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This article presents a simple numeric set-theoretical method of obtaining of the logic 
functions Fixed Polarity Reed-Muller polynomials (including of Zhegalkin polynomial) with 
arbitrarily given polarity of n variables. The advantages of the suggested method are 
illustrated by the examples. 
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Описано простий числовий теоретико-множинний метод одержання поліномів 
Ріда-Маллера з фіксованою полярністю (зокрема поліном Жеґалкіна) логікових функцій 
від n змінних. Переваги методу проілюстровано на прикладах.  

Ключові слова: логікова функція, трійковий кон’юнктерм, ДНФ, теоретико-
множинний метод, ТМФ, числовий поліном Жеґалкіна, числові поліноми Ріда-Маллера 
з фіксованою полярністю.  

 
Introduction 

Significant stage of designing of any digital device (DD) is logic synthesis that involves building of a 
structural model of the device on the basis of optimization method – that of decomposition and/or 
minimization of logic function or system of functions which describe its work. Generally structural 
optimization is done on the basis of two-level synthesis with the use of logic units (LUs) of the AND-OR-
type, when synthesized digital device is described by the function in Sum-Of-Product form (SOP). It 
provides that the input digital device serves variables in direct and in inverse proportions, forming a 
conjunctive terms (conjuncterms) of a given function. 

Lately more attention is paid to LUs of the AND-EXOR-type when DD is described  by the function 
in polynomial form (Exclusive Sum-Of-Product form, ESOP) in which instead of disjunction we use the 
mod-2-sum and constant 1. In [1-4] it is shown that the DD built on LUs and ESOP, if compared with 
traditional LUs of the AND-OR, have certain advantages. It is easier to test and diagnose them and for 
realization of some classes of functions such LUs are required (on average) comparatively less. 

 In connection with the search for the optimal solution of the logic synthesis problem of DD 
(minimum number conjuncterms and number of literals) arises a need to convert (canonical) SOP into 
ESOP, in particular, into Zhegalkin polynominal or into Fixed Polarity Reed-Muller polynominal (FPRM) 
[1, 2].  In the first case all literals of function in conjuncterms have no sign of inversion (so-called positive 
polarity of variables) and such polynomial for the function of n variables is unique, in the second case – 
some literals have an inversion sign (so-called negative polarity) and the other do not have. Such 

correspondingly polynomials with different polarity for a function of n variables will be     2n . 
Transfomation into ESOP with optimal polarity of variables of the given function leads to solving 

complex search synthesis problem of combinatorial type. With this purpose a table method on the basis of 
Karnaugh maps [2,5,6] is used, vector-matrix method [3,4] and on the basis of the determination of so-
called FPRM coefficients [7, 8]. They are rather complicated and bulky as to their realization on computer 
and require interim transformation. The first mentioned method in particular has obvious limits as to the 
number of variables and instead of the other ones provides getting Kronecker’s multiplication with 

matrices of     2n  order. 
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Suggested in this article new method of obtaining of polynomials of the given polarity is based on 
numerical set-theoretical approach [9,10] and if compared with known methods is simpler for practical 
realization, in particular, it is easy to realize on computer without any prior transformations.  

 
Main part 

It is known that any logic function     f (x1, x2,..., xn )  can be described in polinomic form as a mod-2-
sum of its conjuncterms. For example, let canonical SOP of the function 

    f = x 1x 2x 3 ∨ x 1x2x3 ∨ x1x2x 3. 

In order to get Zhegalkin polynomial of this function it is necessary at first to write down its 
canonical ESOP, having changed the signs of disjunction (∨) by the signs of the mod-2-sum (⊕) and then 
to do Reed-Muller expansion using for every i-th of inverse variable the expression     x i = xi ⊕1: 

    f = x 1x 2x 3 ∨ x 1x2x3 ∨ x1x2x 3 = x 1x 2x 3 ⊕ x 1x2x3 ⊕ x1x2x 3 =  

    = (1⊕ x1)(1⊕ x2 )(1⊕ x3) ⊕ (1⊕ x1)x2x3 ⊕ x1x2(1⊕ x3) = 

    = 1⊕ x3 ⊕ x2 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1x2x3. 

After removing pairs of equal conjuncterms (as an example,     x1x2 ⊕ x1x2 = 0) we get the searched 
Zhegalkin polynomial: 

    f = 1⊕ x3 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2x3. 

In the similar way one can get FPRM polinomial of a function with certain polarity of its variables if 
for some variables we apply the expression     x = x ⊕1 and for others –     x = x ⊕1.  

If the function f which is to be converted into Zhegalkin polynomial or FPRM polynomial is given in 
SOP it is necessary at first to ortogonalize [3, 4, 9]. 

The essence of the suggested numerical set-theoretical method of obtaining of given polarity 
polynomials is in intermediate conversion of each numeric (binary or ternary) conjuncterm of the rank 

    r ∈ {1,2,...,n} of the logic function variales     f (x1, x2,..., xn ) , which is given in set-theoretical (not 

necessarily canonical) form (STF     Y 1) [9, 10], in some set of binary and/or ternary conjuncterms of certain 
ranks     r ∈ {0,1,2,...,n}. The procedure of conversion (algorithm which is discussed further) is done by 

simple change of certain positions of given (forming) conjuncterms of the STF     Y 1 by values from the set 

  {0,1,−} that is determined by the given C-polarity. The operator of such procedure will be marked by the 

symbol   
C

, where     C = ρ1ρ2 ⋅ ⋅ ⋅ρn ,     ρi ∈ {0,1} – polarity code which determines the value of positions of 

formed ternary conjuncterms of function f. The resulting set of conjuncterms (it will be marked as   Y ⊕) is 
considered in polynomial format, and pairs of equal elements are removed from it. As a result of this so-

called polynomial se t-theoretical form (PSTF   Y ⊕) of function f is obtained which we will call numeric 
Zhegalkin polynomial if it is formed by the polarity code     C = 11⋅ ⋅ ⋅1, or numeric FPRM polynomial if it is 
formed by the code     C ≠ 11⋅ ⋅ ⋅1. In this sense, the conversion into a numerical Zhegalkin polynomial can be 
considered as a particular case of conversion into a numeric FPRM polynomial with arbitrary polarity code 

C. If necessary, obtaining of an analytical expression of the PSTF   Y ⊕ can be done by a simple procedure 
[10]:     (0)i → x i ,     (1)i → xi ,     (−)i →    xi  is absent. 

The proposed method of obtaining of PSTF   Y ⊕ for a certain C-polarity we will first consider for the 

function, which is given in canonical STF     Y
1 ={m1,m2,...,ms}

1, where     mi = (σ1σ2 ⋅ ⋅ ⋅σn )i ,     σ j ∈ {0,1}, – 

i-th binary minterm of function f. Algorithm procedure of minterm   mi  converting into some set PSTF 

    Y
⊕ ={θ1,θ2,...,θ p}⊕, where     θi = (σ1σ2 ⋅ ⋅ ⋅σn ),     σ j ∈ {0,1,−}, – i-th ternary conjuncterm of function f, is 

executed by the sequence of the following steps: 
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step 1: rewrite the code of given polarity     C = ρ1ρ2 ⋅ ⋅ ⋅ρn ,     ρi ∈ {0,1}, taking it as the first element 

    (σ1σ2 ⋅ ⋅ ⋅σn ) ,   σ j ≡ ρ j , of the desired PSTF   Y ⊕; in it we distinguish (eg, bold type) the 

positions that differ it from the polarity of the code C; 
step 2:  rewrite the obtained first element is sequence for each change for the dash (–) one of its 

chosen positions, beginning, for example, with the least significant position; 
step 3: perform a similar procedure with the first element sequentially replacing two selected 

positions for the dashes (–); 
etc. at each following step a similar procedure is performed to replace the selected positions 
of the first element for one dash (–) more up to full substitution of dashes (–). 

Algorithm for converting of binary minterms of canonical STF     Y 1 into PSTF   Y ⊕ for a given 
C-polarity will be discussed in detail. 

Let k be the number of significant positions of binary minterm that differ it from the given of polarity 

code C. Then converting procedure of minterm will have     k +1 steps and the formed PSTF   Y ⊕ thus 
consists of the subsets of conjuncterms with its own rank r, namely: on the step 1 we will have   r = n , on 
the step 1 we will have     r = n −1, ..., on the step     k +1 we will have   r = n − k . As a result of this the power 
(number of conjuncterms) of each formed subset depends on k and number q of made of dashes (–) in 

conjuncterms and its value is determined by combinatorial 
    
Ck

q = k!

q!(k − q)!
,     q = 0,1,...,k . Accordingly, the 

power of PSTF   Y ⊕ is equal to     2k , that is     Ck
0 + Ck

1 + ...+ Ck
k = 2k . We illustrate this by the example of 

obtaining of numeric Zhegalkin polynomials and numeric FPRM polynomials, for example, with (101)-
polarity for binary minterms (000), (010) and (101) of function     f (x1, x2, x3) . Applying the relevant 

operators   
111

 and   
101

 we have:  

⊕−−−−−−−−−−−− })(,)1(),1(),1(,)11(),11(),11(,)({)000(
3
3

2
3

1
3

0
3

111

    
CCCC

111 ,   

⊕−−−− })0(,)01(),10(,)0({)000(
2
2

1
2

0
2

101


CCC

11 ; 

⊕−−−− })1(,)11(),11(,)0({)010(
2
2

1
2

0
2

111


CCC

11 ,   

⊕−−−−−−−−−−−− })(,)1(),0(),1(,)01(),11(),10(,)({)010(
3
3

2
3

1
3

0
3

101

    
CCCC

101 ; 


⊕− })11(,)11({)101(

1
1

0
1

111


CC

1 ,   
⊕ })101({)101(

0
0

101

C

. 

Below we give analytical expressions of minterms     x 1x 2x 3,     x 1x2x 3,     x1x 2x3 and the corresponding 
polynomials of (111)- and (101)-polarity: 

    x 1x 2x 3 = x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1 ⊕ x2 ⊕ x3 ⊕1,       x 1x 2x 3 = x1x 2x3 ⊕ x1x 2 ⊕ x 2x3 ⊕ x 2; 

    x 1x2x 3 = x1x2x3 ⊕ x1x2 ⊕ x2x3 ⊕ x2,       x 1x2x 3 = x1x 2x3 ⊕ x1x 2 ⊕ x1x3 ⊕ x 2x3 ⊕ x1 ⊕ x 2 ⊕ x3 ⊕1; 

    x1x 2x3 = x1x2x3 ⊕ x1x3,       x1x 2x3 = x1x 2x3. 

On this occasion we note that analytical expressions of conjuncterms can be converted into their set-
theoretical equivalent by the rule [10]:     x i → (0)i ,     xi → (1)i ,   xi  is absent     → (−)i .  
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As a result of converting of binary minterms of function f, that is given by canonical STF     Y 1, the set 

PSTF   Y ⊕ is formed, which can be simplified by the removal from it pairs of identical elements. 

The conversion “canonical STF     Y 1   
C

 PSTF   Y ⊕” will be illustrated on the example of earlier 
considered function     f = x 1x 2x 3 ∨ x 1x2x3 ∨ x1x2x 3 for the case of a numeric Zhegalkin polynomial. For 

this we write down its canonical STF     Y 1 and doing the procedure of converting minterms we get the set 

  Y ⊕. This one can be simplified by eliminating (see further deletion) pairs of identical conjuncterms. To 

verify the results, the obtained PSTF   Y ⊕ will be converted into an analytical expression: 

( )
111

1 1

11
1 1

1 1
1

11 11 11
{(000),( 011),(110)} { , , } { 1 , 111 }

1 11 11
1

1

1

Y ⊕ ⊕

 
 −  −  −  − −   −       =   − − =    − − − −       − − − −   − − −  − −  − − − 

111

1 1
 

    ={(1−1),(1− −),(−1−),(− −1),(− − −),(111)}⊕  x1x3 ⊕ x1 ⊕ x2 ⊕ x3 ⊕1⊕ x1x2x3. 

The described method of obtaining of FPRM polynomials of a given C-polarity for minterms is 
suitable to convert conjuncterms of arbitrary ranks     r ∈ {1,2,...,n} of function f. In this case, dashes (–), 

symbolizing absorbed positions of ternary conjuncterms STF     Y 1, are moved to the same positions of 

conjuncterms PSTF   Y ⊕. The truth of this statement will be shown on an example of conjuncterm of 1-rank 

  (− − 0) , having converted its minterms, for example, into numeric Zhegalkin polynomials: 

111
1

11

1 1 1 1

11 11 11 11 1
( 0) {(000),(010),(100),(110)} { , , , } { }

1 11 1 1 11

1 1 1

1

⊕ ⊕

 
 − 
 −    
     − − − − −        − − =  =        − − − − − − − −        

− − − − − −     
 − −  − − − 

111

1 1 11

1
. 

So, we have   (− − 0)
111

{(− −1),(− − −)}⊕ that corresponds to the equation     x 3 = x3 ⊕1. 

As already mentioned, the function given in SOP f or STF     Y 1, that is a subject to the conversion of 
FPRM polynomial of a C-polarity is to be at first orthogonalized. Let us consider conversion of “STF 

    Y 1   
C

 PSTF   Y ⊕” on the example SOP of the function     f = x1x 2x 3 ∨ x2x 3 ∨ x3 that has not orthogonal 
conjuncterms. Let for this function find Zhehalkin polynomial and FPRM polynomial of (010)-polarity. 

For this we write it so: STF     Y
1 ={(1− 0),(−0−),(− −1)}1 and perform orthogonalization procedure (operator 

  
ort

) by set-theoretical method [9, 11], which for this function consists of two steps: 

step 1: ( ) ( ){(1 0),( 0 )} { (1 0) ( 0 ) ,( 0 )} { (1 0) ( 1 ) ,( 0 )} {(110),( 0 )}
ort

− − −  − ∩ − − − − = − ∩ − − − − = − − . 

In the step 1 of the procedure we obtain the set )}1();0(),110{( −−−− ; 

step 2: ( ) ( ){( 0 ),( 1)} { ( 0 ) ( 1) , ( 1)} { ( 0 ) ( 0) , ( 1)} {( 00),( 1)}
ort

− − − −  − − ∩ − − − − = − − ∩ − − − − = − − − . 
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So orthogonalized function f reflects the STF     Y
1 ={(110),(−00),(− −1)}. 

As a result of conversion of obtained STF     Y 1 into numeric Zhegalkin polynomial we have: 

 ( )
111

1 1 11 1
{(110),( 00),( 1)} { , , 1 } {(111),(11 ), ( 11),( 1 ), ( )}

11 1
Y ⊕ ⊕

− 
 − −   = − − −  − −  − − − − − − −   − − −   

− − − 

11

1
, 

To the obtained numeric Zhegalkin polynomial corresponds the analytical expression:  

    f = x1x2x 3 ∨ x 2x 3 ∨ x3 = x1x2x 3 ⊕ x 2x 3 ⊕ x3 = x1x 2(x3 ⊕1) ⊕ (x2 ⊕1)(x3 ⊕1) ⊕ x3 = 

    = x1x2x3 ⊕ x1x2 ⊕ x2x3 ⊕ x2 ⊕1. 

As a result of conversion STF     Y 1 into numeric FPRM polynomial with (010)-polarity we obtain: 

010
1 1 10 0

{(110),( 00),( 1)} { , , } {(010),( )}
10 0

Y ⊕ ⊕− − −     
= − − −   − − −     − − − − − −     

0 1 0
. 

To the obtained numeric FPRM polynomial with (010)-polarity corresponds the analytical 
expression:  

    f = x1x2x 3 ∨ x 2x 3 ∨ x3 = (x 1 ⊕1)x2x 3 ⊕ (x2 ⊕1)x 3 ⊕ x 3 ⊕1= x 1x2x 3 ⊕1. 

We show that by the proposed method is easier to implement analytical transformation to go from 
SOP into polynomial of given C-polarity if compared to the "traditional" RM-expansion method of 
function f on the basis of expressions     x = x ⊕1 and/or     x = x ⊕1. This transformation of expression of 
conjuncterms of function f, which is given in SOP, is performed according to the algorithm described 
above. On the step 1 we write the expression that reflects the given polarity code C for significant literals 
of forming conjuncterms by the rule of writing (i-th position code → literal):     0i → x i ,     1i → xi . On the 
step 2 and subsequent steps, instead of change operation of positions for the dashes (–) the literals of first 
expression that distinguish it from the forming conjuncterm are successively eliminated. Since the 
transformation is performed in polynomial format, pairs of identical expressions of formed conjuncterms 
are eliminated from consideration. We show this in the considered above example, marking the literals of 
first expression that are to be eliminated by bold font: 

( )
111

1 2 2
1 2 3 2 3 3 3 1 2 3 1 2 2 3 2

1 2 3

{ , , } 1

1

x x x
f x x x x x x x x x x x x x x x

x x x
⊕

 
    = ∨ ∨  = ⊕ ⊕ ⊕ ⊕       
 

2 3

3

x x

x
; 

 

010
2 3 3

1 2 3 2 3 3 1 2 3
2 3 3

{ , , } 1
1

x x x
f x x x x x x x x x

x x x
⊕     

= ∨ ∨  = ⊕     
    

1 2 3x x x
. 

On the basis of the described method one can perform arbitrary conversions from one C-polarity to 
another. The following example illustrates this. 

Example. For function f given by canonical STF     Y
1 ={2,7,9,12,15}1 one can find by set-theoretical 

method Zhegalkin polynomial and FPRM polynomials with (1110)-polarity and (1010)-polarity1.  
 

                                                 
1 This function is taken from [5] where this example is solved by Karnaugh maps method.  
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Solution.       Y
1 ={(0010),(0111),(1001),(1100),(1111)}1 

1111
 

( ) ( ) ( ) ( )
1111

1

111

1 11 1 1 11 1 1

111 111 11 1 111 11
{ , , , , 1111 } { , 1 1 , 11 , 1111 }

1 1 111 1 11 11 1 11

11 1 1 11 1

11

1

⊕ ⊕

 
 − 
 − − −     
       − − − − −          − − − −        − − − − − − −        

− − − − − − − − −       
 − −  − − − 

11 1

11 11

1
. 

The obtained numeric Zhegalkin polynomial will be transformed into its analytic equivalent: 

    f (x1, x2, x3, x4) = x1x3 ⊕ x2x3 ⊕ x3x4 ⊕ x3 ⊕ x1x4 ⊕ x1x2 ⊕ x1x2x3x4. 

To obtain FPRM polynomial with (1110)-polarity we will do the conversion procedure only for the 

elements of numeric Zhegalkin polynomial that have value 1 in the position with weight   20:   

1110 1
( 11)

1

− − 
− −   − − − 

0
,  

    
(1− −1) 

1110
1− −0
1− − −
 
 
 

 
 
 ,  

    
(1111) 

1110
1110
111−
 
 
 

 
 
 . 

Having changed by these sets the corresponding elements of numeric Zhegalkin polynomial and 
having done simplification procedure, we will get FPRM polynomial with (1110)-polarity:  

( ) 1 3 2 3 3 4 1 4 1 1 2 1 2 3 4 1 2 3

1 1

11
1 0 1110

{ 10 , , 11 , }
1 111

1

1

x x x x x x x x x x x x x x x x x x⊕

− − 
 − −  − −    − − − −  ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕   − − − −     − − − 
 − − − 

. 

As a result of direct transformation of canonical STF     Y 1 we will get analogical result: 
 

1110
1 1

1

111

10 11 11 0

1 10 111 1 10 11 0 111
{(0010),(0111),(1001),(1100),(1111)} { , , , , }

110 110 11 11 0 111

10 11 1 1

1 0

1

Y ⊕

 
 − 
 −   
    − − −        =         − − − − − −       

− − − − − −    
 − −  − − − 

110

11 1 0

1 0
 

( ) ( )

11

1 1 1110
{ 10 , 11 , , }

1 0 111

1

⊕

− − 
 − −    − − − −   − − −  

− − − 

. 

FPRM polynomial with (1010)-polarity can now be obtained in several ways: either from numeric 
Zhegalkin polynomial, or from numeric FPRM polynomial with (1110)-polarity, or by direct conversion of 
the given function f. It is simpler to find the searched polynomial on the basis of already obtained numeric 
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FPRM polynomial with (1110)-polarity having done the conversion procedure with those its elements that 

have 1 in the position with weight   22: 

    
(−11−) 

1010
−01−
− −1−
 
 
 

 
 
 ,  

    
(11− −) 

1010
10 − −
1− − −
 
 
 

 
 
 ,  

    
(1110) 

1010
1010
1−10
 
 
 

 
 
 , 

    
(111−) 

1010
101−
1−1−
 
 
 

 
 
 . 

After doing the appropriate substitution and simplifying procedure we get: 

( ) ( )

10
1010

1 1010
01 1 10 01 10

{ 10 , , 1 1 , } { 10 , , , 1 10 }
1 101 1 1 0

1 0 101
1 1

1

⊕ ⊕

− − 
  − − −    − − − − − − −         − − − −  − − −        − − − − − − − − −        − − −     − −  − − − 

. 

So, FPRM polynomial with (1010)-polarity of function 

    f (x1, x 2, x3 , x 4 ) = x3x 4 ⊕ x 2x3 ⊕ x3 ⊕ x1x 2 ⊕ x1x 4 ⊕ x1x 2 x3 x 4 ⊕ x1x3x 4 ⊕ x1x 2 x3 . 

If the given function is immediately transformed into numeric FPRM polynomial with (1010)-
polarity, the result will be the same: 

1010
1 1

1 1

101

1 10 10 1 0 1 1

010 010 101 10 0 101
{(0010),(0111),(1001),(1100),(1111)} { , , , ,

010 1 1 10 0 1 10 1 10

01 10 1 0 1 1

10

1

Y

 
 − 
 −     
      − − − −        =          − − − − − −        

− − − − − − − −      
 − −  − − − 

0 0

10 01 0 0

1
}⊕



 




 

( ) ( )
01 1010

{ 10 , 10 , 1 0 , 101 }

1 1 10

⊕

− −   
    − − − − − − −   
   − − − −   

. 

Conclusions 
The described numeric set-theoretical method of obtaining of given polarity variables polynomials of 

logic functions of n variables differs from known methods by simpler implementation and possibility of 
direct application of it on the computer without any intermediate transformations. The method can also be 
applied to the system of logic functions of n variables of arbitrary forms of its giving. 
 

1. Sasao T. Representation of logic functions using EXOR operations // IFIP WG.10.5 Workshop on 
Applications of th e Reed -Muller E xpansions in Cir cuit Des ign, Augu st 19 95, Makuh ari, Chiba, Ja pan,  
pp. 11–22. 2. Sasao T. Easily testable realizations for generalized Reed-Muller expressions // IEEE Trans. 
On Computers, vol. 4 6, No. 6, June 199 7, pp. 709– 716. 3. Закревский А.Д., Топоров Н. Р. Полино-
миальная реализация частичных булевых функций и систем. –  М.: УРСС, 2003. – 2 00 с.  
4. Закревский А.Д., Поттосин Ю.В., Черемисинова Л.Д. Логические основы проектирования 
дискретных устройств. –М.: Физматлит, 2007. – 5 92 с. 5. Almaini A.E.A., Electronic Logic Systems. – 
Prentice-Hall Internation, Englewood Cliffs, N.J. – 1 994. – pp. 470–4 75. 6. Almaini A.E.A., McKenzie L. 
Tabular tec hniques for ge nerating Kro necker e xpentions / / IEE Pro c. Comput . Digit. T ech., vo l. 143 ,  
No. 4, July 1996, pp. 205-212. 7. Astola J.T., Stankovic R.S., Fundamentals of Switching Theory and Logic 
Design, Springer. –  200 6. – pp. 47–87. 8. Tan E.C., Yang H. Optimi zation of fixed-polarity Reed-Muller 
circuits using dual-polarity property / / Ci rcuits, systems, and  s ignal processing, vo l. 19, No.  6, 2000. –   
pp. 535–548 . 9. Рицар Б.Є. Теоретико-множинні оптимізаційні методи логікового синтезу 
комбінаційних мереж. Дис. на здоб. наук. ступ. д.т.н. –  Львів, 2004. – 348 с. 10. Рицар Б.Є. Числова 
теоретико-множинна інтерпретація полінома Жеґалкіна // УСиМ, № 1, 2013. – С. 11–26.   

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


