
TCSET'2010, February 23-27, 2010, Lviv-Slavske, Ukraine

293

Bidirectional Exact Pattern Matching Algorithm
Iftikhar Hussain, Muhammad Zubair, Jamil Ahmed and Junaid Zaffar

 Abstract - In this research we introduce a new idea to
solve the problem of exact pattern matching algorithm by
using two pointers, simultaneously.

 Keywords - Algorithm, exact pattern matching,
searching, Bidirectional.

I. INTRODUCTION

 The aim of exact pattern matching algorithm is to find one
or all occurrences of the pattern within a larger group of text
string [3]. In this paper, we proposed a new Bidirectional
exact pattern matching algorithm based on window sliding
method of exact string matching problem which will be
helpful in various needs of pattern matching.

According to literature survey, all the authors focus to
reduce the number of character comparisons and
processing time in both worst/average cases.

In this paper we compare Bidirectional algorithm's results
with Boyer-Moore, BM Horspool, Quick Search, and Turbo
BM algorithms which considered efficient in terms of number
of character comparisons and attempts take to complete the
processing of selected text.

II. BIDIRECTIONAL ALGORITHM

 Bidirectional exact pattern matching algorithm compares a
given pattern from both sides, starts from right then from left,
one character at a time within the text window. In case of a
mismatch or a complete match of the pattern, scan for the
mismatched and right most characters of the text window to
the left of the related text characters in pattern. When
rightmost and mismatched characters found in the left of
related characters of text string in pattern on same distance,
then align pattern with that text window. A complete match
will be found when the left pointer cross the right pointer at
the middle of the pattern.

Case 1: If mismatch cause by right pointer at most right
position or by left pointer at most left position of pattern then
scan for the rightmost character T(i+j-1) of the text window in
the pattern from right to left. If character P(j) found in the
pattern then align character P(j) with T(i+j-1).

Case 2: If mismatch cause by right pointer at any position
except most right position of the pattern then scan P(j-1…1)
for character P(j) which is same as T(i+j-1) and P(j) same to
T(i+m-1). If characters found in pattern on equal shifts then
align character P(j) with T(i+j-1) and P(j) with T(i+m-1).

Case 3: If mismatch cause by left pointer at any position
except the most left position of pattern then scan P(j-1…1) for
character P(j) which is same as T(i+j-1) and P(j) same to
T(i+m-1). If characters found in pattern on equal shifts then
align character P(j) with T(i+j-1) and P(j) with T(i+m-1).

Case 4: If equal shifts of mismatched (either cause by right
or left pointer) and right most characters are not found, and
P(j)= T(m-1) is found at the left of mismatched character P(j)
of the pattern, then align P(j) with T(m-1).
 Case 5: If equal shifts of mismatched (either cause by right
or left pointer) and the most right characters did not found at
the left of mismatched character P(j) of the pattern then whole
pattern will be shifted.

. ANALYSIS OF BIDIRECTIONAL ALGORITHM

The worst case time complexity of preprocessing phase of
Bidirectional algorithm is O(m), because only one loop is used
to scan the pattern to find the characters.

The total time complexity of searching phase is O(mn/2),
because O(n) takes to shift pattern to right of the text and
O(m/2) to search pattern in text string.

Bidirectional algorithm requires O(m) extra memory space
in worst case in addition with the text and pattern string.

IV. RESULTS AND DISCUSSIONS

In graphical form, Fig. 1 shows total number of shifts taken
by each algorithm using different pattern size. Results show
that in short pattern number of shifts is closer to other
algorithms but when pattern length is increased Bidirectional
algorithm become more efficient.

0
50

100
150
200
250
300
350
400
450
500

4 6 8 10 12 14 16
Pattern length

N
o.

 o
f

Sh
if

ts

Proposed Algorithm

Boyer-M oore

BM Horspool

Quick Search

Turbu BM

Fig. 1: Shift Base Comparison
Similarly, proposed algorithm compares more characters

when pattern length is short. On long patterns, it takes less
character compares than other algorithms.

V. CONCLUSION

This research presents a new idea of comparing the pattern
with text string from both sides of the pattern simultaneously.
Asymptotic analysis shows that Bidirectional algorithm is
better than exiting algorithms, as it takes O(mn/2) time in
searching phase.

REFERENCES

[1] R. S. Boyer, J. S. Moore, "A fast string searching algorithm,"
Communication of the ACM, Vol. 20, No. 10, 1977, pp.762–772.

[2] Knuth, D., Morris, J. H., Pratt, V., "Fast pattern matching in strings,"
SIAM Journal on Computing, Vol. 6, No. 2, doi: 10.1137/0206024,
1977, pp.323–350.

[3] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Introduction to
Algorithms, Chapter 34, MIT Press, 1990, pp 853-885.

Iftikhar Hussain, MSCS, Reg. 01713, IQRA University Islamabad.
Plot No. 5, Khayaban-e-Johar, Sector H-9, Islamabad, Pakistan.
E-mail: iftikhar.iftikhar786@gmail.com

