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The process of gas filtration in a porous medium depending on its structure is modeled
in the paper. The presence of pores of various sizes leads to the formation of flow and
stagnation zones, which affect both the pressure distribution in the medium and the active
gas mass. The obtained results make it possible to determine the proportion of the flow
zones volume and the exchange coefficient between the flow and stagnant zones.
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1. Introduction

Natural liquids such as oil, gas, underground water are located in the Earth subsoils, or rather, in
underground cavities — pores and cracks of the rocks [1]. Underground gas storages (UGS) are mainly
formed in depleted gas, aquiferous layers, gas condensate and oil fields [2, 3]. When creating UGS
preference is given to the places where depleted gas fields which have a pore volume sufficient to store
the required active gas volume, satisfactory filtration-capacitive properties and relatively homogeneous
distribution of them in the area and section of the layer-collector are located. In the process of creating
UGS, issues of the rational ratio of buffer and active gas, number of wells, maximum and minimum
pressures in the layer-collector, compressor station power, etc. should be solved.

The structure of the rocks pore space is caused by granulometric composition of particles, their
shape, the chemical composition of the rocks, the origin of pores, as well as the ratio of the number of
large and small pores. The structure of the rock is predominantly determined by the size and shape of
its grains. By size the structures are distinguished by the following: psephitic (the rock consists of the
fragments in the size of more than 1−2 mm), psammitic (0.1−1 mm), aleurolitic (0.01−0.1 mm), pelitic
(0.01 mm and less). To the texture features of the rock are referred layering, nature of the placement
and location of the rocks, the location and the quantitative ratio of cement and grains of the rock, as
well as some other features of the structure [2–4]. The role of the cement often perform clay substances.
There are also cements of chemogenic origin (carbonates, oxides and hydroxides, sulfates). To a greater
extent, the properties of porous media depend on the size of the pore channels. According to the size
the pore channels of oil and gas layers are conventionally divided into three groups: overcapillary —
more than 0.5 mm; capillary — from 0.5 to 0.0002 mm (0.2µm); sub-capillary — less than 0.0002 mm
(0.2µm). In large (overcapillary) channels and pores, the movement of oil, water and gas passes freely,
and in capillary — with the significant participation of capillary forces. In sub-capillary channels, the
substances are kept to such an extent by the attraction force of channel walls (due to the small distance
between the walls of the channel, the fluid in it is in the sphere of the action of the molecular forces of
the rock material), that practically can not move in them under the natural conditions. The average
radius r (in m) of the pores in the rock exemplar depends on the coefficients of permeability k (in m2)
and the porosity m (non-dimensional value) of the rock and is characterized by Slichter number.
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A Slichter number is the non-dimensional function Sl(m, ε) of the porosity m and the structure
of the porous medium ε, which qualitatively characterizes the coefficient of the permeability k: k =
defSl(m, ε), where def(m) is the effective diameter of the particles of the porous medium. When
filtration is in a fictitious soil, the Slighter number is a function of porosity, and in the case of filtration
in a real soil, in addition, a function of the particles form and the degree of roughness of their surface.

Since in the sub-capillary channels carbohydrates cannot move, then the so-called stagnant zones,
which contain carbohydrates, are formed. It is obvious that such stagnant zones are volatile and depend
on the pressure in the porous medium. Under certain ratios between layer pressure and pressure in
the stagnant zones, carbohydrates from the latter can be released. This, in turn, affects the process of
hydrocarbons mining.

The purpose of the work is to construct a mathematical model for calculating the gas flow process
in the flow and stagnant zones and to determine the impact of the gas which is located in stagnant
zones on its total mining.

2. Formulation of the problem

We will consider the process of gas filtration in the complex porous medium, which occupies area of
the rectangular parallelepiped of the small thickness. Since the thickness of the medium is small, then
the pressure drop in the vertical direction can be neglected and the filtration process can be considered
only in the flat case. The process of gas filtration in a complex porous medium with stagnant zones
can be described by the following linearized system of differential equations in partial derivatives [5–8]





(1− ν)
∂p2
∂t

+ ν
∂p1
∂t
− a

(
∂2p1
∂x2

+
∂2p1
∂y2

)
= 0,

∂p2
∂t

= γ (p1 − p2) .
(1)

Here p1(x, y, t) and p2(x, y, t) are the gas pressures in the drain and stagnant zones, ν is the share
of the volume of drain zones, γ is the exchange coefficient between zones, a = 2a0p10, a0 = k/µβ is
the piezoconductance coefficient, k is the coefficient of porous medium permeability, µ is the dynamic
coefficient of viscosity of a liquid, β is the coefficient of volumetric elasticity of saturated porous
medium, p10 is the pressure value defined at the previous step, x ∈ [x0, xk], y ∈ [y0, yk]. As the
boundary conditions we will consider conditions under which there is no gas outlet. The boundary
value problem is solved for an arbitrary initial condition, which can be set in the process of calculating
the pressure distribution in the medium.

3. Solving the formulated problem

Let use the Laplace–Carson integral transform. Since

f ′(t)⇔ s [F (s)− f(0)] ,

then in Laplace–Carson images [9, 10] the system (1) will look like
{

(1− ν) s [P2(x, y, s)− p2(x, y, 0)] + νs [P1(x, y, p)− p1(x, y, 0)] − a
(
P ′′
1x(x, y, s) + P ′′

1y(x, y, s)
)

= 0,

s [P2(x, y, s)− p2(x, y, 0)] = γ [P1(x, y, s)− P2(x, y, s)] .

Here Pi(x, y, s), i = 1, 2 is Laplace-Carson image of the function pi(x, y, s), i = 1, 2, s is the Laplace–
Carson transform parameter. From the second equation of the last system we will obtain

P2(x, y, s) =
γ

s+ γ
P1(x, y, s) +

s

s+ γ
p2(x, y, 0). (2)
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To determine the image P1(x, y, s) we will obtain an ordinary differential equation of the second
order
[
γ(1− ν)s

s+ γ
+ ν s

]
P1(x, y, s)− a

(
P ′′

1x(x, y, s) + P ′′
1y(x, y, s)

)

= (1− ν)s p2(x, y, 0) + ν s p1(x, y, 0) − (1− ν)s2

s+ γ
p2(x, y, 0). (3)

If we introduce the notation

b =
γ(1 − ν)s

s+ γ
+ ν s, d = (1− ν)s p2(x, y, 0) + ν s p1(x, y, 0)− (1− ν)s2

s+ γ
p2(x, y, 0), (4)

then the equation (3) will look like

P ′′
1x(x, y, s) + P ′′

1y(x, y, s)− αP1(x, y, p) = β, α =
b

a
, β = −d

a
.

Since the boundary conditions are constant, it is expedient to find the solution of the equation (4)
in the the form

P1(x, y, s) =
∞∑

n=1

P1n(y, s) cos
nπ(x− x0)

xk − x0
with unknown coefficients

P1n(y, s) =
2

xk − x0

∫ xk

x0

P1(x, y, s) cos
nπ(x− x0)

xk − x0
dx.

Integrating the last equation by parts, taking into account the conditions of impenetrability, leads to
the following equation

P1n(y, s) =
2(xk − x0)

(nπ)2

∫ xk

x0

d2P1(x, y, s)

dx2
cos

nπ(x− x0)

xk − x0
dx.

Since
P ′′

1x(x, y, s) = β + αP1(x, y, p)− P ′′
1y(x, y, s),

then
P1n(y, s) =

2(xk − x0)
(nπ)2

∫ xk

x0

(
β + αP1(x, y, p) − P ′′

1y(x, y, s)
)

cos
nπ(x− x0)

xk − x0
dx,

from which we obtain the differential equation for determining unknown coefficients

P1n(y, s) =
(xk − x0)2

(nπ)2
{
αP1n(y, s)− P ′′

1ny(y, s)
}
,

or

P ′′
1ny(y, s)−

[
α+

(
nπ

xk − x0

)2
]
P1n(y, s) = 0.

If we will mark λ2n = α +
(

nπ
xk−x0

)2
, then as a characteristic equation for an ordinary homogeneous

differential equation
P ′′
1ny(y, s)− λ2nP1n(y, s) = 0

is an algebraic equation z2−λ2n = 0, the roots of which are defined as follows z1 = λn, z2 = −λn. Then
the solution of the equation will have the form

P1n(y, s) = A(s)eyλn +B(s)e−yλn .
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Let us suppose, for simplicity, P1(x, 0, t) = θ1y(0) ≡ const . Then P1(x, 0, s) = θ1y(0) ≡ const and
for determining A(s) and B(s) the following system is obtained

A(s) +B(s) = 2θ1y,

A(s)ey0λn +B(s)e−y0λn = 2θ1y,

the solution of which has the form

A(s) = 2θ1y
e−y0λn − 1

e−y0λn − ey0λn , B(s) = 2θ1y
1− ey0λn

e−y0λn − ey0λn .

Then in Laplace-Carson space

P1n(y, s) =
2θ1y

sinh (y0λn)

[
sinh (yλn) + sinh ((y0 − y)λn)

]
.

To find unknown coefficients P1n(y, t), it is necessary to move from the images to the originals in the
last formula. To do this, we expand the function

ϕ(s, y) =
sinh(yλn)

sinh(y0λn)

in simple fractions. We will obtain

ϕ(s, y) =
sinh(yλn)

sinh(y0λn)
=

y

y0
+

2

π

∞∑

k=1

(−1)k

k

λ2n
λ2n + ϑk

sin
kπy

y0
,

where ϑk = (kπ/y0)2.
Since

λn =

√
α+

(
nπ

xk − x0

)2

, α =
γ(1− ν)s

a(s+ γ)
+
ν s

a
,

then
λ2n

λ2n + ϑk
=
s2 + c1s+ c2
s2 + z1s+ z2

,

where is marked

c1 =
γ1 + v1γ + πn

v1
, c2 =

πnγ

v1
, z1 =

γ1 + v1γ + πn + ϑk
v1

, z2 =
(πn + ϑk) γ

v1
,

γ1 =
γ (1− ν)

a
, v1 =

ν

a
, πn =

(
nπ

xk − x0

)2

.

Then

ϕ(s, y) =
y

y0
+

2

π

∞∑

k=1

(−1)k

k

s2 + c1s+ c2
(s− s1) (s− s2)

sin
kπy

y0
,

where

s1,2 = −z1
2
±
√(z1

2

)2
− z2.

There is operational equality [9]

s2 + c1s+ c2
(s− s1) (s− s2)

÷ c1
s1s2

+
s21 + c1s1 + c2
−s1 (−s1 − s2)

es1t − s22 + c1s2 + c2
−s2 (−s1 − s2)

es2t = ψk(t).
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Then

ϕ(t, y) =
y

y0
+

2

π

∞∑

k=1

(−1)k

k
ψk(t) sin

kπy

y0

and
P1n(y, t) = 2θ1y

[
ϕ(t, y) + ϕ(t, y0 − y)

]
.

Thus, the final pressure distribution in the flow zone will look like

P1(x, y, t) =
∞∑

n=1

P1n(y, t) cos
nπ(x− x0)
xk − x0

.

Let us find the pressure distribution in stagnant zones. Since

P2(x, y, s) =
γ

s+ γ
P1(x, y, s) +

s

s+ γ
p2(x, y, 0)

and
1

s+ γ
÷ 1

γ

(
1− e−γt

)
,

s

s+ γ
÷ e−γt,

then, using a convolution theorem can be written

P2(x, y, t) =
d

dt

∫ t

0

(
1− e−γ(t−τ)

)
P1(x, y, τ) dτ + e−γtp2(x, y, 0)

= γ

∫ t

0
e−γ(t−τ)P1(x, y, τ) dτ + e−γtp2(x, y, 0). (5)

Let us introduce the notations

ζ0 =
c1
s1s2

, ζ1 =
s21 + c1s1 + c2
−s1 (−s1 − s2)

, ζ2 = − s22 + c1s2 + c2
−s2 (−s1 − s2)

.

Then
ψk(t) = ζ0 + ζ1e

s1t + ζ2e
s2t.

Next, let us present the integral in the formula (5) as follows

∫ t

0
e−γ(t−τ)

∞∑

n=1

P1n(y, τ) cos
nπ(x− x0)
xk − x0

dτ =

∞∑

n=1

cos
nπ(x− x0)
xk − x0

∫ t

0
e−γ(t−τ)P1n(y, τ) dτ.

Let

In1n =

∫ t

0
e−γ(t−τ)P1n(y, τ) dτ = 2θ1y

∫ t

0
e−γ(t−τ)

[
ϕ(τ, y) + ϕ(τ, y0 − y)

]
dτ .

Then

In1nϕ (y, t) =

∫ t

0
e−γ(t−τ)

[
y

y0
+

2

π

∞∑

k=1

(−1)k

k
ψk(τ) sin

kπy

y0

]
dτ

=
y

y0

∫ t

0
e−γ(t−τ)dτ +

2

π

∞∑

k=1

(−1)k

k
sin

kπy

y0

∫ t

0
e−γ(t−τ)ψk(τ) dτ .

Since

wk =

∫ t

0
e−γ(t−τ)ψk (τ) dτ =

∫ t

0
e−γ(t−τ)

[
ζ0 + ζ1e

s1τ + ζ2e
s2τ
]
dτ
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=
ζ0
γ

(
1− e−γt

)
+

ζ1
γ + s1

(
es1t − e−γt

)
+

ζ2
γ + s2

(
es2t − e−γt

)
,

then

In1nϕ(y, t) =

{
y

γy0

(
1− e−γt

)
+

2

π

∞∑

k=1

(−1)k

k
sin

kπy

y0
wk

}

and

In1n =

∫ t

0
e−γ(t−τ)P1n(y, τ) dτ = 2θ1y

[
In1nϕ(y, t) + In1nϕ(y0 − y, t)

]
.

So

F (x, y, t) =

∫ t

0
e−γ(t−τ)

∞∑

n=1

P1n(y, τ) cos
nπ(x− x0)
xk − x0

dτ =

∞∑

n=1

cos
nπ(x− x0)

xk − x0
In1n

and finally we get the pressure distribution in the stagnant zones

P2(x, y, t) = γ F (x, y, t) + e−γtp2(x, y, 0).

4. Algorithm for determining the parameters of stagnant zones

The gas mass in the porous medium is calculated by the formula

M = m

∫

V
ρ dV ,

where m is the medium porosity. If consider a rectangular parallelepiped of thickness h, average the
pressure by thickness and use the gas law, then the gas mass which present in the flowing pores is
calculated by the formula

Mp(t) = mhv

∫ yk

y0

dy

∫ xk

x0

p1(x, y, t)

z RT
dx,

and the gas mass in stagnant zones

Mz(t) = mh(1− v)

∫ yk

y0

dy

∫ xk

x0

p2(x, y, t)

z RT
dx.

The difference of the gas mass in the flow pores over the time ∆t = t2 − t1, t ∈ [t1, t2] is calculated by
the formula

∆Mp(∆t) = Mp(t2)−Mp(t1) = mhv

∫ yk

y0

dy

∫ xk

x0

p1(x, y, t2)− p1(x, y, t1)

z RT
dx.

Experimental determining the share of the flow zones volume is as follows.

1. By the meter devices the mass of gas that was removed from the storage is determined.
2. The mathematical model of the gas diffusion process in the storage layer is constructed and adapted.
3. According to the constructed model, the value ∆Mp(t) is calculated.
4. If the measured mass of gas coincides with the calculated according to the last formula with given

accuracy, then the stagnant zones don’t participate in the process of gas removal. Otherwise, the
share of stagnant zones is determined.

Stagnant zones are characterized by a share of the volume of the flow zones ν and the exchange
coefficient between zones γ. It is obvious that the determination of these parameters essentially depends
on the proportion of stagnant zones, and on the accuracy of the input information and is changed
depending on the gas pressure in the UGS layer. If the proportion of stagnant zones in the process of
working UGS is beyond the limit of the accuracy of the model, it is not expedient to determine these
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parameters. Otherwise, it is necessary to have some additional information to determine the parameters
of the stagnant zones, in particular, the difference between the actually selected and calculated gas
volumes.
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Фiльтрацiя газу в складному пористому середовищi iз застiйними
зонами

П’янилоЯ.Д., Браташ О.Б.

Центр математичного моделювання

Iнституту прикладних проблем механiки i математики iм.Я.С.Пiдстригача НАН України,

вул. Дж.Дудаєва, 15, 79005, Львiв, Україна

У роботi моделюється процес фiльтрацiї газу в пористому середовищi залежно вiд
його структури. Наявнiсть пор рiзних розмiрiв зумовлює утворення протiчних i за-
стiйних зон, якi впливають як на розподiл тиску в середовищi, так i на масу активного
газу. Отриманi результати дають можливiсть визначити частку об’єму протiчних зон
та коефiцiєнт обмiну мiж протiчними та застiйними зонами.

Ключовi слова: фiльтрацiя газу, пористе середовище, диференцiальнi рiвняння в

частинних похiдних, iнтегральнi перетворення.
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