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Abstract – In this paper, a new method is given for solving 
singularly perturbed convection-diffusion problems. The 
present method is based on combining the asymptotic 
expansion method and the variational iteration method (VIM) 
with an auxiliary parameter. Numerical results show that the 
present method can provide very accurate numerical solutions 
not only in the boundary layer, but also away from the layer.. 
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I. Introduction 
In this paper, we consider the following singularly 

perturbed convection-diffusion problems [1], 
( ) ( ) ( ) ( ) ( ) ( ) ( )= = , ,Lu x u x a x u x b x u x f x u′′ ′ε + +  

0 1x≤ ≤                                                  (1) 
with the boundary conditions  

( ) ( ) BuAu =1,=0                                 (2) 

where 1<0 <<ε , )(xa , )(xb  and ),( uxf  are 
assumed to be sufficiently smooth, and such that (1)-(2) has 
a unique solution. Further, it is assumed that the function 

0>)( α≥xa , α  is a constant. Under the above 
assumption, singularly perturbed convection-diffusion 
problem (1)-(2) possesses a unique smooth solution with 
boundary layer on the left side of the domain [0,1] . 

Singularly perturbed problems depend on small positive 
parameter which multiplying with highest derivative term. 
This parameter cause to the solution changes quickly in some 
region and changes slowly in some other regions. The 
existence of perturbation parameter lead to complication, so 
classical numerical techniques not useful to solve such 
problems. Because of this, different techniques are needed to 
overcome this complication. In the recent times, a wide 
range of particular methods have been improved by a lot of 
authors for approximate solution of singularly perturbed 
problems [2-5]. 

II. The solution of singularly perturbed 
convection-diffusion problem Eqs.(1)-(2) 
In this section the asymptotic expansion approximation 

to the solution of singularly perturbed convection-
diffusion problem (1)-(2) is constructed. 

Theorem 2.1. (Maximum Principle) Suppose v  is a 
smooth function satisfying ( ) 00 ≥v , ( ) 01 ≥v  and 

( ) 0Lv x ≤  for all 10 ≤≤ x . Then ( ) 0≥xv  for all 

10 ≤≤ x . 
It follows directly that problem (1)-(2) has a unique 

solution. Let )(xu  and )(0 xu  be the solutions of (1)-(2) 
and its reduced problem, respectively  

( ) ( ) ( ) ( ) ( )0 0 0= ,a x u x b x u x f x u′ +               (3) 

( ) ,=1 Bu                                        (4) 
Then, the zeroth order asymptotic expansion approxi-

mation,  
( ) ( ),= 00 xvxuuas +                          (5) 

where ( )xv0  is the solution of the below equations (6)-(7).  

( ) ( ) ( ) ( )∞∈′+′′ 0,0,=0 00 xxvaxv               (6) 

( ) ( ) ( ) 0=,0=0 000 ∞− vuAv                   (7) 

We see directly ( )xv0  is given by  

( ) ( ) ( )( )
( )

.00=
0

00
ε

xa

euuxv
−

−                  (8) 
We note that Eqs. (1)-(2) also has a unique solution but 

that the solution will not in general satisfy the boundary 
condition at 0=x . 

Theorem 2.2. For sufficiently smooth )(xa , )(xb  

and ),( uxf , the zeroth order asymptotic expansion 

approximation )(xuas  satisfies the inequality,  

,|<)(| εxuuas −                     (9) 

where )(xu  is the solution of (1)-(2). The proof of 
theorem 2.1. and theorem 2.2. can be found [6]. In order 
to obtain zeroth order asymptotic expansion appro-
ximation )(xuas , it remains only obtain the solution 

( )xu0  of terminal value problem (3)-(4). 

III. The solution of terminal  
value problem (3)-(4) 

The solution of terminal value problem of (3)-(4) will 
be obtained by using the variational iteration method with 
an auxiliary parameter. Terminal value problem (3)-(4) 
can be converted into the following equivalent form  

( ) ( )
( )

( )
( ) ( ) ( )

,
= = , ,

0 1

f x w b x
w x w x F x w

a x a x
x

′ −

≤ ≤

        (10) 

( ) Bxw =                                       (11) 
for (10), according to the VIM, we can obtain the 
following iteration formula:  

( ) ( ) ( )( ) ,,=
1

01 dsswsFswsw n

x

n ∫++                   (12) 

 where .=0 Bw  
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IV. Variational iteration method with  
an auxiliary parameter 

In this section, the basic ideas of the variational 
iteration method [7] are introduced. We consider the 
following differential equations:  

0=)(= xgNuRuLuTu −++                     (13) 
where L  is the highest order derivative that is assumed to 
be easily invertible, R  is a linear differential operator of 
order less than L , Nu  represents the nonlinear terms 
and )(xg  is a inhomogeneous term. According to 
variational iteration method, we can write down a 
correction functional as follows :  

( ) ,),()(=)(
0

1 τττλ dTuxxuxu n

x

nn ∫++           (14) 

 An unknown auxiliary parameter h  can be inserted into 
the variational iteration algorithm (14),  

( ) ,),()(=),(
0

01 τττλ dTuxxuxu n

x

∫+ hh         (15) 

( ) 1,),(),(=),(
0

1 ≥+ ∫+ ndTuxxuxu n

x

nn τττλhhh  

(16) 
 where ),( τλ x  is a general lagrange multiplier which 
can be optimally identified via variational theory [8]. The 
approximate solutions ),( hxun , 1≥n  contains the 

auxiliary parameter h . By means of the so-called h -
curve, it is straightforward to choose a proper value of h  
which ensures that the approximate solutions are 
convergent [9].  

Finally, we approximate the solution 
( ) ),(lim= hxuxu n

n ∞→
 by the n th term ),( hxun . The 

above series solutions generally converge very rapidly. 
For the convergence of the variational iteration method, 
we will give the following theorem. 

As given by [10], at the n th-order of approximation, 
one can define the exact square residual error  

( ) dxxTunn
2][=

Ω∫∆                                   (17) 

However, it is proven by [10] that the exact residual error 

n∆  defined by equation (17) needs too much CPU time 
to calculate even if the order of approximation is not very 
high. Thus, to greatly decrease the CPU time, we use here 
the so-called averaged square residual error nE  
defined by  

1/22

0=

,
1

1=





































+ ∑ h
m
juT

m
E n

m

j
n            (18) 

Theorem 3.1. (Banach’s Fixed Point Theorem). 
Assume that BS  is a Banach space and  

BSBSA →:  

is a nonlinear mapping, and suppose that  

BSvuvuvAuA ∈−≤− ,,][][ α  

for some constants 1<α . Then A  has a unique fixed 
point. Furthermore, the sequence  

 ],[=1 nn uAu +  

 with an arbitrary choice of BSu ∈0 , converges to the 

fixed point of A . 
According to Theorem 3.1. for the nonlinear 

mapping  

( )[ ] ( ) ( ) ( )
( ) ( ) ,),(=

0

τ
ττ

ττ
τλ d

gNu
RuLu

xxuxuA
x









−+
+

+ ∫h  

a sufficient condition for convergence of the variational 
iteration method with an auxiliary parameter is strictly a 
contraction of A. Furthermore, the sequence (19) con-
verges to the fixed point of A which is also the solution of 
problem (10). 

V. Numerical Example 
In this section, we apply the variational iteration 

method which presented in previous sections to singularly 
perturbed convection-diffusion problems. 

5.1. Example  We consider the following singularly 
perturbed linear convection-diffusion problems [2]: 

( ) ( ) 1,<<0,21= xxxuxu +′+′′ε                 (20) 

( ) ( ) 1.=10,=0 uu                                       (21) 
 It is easy to see that its exact solution is:  

( ) ( )
( )

ε

εε
ε 1

1

112
21=

−

−

−









−−

+−+
e

e
xxxu

x

         (22) 

The exact solutions and numerical results for different 
ε  values are given in Table 1-2. Optimal h  parameter 
values are given in Table 3 with 100=3,= mn . 
 

TABLE  1 
EXACT SOLUTIONS FOR EXAMPLE 5.1 WITH 3=n  

x  310= −ε  410= −ε  510= −ε  
0.0001 -0.0948724468 -0.6318941447 -0.9998345930 

0.0005 -0.3921831516 -0.9925632506 -0.9994797600 
0.001 -0.6298573177 -0.9987538092 -0.9989790200 
0.005 -0.9862605289 -0.9947760000 -0.9949551000 

0.1 -0.8882000000 -0.8898200000 -0.8899820000 
0.3 -0.6086000000 -0.6098600000 -0.6099860000 
0.5 -0.2490000000 -0.2499000000 -0.2499900000 
0.7 0.1906000000 0.1900600000 0.1900060000 

0.9 0.7102000000 0.7100200000 0.7100020000 
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TABLE  2  
NUMERICAL RESULTS FOR EXAMPLE 5.1 WITH 3=n  

x  310= −ε  410= −ε  510= −ε  
0.0001 -0.09488739680 -0.6319040435 -0.9998361492 
0.0005 -0.39224487210 -0.9925787679 -0.9994813120 
0.001 -0.62995626190 -0.9987693775 -0.9989805666 

0.005 -0.98641232330 -0.9947911399 -0.9949566037 
0.1 -0.88825953030 -0.8898258146 -0.8899825717 
0.3 -0.60851737770 -0.6098516198 -0.6099851537 
0.5 -0.24884889560 -0.2498847980 -0.2499884734 
0.7 0.19074591560 0.1900746508 0.1900074692 
0.9 0.71026705620 0.7100267268 0.7100026740 

 
TABLE  3  

OPTIMAL h  VALUES FOR DIFFERENT ε  WITH 3=n  

 310= −ε  410= −ε  510= −ε  

h   0.90271 0.95483 0.97903 

 Conclusion 
In this paper, we have demonstrated the suitability of 

asymptotic expansion and the variational iteration method 
with an auxiliary parameter for solving singularly 
perturbed convection-diffusion problems. The hybrid 
method can decrease a number of computation. Numerical 
results show that the hybrid method is suitable and very 
effective. 
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