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This article presents a simple numeric set-theoretical method of obtaining of the logic
functions Fixed Polarity Reed-Muller polynomials (including of Zhegalkin polynomial) with
arbitrarily given polarity of n variables. The advantages of the suggested method are
illustrated by the examples.
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Onucano npocTuii YHUCIOBUH TEOPETHKO-MHOKMHHMII METON OJepKaHHS INOJIIHOMIB
Piza-MaJiepa 3 ¢ikcoBanoo noJisipaicTio (30kpema nojtinom JKerankina) jorikoBux QpyHkuii
Bix N 3minHux. IlepeBarn MeToay NPOLIIOCTPOBAHO HA MPHKJIANAX.

KuarouoBi cioBa: JjorikoBa ¢ynkuisi, TpilikoBuii koH oHkTepMm, [IH®, Teopernko-
MHO:xUHHMI MeToa, TM®, uncioBuii nmoainom KeraJjkina, unciaoBi noainomu Pina-MaJsuiepa
3 (ikCOBaHOIO MOJISIPHICTIO.

Introduction

Significant stage of designing of any digital device (DD) is logic synthesis that involves building of a
structural model of the device on the basis of optimization method — that of decomposition and/or
minimization of logic function or system of functions which describe its work. Generally structural
optimization is done on the basis of two-level synthesis with the use of logic units (LUs) of the AND-OR-
type, when synthesized digital device is described by the function in Sum-Of-Product form (SOP). It
provides that the input digital device serves variables in direct and in inverse proportions, forming a
conjunctive terms (conjuncterms) of a given function.

Lately more attention is paid to LUs of the AND-EXOR-type when DD is described by the function
in polynomial form (Exclusive Sum-Of-Product form, ESOP) in which instead of disjunction we use the
mod-2-sum and constant 1. In [1-4] it is shown that the DD built on LUs and ESOP, if compared with
traditional LUs of the AND-OR, have certain advantages. It is easier to test and diagnose them and for
realization of some classes of functions such LUs are required (on average) comparatively less.

In connection with the search for the optimal solution of the logic synthesis problem of DD
(minimum number conjuncterms and number of literals) arises a need to convert (canonical) SOP into
ESOP, in particular, into Zhegalkin polynominal or into Fixed Polarity Reed-Muller polynominal (FPRM)
[1, 2]. In the first case all literals of function in conjuncterms have no sign of inversion (so-called positive
polarity of variables) and such polynomial for the function of » variables is unique, in the second case —
some literals have an inversion sign (so-called negative polarity) and the other do not have. Such

correspondingly polynomials with different polarity for a function of » variables will be 2",

Transfomation into ESOP with optimal polarity of variables of the given function leads to solving
complex search synthesis problem of combinatorial type. With this purpose a table method on the basis of
Karnaugh maps [2,5,6] is used, vector-matrix method [3,4] and on the basis of the determination of so-
called FPRM coefficients [7, 8]. They are rather complicated and bulky as to their realization on computer
and require interim transformation. The first mentioned method in particular has obvious limits as to the
number of variables and instead of the other ones provides getting Kronecker’s multiplication with

matrices of 2" order.
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Suggested in this article new method of obtaining of polynomials of the given polarity is based on
numerical set-theoretical approach [9,10] and if compared with known methods is simpler for practical
realization, in particular, it is easy to realize on computer without any prior transformations.

Main part
It is known that any logic function f(x1,x5,...,x,) can be described in polinomic form as a mod-2-
sum of its conjuncterms. For example, let canonical SOP of the function

f=>?1)?2f3vf1x2x3vxlx2)?3.
In order to get Zhegalkin polynomial of this function it is necessary at first to write down its

canonical ESOP, having changed the signs of disjunction (v) by the signs of the mod-2-sum (®) and then
to do Reed-Muller expansion using for every i-th of inverse variable the expression x; =x; ©1:

f: )_61372373 V)?1X2X3VX1X2)_63 = )?1)?2)?3 @ )?1X2X3 @ X1X2)?3 =
:(1@ xl)(1® XZ)(].@ XS)®(1®X1))C2)C3 ®X1X2(1@X3):
=1® X3 @ X2 @ X1 @ X1X2 @X1X3 @ X2X3 @ X1X2X3 @ X2X3 @ X1X2X3 @xle @ X1X2X3.

After removing pairs of equal conjuncterms (as an example, x;x, @ x1x, =0) we get the searched
Zhegalkin polynomial:

f:1®X3®X2 ®X1®X1X3@X1X2XS.

In the similar way one can get FPRM polinomial of a function with certain polarity of its variables if
for some variables we apply the expression x =x @1 and for others — x=x ®1.

If the function fwhich is to be converted into Zhegalkin polynomial or FPRM polynomial is given in
SOP it is necessary at first to ortogonalize [3, 4, 9].

The essence of the suggested numerical set-theoretical method of obtaining of given polarity
polynomials is in intermediate conversion of each numeric (binary or ternary) conjuncterm of the rank
re{12,..,n} of the logic function variales f(xq,x5,...,x,), Which is given in set-theoretical (not

necessarily canonical) form (STF Yl) [9, 10], in some set of binary and/or ternary conjuncterms of certain
ranks re {0,1,2,...,n}. The procedure of conversion (algorithm which is discussed further) is done by

simple change of certain positions of given (forming) conjuncterms of the STF Y ! by values from the set
{0,1,-} that is determined by the given C-polarity. The operator of such procedure will be marked by the

c
symbol =, where C=p1ps---p,, p; € {0,1} — polarity code which determines the value of positions of

formed ternary conjuncterms of function f. The resulting set of conjuncterms (it will be marked as Y @) is
considered in polynomial format, and pairs of equal elements are removed from it. As a result of this so-

called polynomial set-theoretical form (PSTF Y®) of function f'is obtained which we will call numeric
Zhegalkin polynomial if it is formed by the polarity code C=11---1, or numeric FPRM polynomial if it is
formed by the code C #11---1. In this sense, the conversion into a numerical Zhegalkin polynomial can be
considered as a particular case of conversion into a numeric FPRM polynomial with arbitrary polarity code

C. If necessary, obtaining of an analytical expression of the PSTF Y ® can be done by a simple procedure
[10] (O)I —))_Cl‘, (1)1 —> X, (_)i — X is absent.

The proposed method of obtaining of PSTF Y ® for a certain C-polarity we will first consider for the
function, which is given in canonical STF vt ={m1,m2,...,ms}1, where m; =(6165---G,);, G, € {0,1}, -
i-th binary minterm of function /. Algorithm procedure of minterm m; converting into some set PSTF
y® :{91,92,...,6p}®, where 6; =(0616,-:-6,), 0; € {0,1-}, — i-th ternary conjuncterm of function f; is
executed by the sequence of the following steps:
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step I: rewrite the code of given polarity C=p1p5---p,, p; € {01}, taking it as the first element

(6162---6,), 6, =p;, of the desired PSTF Y®: in it we distinguish (eg, bold type) the
positionsthat differ it from the polarity of the code C;

step 2: rewrite the obtained first element is sequence for each change for the dash (-) one of its
chosen positions, beginning, for example, with the least significant position;
step 3: perform a similar procedure with the first element sequentially replacing two selected

positions for the dashes (-);
etc. at each following step asimilar procedure is performed to replace the selected positions
of the first element for one dash (—) more up to full substitution of dashes (-).

Algorithm for converting of binary minterms of canonica STF Y Yinto PSTF Y® for a given
C-polarity will be discussed in detail.
Let & be the number of significant positions of binary minterm that differ it from the given of polarity

code C. Then converting procedure of minterm will have k+1 steps and the formed PSTF Y ® thus
consists of the subsets of conjuncterms with its own rank », namely: on the step 1 we will have r=r, on
the step 1 we will have r=n-1, ..., onthe step k+1 we will have r=n—k. As aresult of this the power
(number of conjuncterms) of each formed subset depends on £ and number ¢ of made of dashes (-) in

!
conjuncterms and its value is determined by combinatorial C,f = L, q¢=0,1....,k. Accordingly, the

q'(k-q)!
power of PSTF Y®is equal to 2k that is C,?+C,%+...+C,/§ =2%. We illustrate this by the example of
obtaining of numeric Zhegalkin polynomias and numeric FPRM polynomials, for example, with (101)-
polarity for binary minterms (000), (010) and (101) of function f(x1,x5,x3) . Applying the relevant
111 101
operators = and = we have:

(000) il{(111), (11-),(1-2),(-11), (1~ ), (1), (=D, (= -} %,

c? c c a
(000){(101), (10-),(~01), (-0-)}°;
c9 ch T?
111
(010)={(101), (11-), (11), (-1} ®,
c9 ck 7?
0
(010){(101), (10-), (1—1), (~01), (L1 -),(~0-), (——1), (—— B °;
c? ck c; a
(101)2((111),1-1)°, (101) >{ (101}® .
A 3

Below we give analytical expressions of minterms x1x,x3, X1xoX3, X;X,Xx; and the corresponding
polynomials of (111)- and (101)-polarity:

)_61)72)73= X1X2X3 @ X1X2 @ X1X3 @ X2X3 (-Bxl @ X2 @ X3 @1, )_61)72)?3= xl)_czx3 @ xl)_Cz @ )_62)C3 @ )?2;
)?1)62)?3: X1X2X3 @ X1X2 @ X2X3 @ X2, )?1)62)73: xl)_czx3 @ xl)_Cz @ X1X3 @ )?2)63 (-Bxl @ )_(,'2 @ X3 @1,
x1f2x3=x1x2x3@xlx3, x1f2x3=x1)?2x3.

On this occasion we note that analytical expressions of conjuncterms can be converted into their set-
theoretical equivalent by therule [10]: x; — (0);, x; = ();, x; isabsent — (-);.
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Asaresult of converting of binary minterms of function £, that is given by canonical STF Y ! the set

PSTF ¥ ® isformed, which can be ssimplified by the removal from it pairs of identical elements.
c
The conversion “canonical STE Y1 = PSTE Y® will be illustrated on the example of earlier

considered function f =X1xox3VX1xox3Vvx1xoXx3 for the case of a numeric Zhegalkin polynomial. For
this we write down its canonical STF Y and doi ng the procedure of converting minterms we get the set
Y®. This one can be simplified by eliminating (see further deletion) pairs of identical conjuncterms. To
verify the results, the obtained PSTF Y ® will be converted into an analytical expression:

1-1

111

¥*={(000),(011), (110} =] ~ {-1- | (e =

={(1-1,1--),(-1),(--1,(-—-), (111)}® = x1Xx3Px; D xo Dx3D1D x1x0x3.

The described method of obtaining of FPRM polynomials of a given C-polarity for minterms is
suitable to convert conjuncterms of arbitrary ranks » € {1,2,...,n} of function 7. In this case, dashes (-),

symbolizing absorbed positions of ternary conjuncterms STF Y 1 are moved to the same positions of

conjuncterms PSTF Y ®. The truth of this statement will be shown on an example of conjuncterm of 1-rank
(=—0), having converted its minterms, for example, into numeric Zhegalkin polynomials:

(- —0) ={(000),(010),(100), (110)}* il{ ;M

111
So, we have (——0) ={(--1), (___)}ea that corresponds to the equation x3=x3®1.

As aready mentioned, the function given in SOP f'or STF Y1, that is a subject to the conversion of
FPRM polynomia of a C-polarity is to be at first orthogonalized. Let us consider conversion of “STF
C

Y1 = PSTF ¥®" on the example SOP of the function f =X1XoX3VXpX3Vxg that has not orthogonal
conjuncterms. Let for this function find Zhehakin polynomial and FPRM polynomial of (010)-polarity.

For thiswe write it so: STF v ={(1-0),(-0-),(—- 1)}1 and perform orthogonalization procedure (operator
ort
=) by set-theoretica method [9, 11], which for this function consists of two steps:
ort P
step I: - {(1-0),(-0-)} ={((1-0) " (=0)),(-0-)} ={((1- 0) N (-1)),(~0-)} ={ (110),(-0-)} .
In the step 1 of the procedure we obtain the set {(110),(-0-); (- -1} ;

step 20 {(~0-), (- D} H{((-0) A (=), (~= D} ={((-0-) " (=~ 0)), (-~} ={ (-00), (-~ 1} .
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So orthogonalized function f'reflects the STF vt ={(110),(-00),(--1)}.

Asaresult of conversion of obtained STF ¥ into numeric Zhegalkin polynomial we have:

~11
1 (111 | -1-
Yl={(110),(—00),(——1)}13{(11_} __x (=1} ={(112),(11-),(-1D),(-1-), (- - -)}®,

To the obtained numeric Zhegalkin polynomial corresponds the analytical expression:

f=x1x2)?3vf2)?3vx3= xle)_Cg @)?2)?3 @X3: xlfz(xg @1) @(Xz @l)(X3 @l) @XS:
=X1X2X3 @X1X2 @XZ)C3 @XZ @1

Asaresult of conversion STF Y1 into numeric FPRM polynomial with (010)-polarity we obtain:

10 (010) (=10 <0
Y1={(110),(—00),(——1)}1°°[ MM N/ ]1@:»{(010),(———»@.

To the obtained numeric FPRM polynomial with (010)-polarity corresponds the analytical
expression:;

f=x1x2)?3vf2)?3vx3= ()?1 @1)XZ)_CS @(Xz @l))?g @fg ®D1= )_Cle)?g @®1.

We show that by the proposed method is easier to implement analytical transformation to go from
SOP into polynomial of given C-polarity if compared to the "traditional” RM-expansion method of
function f on the basis of expressions x=x @1 and/or x=Xx ®1. This transformation of expression of
conjuncterms of function £, which is given in SOP, is performed according to the algorithm described
above. On the step 1 we write the expression that reflects the given polarity code C for significant literals
of forming conjuncterms by the rule of writing (i-th position code — literal): 0, — X;, 1; —x;. On the
step 2 and subsequent steps, instead of change operation of positions for the dashes (-) the literas of first
expression that distinguish it from the forming conjuncterm are successively eliminated. Since the
transformation is performed in polynomial format, pairs of identical expressions of formed conjuncterms
are diminated from consideration. We show this in the considered above example, marking the literas of
first expression that are to be eliminated by bold font:

X5X3
111 [ x,x, X X
o _ 1%2 X3 2
f:x1x2x3vx2x3vx3:{( J, / O h® = 20000 ® x,x, @ x,x, B x, DL
XXy X5
1

010 ( X, x,X.
- —— 1%2%3
S =X2X,X5 V XoXg V X =] U,

Vﬂﬁ’}@ =Xp,%, ®1.

On the basis of the described method one can perform arbitrary conversions from one C-polarity to
another. The following exampleillustrates this.

Example. For function f'given by canonical STF Y 1:{2, 7,9,12, 15}1 one can find by set-theoretical
method Zhegalkin polynomial and FPRM polynomials with (1110)-polarity and (1010)-polarity®.

! This function is taken from [5] where this example is solved by Karnaugh maps method.
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1111

Solution. y1={(0010),(0111),(1001),(1100),(111)}* =
1=
141 a1 (1m1 1-1-
i) 341 | (141 | 111 || 13E- o _ |11~ ®
=4 [—,mJ 1 || 11 (LT ={) ) |(A=-1)(11--), (11117
~11- 1--1) \11-- ——1-
—-11
——1-

The abtained numeric Zhegalkin polynomial will be transformed into its analytic equivalent:
f(xl,xz,xg,x4) =X1X3 @XZXS @X3X4 @XS ®X1X4 @xle ®x1x2x3x4.

To obtain FPRM polynomia with (1110)-polarity we will do the conversion procedure only for the
elements of numeric Zhegalkin polynomial that have value 1 in the position with weight 2°:

(——ll):>[ l—j’ 1--1) = 1] (1111) = 111 )

Having changed by these sets the corresponding elements of numeric Zhegalkin polynomia and
having done simplification procedure, we will get FPRM polynomial with (1110)-polarity:

1-1-

1--0 1110\ o _
{{==%0 |, (ﬂ—ﬂ,nl = X3 © x,x5 @ XX, D x, X, @ x; D xyx, © x,x,X5%, D XX,

! ~{(0010),(0111), 1001, (1100), (113 g 720 || =) 170 [mo j,[mo)@

—140 |'| =10 || 11-- |'(12=0)'| 111~
--10) \-11-) | 1-1-
1--0
1———
11—
1-1- | (1110
={(--10),(-11-), | "/ ,[111_}@.

FPRM polynomia with (1010)-polarity can now be obtained in several ways: either from numeric
Zhegalkin polynomial, or from numeric FPRM polynomial with (1110)-polarity, or by direct conversion of
the given function /. It is smpler to find the searched polynomial on the basis of already obtained numeric
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FPRM polynomial with (1110)-polarity having done the conversion procedure with those its el ements that
have 1 in the position with weight 22:

101

1010 1010 1010
o —01— L 10—— 1010 _ 101-

After doing the appropriate substitution and simplifying procedure we get:
10—-

| (1010
1-10 —01- ) (10—~
1= |, ® ={(--10), , | 1-10]°.
o | 201~ —-1-){1--0

So, FPRM polynomial with (1010)-polarity of function

S (XX, X5,X,) = X,X, @X,x, @ x, xX, Dxx, ®x,X,x.%, Dxx,%, DX, X,x,.

If the given function is immediately transformed into numeric FPRM polynomial with (1010)-
polarity, the result will be the same:

L 100 (1036
Y ={(0010), (0111),(1001), (1100), (1111)} :»{(_31;;], L

01—
—-10
——1-
—01- 1010
={| --10 [,(10--),(1--0),| 101- }°.
—-1- 1-10

Conclusions
The described numeric set-theoretical method of obtaining of given polarity variables polynomials of
logic functions of »n variables differs from known methods by simpler implementation and possibility of
direct application of it on the computer without any intermediate transformations. The method can also be
applied to the system of logic functions of » variables of arbitrary forms of its giving.

1. Sasao T. Representation of logic functions using EXOR operations // IFIP WG.10.5 Workshop on
Applications of th e Reed -Muller E xpansions in Cir cuit Design, Augu st 19 95, Makuh ari, Chiba, Ja pan,
pp. 11-22. 2. Sasao T. Easily testable realizations for generalized Reed-Muller expressions // IEEE Trans.
On Computers, vol. 46, No. 6, June 199 7, pp. 709— 716. 3. 3axpesckuii A.J]., Tonopos H. P. [lonuno-
MUATbHASL Peanu3ayus 4acmuuuvlx Oyaesvlx @yuxyuii u cucmem.— M.: YPCC, 2003.—2 00 c.
4. 3axpescxuti AJ., Ilommocun FO.B., Yepemucunosa JI/[. Jlocuueckue ocCHO8bI NpoeKmMuposanus
ouckpemuuix yempouicme. —M.: Qusmamaum, 2007. — 592 c. 5. Almaini A.E.A., Ele ctronic Logic Systems. —
Prentice-Hall Internation, Englewood Cliffs, N.J. —1994. —pp. 470-475. 6. Almaini A.E.A., McKenzie L.
Tabular tec hniques for ge nerating Kro necker e xpentions // IEE Pro c. Comput . Digit. T ech., vol. 143,
No. 4, July 1996, pp. 205-212. 7. Astola J.T., Stankovic R.S., Fundamentals of Switching Theory and Logic
Design, Springer. — 200 6. —pp. 47-87. 8. Tan E.C., Yang H. Optimization of fixed-polarity Reed-Muller
circuits using dual-polarity property // Circuits, systems, and signal processing, vol. 19, No. 6, 2000. —
pp- 535-548 . 9.  Puyap b.€. Teopemuxo-mHONMCUHHI ONMUMI3AYIUHI Memoou J02IKOBO2O CUHME3Y
KoMmOinayitinux mepesic. uc. Ha 3000. nayk. cmyn. 0.m.u. — Jlveis, 2004. — 348 c. 10. Puyap b.€. Yucnosa
MmeopemuKo-MHONCUHHA inmepnpemayis noainoma Xeranxina // YCuM, Ne 1, 2013. — C. 11-26.

45



