrices 1 1 1, ,X X XAB APB ABP     
       (mixed) are defined such 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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. 

Let us consider first one layer.  Now the common matrix of the system (21) has the form 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
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, 

[ ]

1 11 1 11 1 12 1 12 1 1 1 1

1 21 1 21 1 22 1 22 1 2 1 2

1 1 1 1 1 2

...

...
... ... ... ...

Z Z

Z Z

Z Z Z

X X X X X X
pp pp N pp N

X X X X X X
pp pp N pp Nww

X X X
N pp N N

B q B d B q B d B q B d

B q B d B q B d B q B dA

B q B d B q

           + + +           
           + + +=            

     +      1 2 1 1...
Z Z Z Z Z

X X X
pp N N N pp N NB d B q B d

 
 
 
 
 

      + +      

, 
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[ ] [ ]Twu uwA A= , 

[ ]

1 11 1 12 1 1

1 21 1 22 1 2

1 1 1 2 1 1

...

...
... ... ... ...

...

Z

Z

Z Z Z

X X X
N

X X X
N

mu

X X X
N N N

A m A m A m

A m A m A mA

A m A m A m

      
      

      
      =
 
             

, 

[ ]

1 11 1 12 1 1

1 21 1 22 1 2

1 1 1 2 1 1

...

...
... ... ... ...

...

Z

Z

Z Z Z

X X X
N

X X X
N

mw

X X X
N N N

A n A n A n

A n A n A nA

A n A n A n

      
      

      
      =
 
             

. 

Here 

( ) 2 2 42 1)(2 1)
H

i j
ij

H
g G i j z dz+ −

−
= − −∫ , 

2 2 2
H

i j
ij xx

H
c C z dz+ −

−
= ∫ , 

2 2 4(2 2)
H

i j
ij xz

H
e C j z dz+ −

−
= −∫ , 

2 2 4(2 1)
H

i j
ij

H
f G i z dz+ −

−
= −∫ , 

2 2 4(2 2)
H

i j
ij zz

H
q C j z dz+ −

−
= −∫ , 

2 2 4
H

i j
ij

H
d Gz dz+ −

−
= ∫ , 

2 2 2
H

i j
ij

H
m z dzρ + −

−
= ∫ , 

2 2 4
H

i j
ij

H
n z dzρ + −

−
= ∫ . 

(A4) 

For two or more layers, the structure of the system matrix is 
[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

N

N

N N NN

A A A
A A AA

A A A

Σ

 
 

   =   
  

. (A5) 

Here 
[ ]11A = [ ]A , 

and the matrixes ijA    differ only by terms (A4). For example 

[ ] [ ] [ ]
[ ] [ ]

12 12
12

12 12

uu uw

wu ww

A A
A

A A
 

=  
  

, 

[ ]

12 12 12 12 12 12
1 11 1 11 1 12 1 12 1 1 1 1

12 12 12 12 12 12
1 21 1 21 1 22 1 22 1 2 1 2

12

12
1

...

...
... ... ... ...

Z Z

Z Z

X X X X X X
pp pp N pp N

X X X X X X
pp pp N pp N

uu

X

A g A c A g A c A g A c

A g A c A g A c A g A cA

A g

           + + +           
           + + +           =

 
 

12 12 12 12 12
1 1 1 1 2 1 2 1 1...

Z Z Z Z Z Z Z Z
X X X X X

N pp N N pp N N N pp N NA c A g A c A g A c

 
 
 
 
 
          + + +           

. 
(A6) 

( ) ( )2 212 2 22 2 1)(2 1)
PH

ji
ij

H
g G i j z H z dz−−= − − +∫ ,   ( )2 112 2 1

H
ji

ij xx
H

c C z H z dz−−

−
= +∫ . (A7) 

For the beam with the uniform layers all parameters ijg , ijc , ije  may be found analytically for 
known integer. 
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Appendix B. The structure of system matrix for clamped-free beam 

For example, in the case studied at the beginning of the paper ( ( )k xφ = ( ) ( )sin 2k x k x Lγ π= ), we 

obtain for the terms of the matrix 1
XA 

  : 

( ) ( )
( , ) / 2, ( , ) sin sin

2 2
k m k mL La k k L a k m

k m k m
π π   − +

= = −   
− +   

, (B1) 

for the matrix 1
X
PA 

   

( ) ( )
2 cos cos

2 21 1( , ) sin / 2, ( , )
2 2P P

k m k m
k ka k k a k m

k m k m k m k m

π π

π

  +   − 
    

       = = − − +    + − + −     
 

, (B2) 

for the matrix 1
X
PPA 

   

( )( ) ( ) ( )
2

( , ) , , ( , ) ( , ) 2 sin /
2 2 2 2PP PP

k mk k kma k k L a k k a k m a k m L k m
L L L

ππ π
π

  +  = − = + +         
. (B3) 

and for matrices 1
XA 

  , 1
X
PA 

  1
X
PPA 

  , 1 1 1, ,X X XAB APB ABP     
      : 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , , ,

, , , , , , , , .
P P PP PP

P P P P

b i j a i j b i j a i j b i j a i j
ab i j a i j ab i j a i j ba i j a j i

= = =
= = =

 (B4) 

The coefficient in Eq. (B4) also may be found analytically. 
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