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The generalized activator-inhibitor model with cubic nonlinearity, in which the classical
Laplacian is replaced by fractional operator has been studied. The fractional operator re-
flects the nonlocal behavior of superdiffusion. A spatially homogeneous, time independent
solution has been found and its linear stability was studied. We have also performed a
weakly nonlinear analysis and obtained a system of amplitude equations that are the basis
for analysing pattern formation as well as parameter regimes for which various steady-state
patterns would exist.
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1. Introduction

Observations of different spatially nonhomogeneous patterns with complicated symmetries in many
physical, chemical, and biological media have made the reaction-diffusion systems to be a subject of
numerous investigations [1-4|. Recently, many scientists noticed that the diffusion in real-life systems
has got an anomalous character |[5-8]. Although the anomaly order appeared to be rather insignifi-
cant in the vast majority of examples, there exists a bunch of complex systems, (e.g., composite or
amorphous materials, complex micro-emulsions, living tissues, etc.), which call for the models with
substantial diffusion anomaly.

The investigation of superdiffusion becomes important because it has been detected experimentally
in several systems. In particular, the superdiffusion has been observed in transport in nonhomogeneous
rocks [9, 10], turbulent flows [11, 12|, optics [13], single-molecule spectroscopy [14], etc.

The effect of superdiffusion on pattern formation and pattern selection in the Brusselator model
is studied in [15]. The authors have performed a weakly nonlinear analysis and obtained a system of
amplitude equations. The analysis of these equations allowed them to predict the parameter regimes
where hexagons, stripes and their coexistence are expected.

Pattern selection in the formation of hexagons and stripes in the activator-inhibitor system with
superdiffusion is also studied in [16]. Note that the considered activator-inhibitor model with, however,
the normal diffusion, was studied by Dufiet and Boissonade [17] in order to describe the chlorite-iodine-
malonic acid reaction. In [16] the linear stability analysis allowed the authors to show, in particular,
that the superdiffusive exponent has a significant effect on the wave number of Turing patterns.

Due to the foregoing facts, we can conclude that the investigation of nonlinear dynamics and Turing
pattern formation in activator-inhibitor systems with superdiffusion remains to be a very important
problem.

It was shown in [18] that by the decrement of fractional derivative order i.e., when the level of
anomalous diffusion is essential, the qualitatively different types of spatio-temporal nonlinear dynamics
can occur in these systems. There the Brusselator model and the model with cubic nonlinearity were
considered.
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The aim of this paper is to study the generalized activator-inhibitor model with cubic nonlinearity,
in which the classical Laplacian is replaced by a fractional operator (the case of superdiffusion). We
focus on the obtaining, by means of a weakly nonlinear analysis, a system of amplitude equations that
can serve as a basis for the analysing pattern formation.

2. Mathematical model

We consider the reaction-diffusion model with cubic nonlinearity, in which the classical spatial differ-
ential operator is replaced by A® (the operator representing the superdiffusion)

6U($7t) — Dle‘u(x,t) - lu?) — v,

ov(z,t)
ot

= DA% (x,t) +u—v+ A.

The system (1) must be completed by the following Neumann boundary conditions

ouf _oul
Oz z=0 O =L ’ (2)
ol
ox|,_y Ox|,_;

or periodic boundary conditions

u‘a}zO = u’a}:L? U‘Jﬁio = U‘z:L’
_ou | _o
=0 O a::L’ O =0 O

@
ox

(3)

z=L

with certain initial conditions. Here u = u(z,t) is an activator variable and v = v(x, t) is inhibitor one;
Dy and Dy are the diffusion coefficients; A and B are the external bifurcation parameters; x € [0, L] is
a space coordinate; ¢ is a time; « is the exponent of fractional operator. Besides, 1 < o < 2 (the case
of superdiffusion).

In one dimension, the fractional operator has the form [19-22]

%(ivt) _ _W [DSf (2,) + D2 f (,1)],

where for 1 < o < 2

Doy — /Mda

2-a)de ] (@-¢)
SO S A A(3Y)
D f (x,t) = (2—04)@/@615’

T

or in a form defined by its action in Fourier space F' [%](k) = —k*F[f](k). In higher dimensions, the
Laplacian is replaced by the operator [19]

A% = —(=A)?(1 < a < 2),
defined by its action in Fourier space
FIA% (k) = =k F[f](k),
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where (—A)%/? is Riesz derivative [19] and (2 — @) is the Gamma function.
The spatially homogeneous and stationary solution of the system (1) with the boundary conditions
(2) or (3) is obtained as solution of the system of algebraic equations

1
u——u—v=0,
3
u—v+A=0.

So the critical point of the system (1) corresponding to a homogeneous stationary solution, is
us = V=34, v, =+v—3A+ A.
If we consider the deviation of the solution from the critical point
U=u—V-34, V=v—+-34A- A4,
then, as a result, we can obtain

ou 1
o = DiAU + (1~ V9A2)U — V + V3AU? — SU%,
4)
ov (
— =Dy AV +U - V.
ot e v
The critical point is now given by U = V = 0. Stability of homogeneous stationary solution of
the system can be analyzed by linearization of the system nearby this solution. So we decompose the
nonlinear functions in the right-hand sides of system (4) into Taylor series in the vicinity of the critical
point U =V = 0.
Then the system can be transformed to a linear system which has the form

ou(z,t) =
8t =F (u) u(x, t)v (5)

where

o)

e = (V) )

F (u) is the Frechet derivative.

() = DiAY 41— V9A2 -1
N 1 DA —1 )7

3. Linear stability analysis

In order to study the linear stability of the solution U = V = 0, we substitute the solution, given in

the form
won-(4)-()

into the linear system (5). As a result, we can obtain the dispersion relation
A2 4 [x/S 942 + (Dy + D») ka} A+ V9A2 + [Dl - (1 — 9A2) DQ] k® + Dy Dok = 0.

Here k is the wave number.
We are particularly interested in the Turing stability boundary, which corresponds to A = 0. Then
the neutral stability curve can be written in the form

1 Doka — a 2a\ 3
- ok D1k D1 Dyk ' (7)
3 1+ Doke
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The curve (7) has a single minimum: (A, ke ), where

3/2
LDy D / L1 1Y
Do Dy| 7 7" 3 |VDiDy D '

For A=0, k = k., and A = A, we can introduce the eigenvector ( Z >

1
Acrzg

_ 1

(+)=(vorms )

In such manner, we obtained the Turing instability threshold A, and also the critical value of the
wave number k.., which depends on exponent .

4. Weakly nonlinear analysis

We perform a weakly nonlinear analysis of the system (4) near the instability threshold to study the
pattern formation. We are interested in the formation of hexagons and stripes.
We introduce the slow time T' = 2t, and variables U and V as well as the bifurcation parameter
A as
U~5U1+62U2+53U3+...,
V~eVi+e2Vo+ Vs + ..., (8)
A=A, + €2 b
Here U; and V; (i = 1,2, 3) are functions of T and z.

Substituting the expansions (8) into the system (4) and collecting like powers of £, we obtain at
orders €' (i = 1,2,3) the sequence of problems

O(): DAy + (1= /94Z) Uy - Vi =0,
Dy A*Vy + Uy — V1 =0
O(%): DiAUp + (1 - \3/9A£,~) Uz = Vo = —Ry,

(10)
DyAVy + Uy — Vo = 0;
3 « 3 P) 8U1
O(): DiAUs+ (1= VOA%) Us Vs = S — Ry,

(11)

oy

DyAV + Us — Vg = 2L,

2 3+ Us 3= o7

where Ry = /34, UL, Ry = —5 /= pUy + 2¥/3Ac, UUy — U

Now our intend is the solutions to linearized system in the form [15] for the description of the
appearance of both hexagons and stripes

(4)-(5)e

E = Lie1 4+ Loes + Lzesg + c.c., (13)

where

ikerx 1

e =e . €9 =eg = e 2kerT
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Here, the amplitudes L1, Lo, L3 are functions of the slow time T; c.c. denotes complex conjugate terms.
The right-hand side Rg in the O (82) problem can be written in the form

Ry = PE?, P = {/3A, d°
and can be represented as [15]
Ry = (El + FEy +2F3 + 2E4) P,

where

El Llel + L2 2 + Lgeg + C.C.,

By =2(|L1]” + |L2* + |L3|?),

FE3 = Lleelez + LlL:ele§ + L2L2626§ + c.c.,

E, = L1L2€§ + Lngez + LngeT + c.c.
Here, the asterisk denotes the complex conjugate. It should be noted that the terms proportional to Fy
are secular terms that appear in the O (52) problem and are regarded to be small [15, 23]. Therefore

they contribute to the solvability condition at O (53
As a result, the solution of the O (62) problem has the form

Us Uai Uaa Uas
_|E Vv E +2F P,
(VZ> [1<V21> 2<V22> 3<V23>]

where the coefficients Usy;, Vo; are

_— 1+ 2°k%D
2T (1 20k2 D) (3042, + Qaka ' Dy) — 20k2 Dy’
Vo1 = ;
(1 + QO‘kgng X, 9Acr + 20‘]-6‘0‘ D1 — 20‘]-6‘0‘ D2
1
Uy = Vg = VAL’
o 14 3%/2k% Dy
27 (14 39/2k2.Dy) ({/942, + 39/2ke, Dy) — 3°/2ka. Dy’
1
Vas =

(1+3%/2k2.Dy) (Y/9A2, + 32/2k2.Dy) — 3%/2k2. Dy

Then return to the O (53) problem. Putting the solutions Uy, Vi, Us, V5 into the right-hand side
of this problem, yields

1 2.9
R3 = 2PK\FEE, + 2PKyFEE, + APK3FEs — 5a3E3 -3 S Y pak.
CcT

Here, K1 == \3/ 3AcraU21, KQ == \3/ 3ACTCLU22, Kg == \3/ 3ACTCLU23.
We can represent the secular terms in the above products EE;, EE,, EEs and E? in such a
form [15]

in EEy: Ly |Li|*e1 + Ly |La* 2 + L |Ls|* €3 + c.c. = E,
in EEy:  2EF, F =|Li|* +|Lo|* + |Ls|*,

in FE;: EF — E,

in E3: 6EF —3E,.
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Hence, the right-hand side R3 can be written as

9
Ry = -3 3 y paE + Ey (2PKy 4+ 4PKsy — a*) + (EF — Ey) (4PK, + 4PK3 — 2a%) .
cr
The equations of the system (11) are inhomogeneous. The right-hand sides of these equations
contain solutions to the systems of equations of lower orders, namely Uy, Us Ta V3. Now we use the
Fredholm alternative, i.e. the right-hand sides of equations must be orthogonal to vector U™ that
satisfy such an equation

A-Ut =0,

A ( —Dik2 +1— /942, 1 )

-1 — Dk —

where

is the conjugate operator.
The Fredholm alternative can be written as

where q is the vector of the right-hand sides of equations, in particular, in the considered O (63)
problem it has the form

oT (15)
and the vector U™ is written by
atE at — /22
U+:<b+E>’ <b+>:< 1D1>‘ 10

As a result, using the Fredholm alternative (14), relations (15), (16), and also (13), we obtain the
system of amplitude equations

oL

Co aTl = pC1 Ly + CoL3 L% + C3Ly | L1 | + CuLy ( |Lo|® + | Ls|? ),
oL

Co 8T2 (C1 Ly + CoLi Ly + C3La | Lo|* + CyLa (| L1 > + | L3|?), (17)
oL

Co Eﬂf = uC1 Ly + CoLi L5 + C3Ly | Ls|* + CuLs(|L1]* + | Lo|? ),

where the coefficients Cy, k = 0,1, 2, 3,4, are given by

ata + btb Dz — D1

C —
» Ccr \/1 +
Dy D,

CQ:2P:233ACTa2:2\/1+——2

Dy Dy’
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C3 = 2PK) + 4PK, — a?
(5-2%te+3.22) (14 Bt -2, [B) oot (( /Bt /B2 —9)
(11— 210 4220 (14 B — 2, /D)
Cy = 4PK5 + 4PK3 — 2d°
2[(3-4-392+3) (14 Bt -2 g—;)+2.3a/2(\/gi;+\/g:3_z)]

(1—2-3%/2 4 30) (1+g—;—2 g_;)

)

In conclusion, by means of a weakly nonlinear analysis, we obtained the system of amplitude
equations (17), with coefficients (18). These amplitude equations are present a basis for the analysis
of pattern formation. The analysis of these equations can be a matter of further publications.

5. Conclusions

The generalized activator-inhibitor model with cubic nonlinearity, in which the classical Laplacian
is replaced by a fractional operator, has been studied. The fractional operator reflects the nonlocal
behavior of superdiffusion. The spatially homogeneous, time independent solution has been found and
we have also studied its linear stability. We have obtained the Turing instability threshold A, and
also the critical value of the wave number k.., which depends on superdiffusive exponent «.

We performed a weakly nonlinear analysis and obtained a system of amplitude equations. It should
be noticed that the weakly nonlinear analysis gives an indication of what type of patterns to expect as
well as parameter regimes for which various steady-state patterns would exist.
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AMNANITYaHI PIBHSIHHA 11 CUCTEMU TUNY aKTUBATOP-iHFIOITOp
i3 cynepgudysieto

[Ipuryna 3. B.

Incmumym npukaadHuz npodaem mexarixu i mamemamury im. . C. Ilidempueawa HAH Yxpainu
eys. Hayxosa, 3-6, 79060, Jlveis, Yrpaina

HocuikeHo y3arajabHeHy MOJIEIb TUILY aKTUBATOP-iHribiTop i3 KybidHOIO HesiHIHICTIO,
B dKiit knacuuanuit oneparop Jlamiaca 3amineno apobosum anasiorom. JIpoboBuit omepa-
TOP Bij1oOpazkye HeJIOKaIbHY TIOBEIHKY cyTepandysii. 3HalIeHO TPOCTOPOBO-0THOPI THIH
crarfioHapHUl PO3B’sI30K Ta BUBYEHO HOro JiiHiiiHy crifikicTb. [IpoBeieHo TaKOXK clI1abKOHe-
JIHIWHAN aHaJI3 Ta OTPUMAHO CUCTEMY aMILITYIHUX PiBHsAHBb. OTpUMaHi PiBHSIHHS JAI0Th
MOXKJIMBICTh aHAJI3yBaTU TUIUA CTPYKTYP, SIKI BUHUKAKOTH Y PO3IJIsIyBaHiil peakIiiitHo-
audy3iitHiift cucTemi.

Knw4osi cnoBa: cucmema peaxuii-oudysii, kybiuna meainitinicmy, dpobosull onepa-
mop, cynepdudysis.
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