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A residual survival probability of members and systems of existing structures subjected 
to extreme service and climate actions is considered. The time-dependent safety margin of 
particular members (sections, bars, connections) and its modifications as stochastic finite 
sequences are discussed. The prediction of primary and revised instantaneous and long-term 
survival probabilities of members is introduced. The effect of deterministic short-term extreme 
action effects on the values of revised survival probabilities of existing members is based on the 
concepts of truncated resistance distributions and Bayesian statistical approaches. The revised 
reliability index of precast concrete floor slabs is considered and demonstrated by the 
numerical example.  

 
Introduction. For successful ordinary and scheduled maintenances of existing structures, it is 

necessary to know the revised values of their time-dependent survival probability parameters. The extreme 
action effects caused by service and climate loads help engineers convince in the absence of rough human 
design and construction errors. Besides, the fixed values of random extreme action effects assist designers 
reduce the uncertainties of a performance of particular members (sections, bars, connections) of structures 
and in this way to revise their survival probability degrees. 

Additional information about unfavorable actions and behaviors of overloaded members cannot be 
used in their capacity assessment. However, information data may be successfully used in the probabilistic 
reliability prediction of members and systems. It is very possible that the high-reliability degree of 
structures should be guaranteed if they had already withstood unfavorable extreme loading situations. 
Thus, extreme action effects of members may be treated as an effective measure in the updated reliability 
prediction of existing members and their systems when they are confirmed by quality statistical 
information data (Mori & Ellingwood 1993). These data may help designers refine probability density 
functions of member resistances if their variances are small (Melchers 1999). 

There are some limited attempts to transfer the approaches of deterministic limit state design to the 
quality analysis of existing structures (Allen 1991). However, this semi-probabilistic reliability analysis 
format cannot be acknowledged as an universal, convenient and practical method. Therefore, it is 
expedient to realize the information on service-proven loading situations in engineering practice using 
probabilistic approaches (Madsen 1987, Ellingwood 1996, Melchers 1999). They allow evaluate 
objectively all uncertainties of calculation models, design situations and structural performance parameters. 
However, it is difficult to apply these approaches in engineering practice due to some methodological and 
mathematical difficulties. Probability-based approaches may be acceptable to structural engineers only 
under the indispensable and easy perceptible condition that they may be translated into practice using 
unsophisticated analysis models. 

The intention of this paper is to introduce engineers and researchers the concepts of truncated 
probability distribution and Bayes theorem in the revised reliability prediction of members of existing 
structures subjected to extreme actions as intermittent rectangular renewal pulse processes. 
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1. Structural reliability asessment  
1.1.  Structural safety margins 
According Melchers (1999) and JCSS (2000) recommendations, the time-dependent random safety 

margin of particular members of structures may be defined as their performance process: 
[ ]θ),t(g)t(Z X=  (1) 

Here the function ][•g  is founded by structural mechanics rules, where X and θ are the vectors of basic 

and additional random variables representing a resistance and action effects of members and their model 
uncertainties, respectively. 

In the contest of the analysis of survival probabilities of members of existing non-deteriorating 
structures in transient design situations, the process (1) may be presented in more convenient form: 

)t(S)t(S)t(SSR)t(Z wwqqqqggR es
θθθθθ −−−−=  (2) 

where R is a member resistance as the stationary process; gS , 
sqS , 

eqS and wS  are the action effects 

caused by permanent g, sustained sq  and extraordinary eq  live loads and lateral (wind) pressure w (Fig.1). 

The additional variables iθ  may be introduced by their means and standard deviations equal to 

05.10.1 −=mθ  and 10.005.0 −=σθ (Hong & Lind 1996, Stewart & Rosowsky 1996, JCSS 2000, 

Vrowenvelder 2002). 
According to the recommendations of international design codes (ISO 2394 1998, EN 1990 2002, 

JCSS 2000), a Gaussian distribution law is to be used for permanent actions. Lognormal, Weibull and 
Gamma distributions may be convenient for sustained live loads and an exponential distribution for 
extraordinary ones (JCSS 2000, Vrowenvelder 2002, Trezos & Thomos 2003). Annual extreme climate 
actions may be modeled by a Type 1 (Gumbel) distribution of extreme values (Melchers 1999, JCSS 
2000). 

Not only annual extreme wind w and snow s loads but also the annual extreme sum of stochastic 
sustained and extraordinary live loads )()()( tqtqtq es +=  may be modeled as a rectangular renewal pulse 

process and described by a Type 1 distribution with the coefficient of variation 58.0=qδ  and mean value 

km qq 47.0= , where kq  is its characteristic value (Rosowsky & Ellingwood 1992). 

 

Fig. 1 Model for the time-dependent reliability nalysis of particular and individual  members. 
 
For the sake of simplified but fairly exact probabilistic analysis, it is more expedient to present 

equation (2) in the forms: 
)()( 111 tSRtZ c −=  (3) 

)()( 222 tSRtZ c −=  (4) 

Here 

ggRc SRR θθ −=1  (5) 

)()()(1 tStStS wwqq θθ +=  (6) 
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sqqggRc SSRR θθθ −−=2  (7) 

)()()(2 tStStS wwqq e
θθ +=  (8) 

where 1cR  and 2cR  are the conventional resistances of members; )(1 tS and )(2 tS  are their total annual 

extreme action effects. The extreme live action effects )()()( tStStS
es qqqqqq θθθ +=  and )(tS

eqqθ may 

be modeled respectively by Gumbel and exponential distributions. In the reliability analysis of roof 
structures, the action effect )(tSssθ should be used instead of the component )(tSqqθ  caused by floor 

loads. 
 
1.2. Structural survival probability 

For structures subjected to intermittent extraordinary gravity or lateral actions, the design cuts of 
safety margin processes coincide with extreme loading events. Therefore, in design practice the stochastic 
safety margin of particular members may be treated as the random finite sequence: 

kck SRZ −= , k = 1, 2, …, n – 1, n (9) 

Here cR  is given by Equations (5) or (7), kS by (6) or (8); λntn =  is the recurrence number of recurrent 

extreme action effects during the design working life of structures nt , where λ is a renewal rate of these 

effects. 
The instantaneous and long-term survival probabilities of particular members may be calculated 

respectively by the Equations: 

{ } { } ∫∞=>=>=

0

0 dx)x(F)x(fSRZ
kc sRkckk PPP  (10) 

( )[ ] 1
1/11

−

−+=
n

k
a
kl

n
ki PPP ρ  (11) 

Here )(xf
cR  is the density function of conventional resistances by Equations (5) or (7); )(xF

kS  is 

the cumulative distribution function of action effects by (6) or (8); klρ  is the coefficient of auto correlation 

of cuts of safety margin sequences the bond index of which is ( )[ ] 2198,015,4 kla ρ−≈ . 

When the action effects by Equations (6) and (8) are caused by two extreme loads, three 
stochastically dependent sequences of safety margins should be considered as follows: 

kck SRZ 11 −= ; 1,...,2,1 nk =  (12) 

kck SRZ 22 −= ; 2,...,2,1 nk =  (13) 

kck SRZ 33 −= ; 3,...,0 nk =  (14) 

Here the recurrent number of coincident extreme action effects kS1 and kS2  may be calculated by the 

formula: 

21213 )( λλddtn n +=  (15) 

where 1d , 2d  and 1λ , 2λ  are the durations and renewal rates of extraordinary loads (Fig.1). In this case, 

the long-term survival probability of members as rank series stochastic systems with the probabilities 

321 PPP >>  may be introduced as: 
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where Pi is given by Equation (11); )(5.0 323121/3 ρρρ +=  is the coefficient of rank correlation of three 

safety margins. 
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Analogically, the total survival probabilities of rank series systems consisted of r stochastically 
dependent members may be expressed as: 
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where ( )1/)...( 11,1...1/ −++=
−−

kkkkkk ρρρ  is the coefficient of cross correlation of rank safety margins 

of members. 
 

2. Revised structural safety prediction 
2.1. Acount of truncated distribution approaches 

When an additional information permit to define the deterministic value trS  of extreme action 

effects  eeSθ  (either 
eqqSθ  or ssSθ  or  wwSθ ) caused by live, snow and wind loads, the prediction of 

instantaneous survival probabilities of members may be based on the concept of truncated probability 
distributions (Fig. 2). In this case, the density function of revised conventional resistances of members crR  

should be considered as a truncated one. It may be presented as: [ ])(1/)()( xFxfxf
crccr RRR −=  (18) 

The mean and variance of this resistance a probability distribution of unrevised values of which, cR , 

is close to a normal distribution may be expressed as: 

ccmmcr RRR λσ+=,  (19) 

( )[ ]λβλσσ −+= trccr RR 122  (20) 

 

 

Fig. 2 Model for the revised structural safety analysis of members. 

 
Here the conversional factor of its statistical moments is: 

[ ])(1/)( trtr ββϕλ Φ−=  (21) 

where )( trβϕ  and )( trβΦ  are the density and cumulative distribution functions of a standard normal 

distribution of the variable ( ) ccmtrtr RRS σβ /−= . 

The revised instantaneous survival probability of members whose successfully have withstood 
unfavourable extreme action effects may be expressed as: 

dxxFxfSR
kcr SRkcrkr )()(}{

0
∫
∞

=>= PP  (22) 

The revised long-term survival probabilities of members and systems during their residual service 
life may be calculated respectively by equations (16) and (17) using the revised values of instantaneous 
survival probability of members expressed by (22). 
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2.2. Acount of Bayes theorem 
According to Tang (1973) and Madsen (1987) recommendations, the updated probability of failure 

of members can be expressed as follows: 

}0{

}00{
}|0{

>

>∩>
=>=

H

HZ
HZ k

kkr P

P
PP  (23) 

Here the design and inspection instantaneous safety margins of considered members are: 

ekekqqggRk SSSRZ
s

θθθθ −−−=  (24) 

trkqqggkRk SSSRH
s

−−−= θθθ )(  (25) 

where gS , kqs
S  and ekS  are the action effects caused by random loads where skekqeek SSSS == ,  and 

wkek SS = ; trS is the deterministic value of observed extreme action effect; ( )kRRθ  is the characteristic 

resistance of a member. 
The means and variances of the safety margin functions and the coefficient of their correlation are: 

( ) ( ) ( ) ( )mekemqkqmggmRkm SSSRZ θθθθ −−−=  (26) 

( ) ( ) ( ) 0>−−−= trmqkqmggkRkm SSSRH θθθ  (27) 

( ) ( ) ( ) ( )qkqekeggRk SSSRZ θσθσθσθσσ 22222 +++=  (28) 

( ) ( ) ( )qkqggRk SSRH θσθσθσσ 2222 ++=  (29) 

( ) kkkkZH ZHHZ σσρρ /, ==  (30) 

When an indispensable condition 0>kmH  is in force, the inspection instantaneous survival 

probability of considered members is: 
{ } ( )kkmktr HHH σ/0 Φ=>= PP  (31) 

According to the method of transformed conditional probabilities, Equation (23) may be rewritten as 
follows: 
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This value of instantaneous survival probability is used in the prediction of long-term survival 
probabilities of members and systems calculated by Equations (16) and (17). 

 
2.3. Numerical illustration 

Consider the revised survival probability of concrete floor slabs overloaded by the deterministic 
extreme bending moment 140=trM kNm caused by the extraordinary service live load. The means and 

variances of their bending resistance and bending moments caused by permanent, sustained and 
extraordinary service loads are: 

( ) 300=mRRQ  kNm, ( ) 19892
=RQRσ  (kNm)2, 

( ) 90=
mggMQ  kNm, ( ) 1622

=ggMQσ (kNm)2, 

( ) 18=
mqq s

MQ  kNm, ( ) 1622
=

sqqMQσ (kNm)2, 

( ) 28=
mqq e

MQ  kNm, ( ) 7842
=

eqqMQσ (kNm)2. 

The probability distribution of the conventional resistance of slabs by Equation (7) is close to the 
normal distribution. Mean and variance are: 

1921890300 =−−=cmR kNm, 

231316216219892 =++=cRσ (kNm)2. 
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According to Equation (21), the conversional factor of truncated resistance distribution is equal to 
( ) ( ) 2585,00812,1/0812,1 =Φ−= ϕλ . Thus, the revised statistical moments by (19) and (20) of the 

member resistance are: 

43204231325850192 21 ,)(,R m,cr =+= kNm, 

[ ] 981511258500812125850123132 ,),,(,Rcr =−−+=σ  (kNm)2, 

( ) ( ) 652501064511300 ,..R kR =×−=θ  kNm. 

Here( )kRRθ is characteristic resistance of slabs. 

According to Equations (26)–(29), the statistical moments of design and inspection safety margins 
are: 

164281890300 =−−−=kmZ  kNm, 

21401890250 =−−−=kmH  kNm > 0, 

309778416216219892 =+++=Zσ (kNm)2, 

231316216219892 =++=kHσ (kNm)2. 

According to Equations (30) and (31), the coefficient of correlation of these margins and the 

inspection instantaneous survival probability of the member are: [ ] 864,03097/2313 21
==ZHρ  

and 522,0=trP . The extraordinary live bending moment qeM  is modeled by an exponential distribution. 

Thus the design value of instantaneous survival probability of slabs by Equation (10) is: 

{ } 99542,00=>kZP . It corresponds to the reliability index { }( ) 60.201 =>Φ= −

kk ZPβ . 

The revised values of instantaneous survival probabilities of slabs the analysis of whose was based 
on the concepts of truncated probability distribution and Bayes theorem are calculated respectively by 
Equations (22) and (32). They are equal to 99821,01 =rkP , ( )91.2=k1β  and 99845,02 =rkP , 

( )96.2=k2β  respectively. The numerical integration and Bayes theorem methods gave the near values of 

survival probabilities. However, equation (32) may overestimate the revised reliability index of considered 
members (Fig. 3). 

2,96

2,91

2,60

2,00 2,20 2,40 2,60 2,80 3,00

β

β1

β2

reliability index β
 

Fig. 3 Instantaneous and revised reliability indexes of slabs 
 

3. Technical service life prediction 
3.1. Effect of structural features 

The minimum values for reliability index minβ  associate with the structures. Therefore, the 

durability prediction of structures should be considered for beams, columns, slabs, piles, joints and other 
structural members as auto systems representing their multicriteria failure mode due to various action 
effects and responses of particular members. A necessity to use auto system models in design practice 
illustrated in Fig.4. 
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According to the method of transformed conditional probabilities, the total survival probability of 
structural members as series, parallel and mixed auto systems may be respectively calculated by the 
Equations: 

{ } { } 
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Here 2/1P  and par/3P  are the greater value from the probabilities 1P , 2P  and 3P , parP  calculated by (11) 

and (34); )(5.0 131221,3 ρρρ +=  is the coefficient of rank cross-correlation. 

The technical service life tt as a quantitative durability parameter of ageing structural members may 
be calculated from Equations (33)-(35). The computation is iterated until the value tt corresponds the target 
probability )( minmin βΦ=P . 

 
Fig. 4 Effect of auto system types and initial survival probabilities on the technical service life, tt, 

 of structural members 
 
3.2. Numerical illustration 

The procedure of technical service life prediction is applied to the roof beams of single storey 
buildings the deterioration function of whose is: )(004.01)( inttt −−=ϕ , where 12=int  years is the 

initiation period of ageing process. The mean and variance of beam resistance in initial period are: 

6.387, =minR kNm, 4.2461)6.387128.0( 22 =×=inRσ  (kNm)2. The means and variances of bending 

moments caused by permanent and snow loads are: 7.77=gmM kNm, 4.60)7.7710.0( 22 =×=gMσ (kNm)2; 

21.15=SmM kNm, 28.83)21.1560.0( 22 =×=sMσ (kNm)2. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 481 

The values of additional variables are: 0.1== MmRm θθ , 01.022
== MR θθ σσ . Therefore, the 

revised variances of beam initial resistances and bending moments may be presented: 

8.3963)(2
=RRθσ (kNm)2,   8.120)(2

=gM Mθσ (kNm)2, 56.85)(2
=sM Mθσ (kNm)2. 

The parameters of beam conventional resistances are: 7.776.387, −= kmckR ϕ kNm and =cR2σ  

=+= )()( 22
gMR MR θθ σσ 6.4084  (kNm)2  as constant value during the service life of beams. 

The time-dependent beam reliability index })tT{()()t( ≥== −− PP 11 ΦΦβ was calculated using 

Equation (11). According to Figure 5, the technical service life of deteriorating beams is equal to 30 years. 

 
Fig. 5 Determination of beam technical service life tt  using the time-dependent reliability index curve 

 
The curve of Figure 5 shows that the moderate relative deterioration of beams in structural resistance 

equal to 0.4 % /year may be rather dangerous. 
 

Conclusion. The revised structural safety parameters of existing structures lead to correction of their 
technical service life and allow avoid both unexpected failures and unfounded premature repairs. However, 
it is rather difficult to revise objectively the design values of structural resistance and survival or failure 
probability of members and their systems. When unfavourable service-proven action effects caused by 
extreme live or climate actions are defined and confirmed by quality statistical information data, the 
revised safety parameters of structures may be assessed and predicted fairly exactly by presented 
engineering probabilistic approaches. 

Generally, the extreme action effects of structures caused by service and climate loads are modeled 
as intermittent rectangular renewal pulse processes. Thus, the safety margins of particular members 
(sections, bars, connections) may be treated as random sequences. The revised values of instantaneous 
survival probabilities of particular members (sections, bars, connections) may be analyzed by Equations 
(22) and (32) based on concepts of their conventional resistance, truncated probability distribution and 
Bayes theorem approaches. These values may be successfully used in the prediction of long-term survival 
probabilities of members and systems during their residual service life using Equations (16) and (17) based 
on the concept of transformed conditional probabilities. 

The presented approaches for revised probabilistic safety assessment and prediction of existing 
structures may be successfully used in engineering design practice. 

The technical service life of structural members as a period of time of their safe performance at a 
preset reliability index represents a quantitative durability parameter of structural members. This parameter 
may help us to design sustainable buildings with balanced reliability indices of deteriorating structures and 
in this way fulfilled the durability requirements presented in design codes and standards. 
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FACTORS INFLUENCED ON 
HEAT G AINS AND HEAT LOSSES IN BUILDINGS 

© Lis A., 2007 
 

The paper presents the results of investigations on building’s heat gains and heat 
losses. The heat balance conditions in selected buildings were observed. The factors, which 
influence heat gains and heat losses in analysed building were identified. The changes of 
value of these quantities on the influence of individual factors were estimated. 

 
Introduction. As far as heat gains are concerned, a factor that positively influences heat balance of 

the building is solar radiation. Both radiation duration and radiation rate are limited. About 80% of the total 
insolation concerns spring and summer months [1]. During the heating season an average sum of total solar 
radiation amounts to 1.44 kWh/m2/24 hrs. Some heat gains result from the existence of additional heat 
sources connected with the utilisation of building. The gains come from people staying in the building, 
electrical and gas equipment as well as lighting. 

Heat losses in a building result from heat penetration through external and internal partitions as well 
as from heating up the air exchanged in the ventilation process. Heat lost on penetration has been up till 
now the highest value in the annual loss account. With low thermal insulation of partitions it amounted to 
80%. The observed and predicted increase of thermal insulation of external coating of buildings causes 
high dependence of heat losses on the ventilation needs. Heat lost on ventilation with air-tight enclosures 
amounts to 70–80%. Wind is a significant factor intensifying losses. At the speed of 3 m/s heat losses 
increase 2%, and with 6 m/s exceed by 25% the value of losses as compared to the windless weather. The 
shape and location of a building has a considerable influence on the whirl and wind velocity. The shape of 
the building determines as well its energy properties. Precipitation causing dampness of partitions and 
deterioration of their thermal insulation increases heat losses. 
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