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An axially symmetric problem for a hollow cylinder with unloaded bases is considered. On
the inner and outer cylindrical surfaces, the normal and tangential loads are prescribed.
The problem is reduced to a biharmonic equation with corresponding boundary conditions.
Application of the method of variables separation results in a homogeneous boundary
value problem for the ordinary differential equation. Its eigenfunctions have been used to
construct an infinite system of homogeneous solutions for the initial biharmonic problem.
Its solution, represented as a series expansion in terms of homogeneous solutions, depends
on four infinite sequences of real constants. To determine them, the variational method
has been applied, in which the subordination of the solution to the boundary conditions,
given on cylindrical surfaces, is performed in the norm L2. It brings to an infinite system
of algebraic equations which has been solved by the reduction method. The quantitative
studies have confirmed the good convergence of the method.
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1. Introduction

Despite the intensive development of software systems that implement various numerical methods,
analytical solutions of boundary value problems still remain used in solid mechanics. There are several
reasons for this: precise analytical solutions are indispensable tools for testing numerical methods; it
is easier on their basis to obtain approximate formulae for engineering applications; many nonlinear
problems can be reduced to sequences of linear ones that can be effectively solved analytically. It is also
important that the development of new analytical methods shapes the scientific basis for the creation
of new software systems for the quantitative analysis of new classes of direct and inverse problems,
formulated in the framework of new mathematical models that are not provided in the existing software
environments.

By analyzing the known analytical approaches to the study of the axially symmetric strain-stressed
state of the hollow cylinder, several classes of problems can be identified.

The first is the linear plane axially symmetric problems. Their solutions are functions that depend
only on the radial coordinate. Among them, in particular, is the problem [1] formulated within the
framework of an elasticity model, which takes into account both macro- and micro-stresses in a media
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with microstructure. To this class, we also attribute the axially symmetric elasticity problems for the
thick-walled cylinder with radial-dependent material characteristics (see papers [2–4] and the reviews
of recent publications in this direction, presented in them).

The second class is linear axially symmetric problems for an infinite hollow cylinder under local
loading [5, 6]. Analytical solutions for them are being obtained using the Fourier transform. In this
connection, we also note the publication [7], in which the contact axially symmetric problem for
composite axially–homogeneous infinite cylinder, resting under a local loading applying to its outer
surface, is considered.

To the third class, we attribute axially symmetric problems for a finite hollow cylinder. In the
paper [8], an exact solution of such a problem was obtained using the method of cross-superposition.
By this method, the components of displacement vector are represented as expansions in complete
systems of orthogonal functions (trigonometric, hyperbolic and cylindrical). It allowed us to precisely
satisfy the boundary conditions both on the cylindrical surfaces and at the ends of the cylinder. In [9]
an axially symmetric problem for the finite hollow cylinder with traction-free ends is considered. It
was solved by applying the representation of the solution in the form of expansions in systems of
homogeneous solutions.

Homogeneous solutions are systems of functions that satisfy the equation of the theory of elasticity
in body volume and homogeneous conditions on a part of the body surface. They came to such func-
tion considering two-dimensional problems for a rectangular domain, on two parallel sides of which
homogeneous conditions in stresses or displacements are prescribed (see literature reviews in the mono-
graph [10] and article [11]). Using some special representations of the solution in form of separated
variables and subordinating them to the homogeneous conditions given at two opposite sides, one can
come to complete systems of eigenfunctions that satisfy some integral conditions (quasi-orthogonality
relations) [10]. This allows a series expansion of the problem solution in terms of the eigenfunctions.
Such representation of the solution automatically satisfies all problem equations within the domain as
well as the homogeneous conditions prescribed at two sides of its boundary. The expansion coefficients
can be determined by subordinating the solution to the non-homogeneous boundary conditions pre-
scribed at other two sides of the boundary. But, applying the quasi-orthogonality conditions makes
it possible obtaining closed-form formulae for the expansion coefficients only for the mixed boundary
conditions (when normal displacement and tangential traction, or, vice versa, normal traction and
tangential displacement are prescribed at two opposite sides of the rectangle).

In the variational method of homogeneous solutions [12,13], the solution of the problem, presented
in the form of the series expansion in terms of eigenfunctions, is subordinated to non-uniform boundary
conditions without using the point-wise convergence, but applying the convergence in the quadratic
norm. With this aim, a functional is introduced. It defines in norm L2 the deviation of the problem
solution from all specified boundary conditions. The minimum conditions of the functional lead to
an infinite system of linear algebraic equations for the expansion coefficients. The system can be
solved using the methods developed in monograph [14]. The variation method is applicable to the
boundary conditions in stresses, displacements and mixed ones. Solutions for some contact [15,16] and
inverse [12, 17–19] problems were obtained with its application.

In [20–22], the variational method of homogeneous solutions was extended to axially symmetric
elasticity problems for the solid cylinder of semi-infinite and finite length, with the traction-free lateral
boundary and loaded end faces. In [23], this method was used to solve an inverse problem for deter-
mining axially symmetric residual stresses in a finite solid cylinder with the use of the data obtained
by the photo-elasticity method.

In this paper, we develop the variational method of homogeneous solutions for a finite hollow
cylinder, on the ends of which the homogeneous conditions in stresses are prescribed. The inner and
outer cylindrical surfaces of the body are subjected to normal and tangential tractions. We reduced
the problems to biharmonic ones.
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2. Problem formulation

We consider axially symmetric elasticity problem for the hollow cylinder of finite length 2b V =
{rin 6 r 6 rout, 0 6 θ 6 2π, −b 6 z 6 b}, where r, z and θ are radial, axial and hoop cylindrical coor-
dinates, rout and rin stand for outer and inner radii of the cylinder. Let on the inner r = rin and outer
r = rout cylindrical surfaces of the body the normal σin(z) and σout(z), tangential τin(z) and τout(z)
tractions are prescribed:

σrr|r=rin = σin(z), σrz|r=rin = τin(z), σrr|r=rout = σout(z), σrz|r=rout = τout(z). (1)

The end surfaces z = ±b of the cylinder are stress-free:

σzz|z=±b = 0, σrz|z=±b = 0. (2)

Here σrr, σzz, σθθ, σrz stand for components of the stress tensor in cylindrical coordinates. They
satisfy in domain V the equilibrium equations:

1

r

∂

∂r
(rσrr) +

∂

∂z
σrz −

1

r
σθθ = 0,

1

r

∂

∂r
(rσrz) +

∂

∂z
σzz = 0 (3)

and can be express via components of strain tensor εij by the elasticity relations

σrr =
E

(1 + ν)(1− 2ν)
((1− ν)εrr + ν(εzz + εθθ)) ,

σzz =
E

(1 + ν)(1− 2ν)
((1− ν)εzz + ν(εrr + εθθ)) ,

σθθ =
E

(1 + ν)(1− 2ν)
((1− ν)εθθ + ν(εzz + εrr)) ,

σrz =
E

1 + ν
εrz. (4)

Here E is Young’s modulus, ν is Poisson’s ratio.
Applying the Cauchy relations [24]

εrr =
∂ur
∂r

, εzz =
∂uz
∂z

, εθθ =
ur
r
, εrz =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
. (5)

we obtain from (3), (4) the governing equations in displacement for axially symmetric strain-stressed
state [24]

∇2ur +
1

1− 2ν

∂ε

∂r
− ur
r2

= 0,

∇2uz +
1

1− 2ν

∂ε

∂z
= 0. (6)

Here ε ≡ εrr + εzz + εθθ = 1
r
∂
∂r (rur) − ∂uz

∂z , ∇2 ≡ ∂2

∂r2 + 1
r
∂
∂r + ∂2

∂z2 is axially symmetric Laplace’s
operator.

To reduce the problem to non-dimensional form, we introduce the non-dimensional spatial coor-
dinates ξ ≡ r/rout, ζ ≡ z/rout, non-dimensional displacement u ≡ ur/rout, v ≡ uz/rout and stress
σ ≡ σrr/E, τ ≡ σrz/E components. We also introduce the other two non-dimensional components of
stress tensor by the mappings σθθ/E → σθθ, σzz/E → σzz.
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Now to obtain relations (5) in non-dimensional form one should to put in them E = 1, σrr = σ,
σrz = τ . Similarly, one should make the substitutions ur = u, uz = v, ∂/∂r → ∂/∂ξ and ∂/∂z → ∂/∂ζ
in relations (6) to reduce them to non-dimensional form.

It is convenient to use the Love function χ for the axially symmetric problem. Its dimension is
[N ·m]. We introduce a non-dimensional Love function by the mapping χ← χ/(Erout). With its
using we can reduce the system (6) to the biharmonic equation

∇2∇2χ = 0. (7)

Non-dimensional components of the stress tensor and displacement vector are expressed via intro-
duced function χ by (8) and (9) correspondingly

σ =
∂

∂ζ

(
ν∇2χ− ∂2χ

∂ξ2

)
, τ =

∂

∂ξ

(
(1− ν)∇2χ− ∂2χ

∂ζ2

)
,

σzz =
∂

∂ζ

(
(2− ν)∇2χ− ∂2χ

∂ζ2

)
, σθθ =

∂

∂ζ

(
ν∇2χ− 1

ξ

∂χ

∂ξ

)
. (8)

u = − (1 + ν)
∂2χ

∂ξ∂ζ
, v = 2

(
1− ν2

)
∇2χ− (1 + ν)

∂2χ

∂ζ2
. (9)

Using these formulas we obtain the presentation of the boundary conditions (1) and (2) in terms
of the Love function (relations (10) and (11) correspondingly):

∂

∂ζ

(
ν∇2χ− ∂2χ

∂ξ2

)∣∣∣∣
ξ=ξin

= σin (ζ) ,

∂

∂ξ

(
(1− ν)∇2χ− ∂2χ

∂ζ2

)∣∣∣∣
ξ=ξin

= τin (ζ) ,

∂

∂ζ

(
ν∇2χ− ∂2χ

∂ξ2

)∣∣∣∣
ξ=1

= σout (ζ) ,

∂

∂ξ

(
(1− ν)∇2χ− ∂2χ

∂ζ2

)∣∣∣∣
ξ=1

= τout (ζ) . (10)

∂

∂ζ

(
(2− ν)∇2χ− ∂2χ

∂ζ2

)∣∣∣∣
ζ=±b

= 0,

∂

∂ξ

(
(1− ν)∇2χ− ∂2χ

∂ζ2

)∣∣∣∣
ζ=±b

= 0. (11)

Since the ends of the cylinder are unloaded, the tangential tractions on its lateral surface should
satisfy the relation ∫ b

−b
τin(ζ) dζ +

∫ b

−b
τout(ζ) dζ = 0.

To make the problem well-behaved it also is necessary to subordinate the functions of tangential
tractions to the conditions

τin(±b) = 0, τout(±b) = 0.
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3. Eigenfunctions of axially symmetric biharmonic problems for a hollow cylinder

3.1. Separation of the variables

We will seek the solution of biharmonic equation (7) in the form of separated variables [9]:

χ(ξ, ζ) = h0(ξ)ϕ(ζ), (12)

choosing the radial function h0(ξ) in the form

h0(ξ) = C(1)H
(1)
0 (γξ) + C(2)H

(2)
0 (γξ),

where ϕ(ζ) is unknown function, C(1) and C(2) are undefined constants, H(1)
0 (γξ) and H(2)

0 (γξ) stand
for Hankel functions (Bessel functions of the third kind) [25], γ is undefined constant.

After substitution of presentation (12) into relations (8), (9), we obtain

σ = h0(ξ)
(
νϕ′′′(ζ) + (1− ν)γ2ϕ′(ζ)

)
− γ

ξ
h1(ξ)ϕ′(ζ), (13)

τ = γh1(ξ)
(
νϕ′′(ζ) + γ2(1− ν)ϕ(ζ)

)
, (14)

σzz = h0(ξ)
(
(1− ν)ϕ′′′(ζ)− (2− ν)γ2ϕ′(ζ)

)
, (15)

σθθ = νh0(ξ)
(
ϕ′′′(ζ)− γ2ϕ′(ζ)

)
+
γ

ξ
h1(ξ)ϕ

′(ζ), (16)

u = (1 + ν)γh1(ξ)ϕ′(ζ), (17)

v = (1 + ν)h0(ξ)
(
(1− 2ν)ϕ′′(ζ) + 2γ2(ν − 1)ϕ(ζ)

)
, (18)

where h1(ξ) = C(1)H
(1)
1 (γξ) + C(2)H

(2)
1 (γξ).

Substituting (12) into equation (7), we come to the ordinary differential equation for axial func-
tion ϕ(ζ):

ϕIV (ζ)− 2γ2ϕ′′(ζ) + γ4ϕ(ζ) = 0. (19)

This equation also appears, when the method of homogeneous solutions is used to solve plane
elasticity problems for a rectangular area, on two opposite sides of which homogeneous boundary
conditions in stresses or displacement are prescribed [10, 12, 13]. Its general solution is the function

ϕ(ζ) = (A+Bζ) cosh(γζ) + (C +Dζ) sinh(γζ), (20)

dependent on four undefined constants A, B, C, D.
It is convenient to consider function ϕ(ζ) as the sum of its odd

ϕ(ζ) = L1 sinh(γζ) + L2ζ cosh(γζ), (21)

and even
ϕ(ζ) = L1 cosh(γζ) + L2ζ sinh(γζ) (22)

parts, both of which depend only on two undefined constants.
If function ϕ(ζ) in presentation (12) is taken in form (21), then function χ(ξ, ζ) defines symmetrical

with respect to the plane ζ = 0 strain-stressed state. In the other case, when ϕ(ζ) is taken in form (22),
χ(ξ, ζ) determine the antisymmetric state of the cylinder.

Decomposing both the normal and tangential tractions of boundary conditions (10) on odd and
even parts:

σoddin,out(ζ) = 1/2 (σin,out(ζ)− σin,out(−ζ)) , σevenin,out(ζ) = 1/2 (σin,out(ζ) + σin,out(−ζ)) ,
τoddin,out(ζ) = 1/2 (τin,out(ζ)− τin,out(−ζ)) , τ evenin,out(ζ) = 1/2 (τin,out(ζ) + τin,out(−ζ))
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and applying the superposition method, we can split each of the initial biharmonic problem (10),
(11) on the symmetrical and antisymmetric ones. In the symmetrical problems functions σoddin,out(ζ)
and τ evenin,out(ζ) should be used as boundary data in (10), whereas in antisymmetric ones — σevenin,out(ζ)

and τoddin,out(ζ). To determine the unknown constants in (21) and (22), we can utilize the boundary
condition (11), prescribed on the end faces of the cylinder.

3.2. The transcendental equations

Taking the odd axial function ϕ(ζ) in presentation (12) and substituting obtained Love function χ(ξ, ζ)
into boundary conditions (11), we come to the homogeneous linear system of equations for the unknown
coefficients in function (21):

{
γ cosh(γb)L1 + ((2ν − 1) cosh(γb) + γb sinh(γb))L2 = 0,

γ sinh(γb)L1 + (2ν sinh(γb) + γb cosh(γb))L2 = 0.
(23)

Its compatibility condition leads to the transcendental equation

sinh(2γb) + 2γb = 0, (24)

which has only the trivial real root γ = 0, therefore we will consider an infinite sequence of complex-
valued roots γk = αk + iβk, k = 1, 2, . . ., where αk and βk are real numbers, i stands for imaginary
unit.

Asymptotic formulas at k → ∞ for real αk and imaginary βk parts of the roots γk can be easily
obtained from the system {

sinh(2bαk) cos(2bβk) + 2bαk = 0,
cosh(2bαk) sin(2bβk) + 2bβk = 0,

(25)

following from (24). They are the next

αak =
1

2
ln(π + 4πk), βak = −π

4
+ πk. (26)

It is easy to see that, if γk is a root of equation (24), then −γk = −αk − iβk, γ̄k = αk − iβk
and −γ̄k = −αk + iβk are also its roots. In accordance with this, we obtain four sequences of odd
eigenfunctions of equation (19):

ϕk(ζ) = κk sinh(γkζ) + ζ cosh(γkζ), (27)

where γk and κk are the roots of transcendental equation (24) and

κk = (1− 2ν)/γk − b tanh(γkb). (28)

Taking even axial function ϕ(ζ) in presentation (12), we come to other linear homogeneous system
for the unknown coefficients in function (22):

{
γ sinh(γb)L1 + ((2ν − 1) sinh(γb) + γb cosh(γb))L2 = 0,
γ cosh(γb)L1 + (2ν cosh(γb) + γb sinh(γb))L2 = 0.

(29)

Compatibility condition of this system brings to the transcendental equation

sinh(2γb)− 2γb = 0. (30)

This equation, as well as equation (24), has two pair of sequences of complex-conjugated roots
γk, γ̄k and −γk, −γ̄k, k = 1, 2, . . .. This enables to consider four sequences of even eigenfunctions of

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 48–63 (2020)

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



54 ChekurinV. F., Postolaki L. I.

Table 1. Positive values of the real and imaginary
parts of roots of equations (24) and (30).

Odd Even
k αk βk αk βk
1 1.02335 3.79089 0.74374 2.17518
2 1.32419 6.97383 1.19683 5.38669
3 1.50895 10.13593 1.42517 8.55631
4 1.64319 13.29009 1.58059 11.71367
5 1.74880 16.44027 1.69879 14.86554
6 1.83590 19.58816 1.79425 18.01444
7 1.91003 22.73459 1.87434 21.16153
8 1.97457 25.88003 1.94335 24.30742
9 2.03172 29.02476 2.00396 27.45247
10 2.08300 32.16897 2.05802 30.59693
11 2.12950 35.31278 2.10679 33.74092
12 2.17204 38.45629 2.15122 36.88457
13 2.21125 41.59954 2.19203 40.02794
14 2.24760 44.74259 2.22975 43.17109
15 2.28149 47.88547 2.26483 46.31405
16 2.31322 51.02822 2.29761 49.45686
17 2.34307 54.17085 2.32837 52.59955
18 2.37123 57.31338 2.35734 55.74213
19 2.39788 60.45583 2.38473 58.88462
20 2.42319 63.59820 2.41070 62.02703
δ20 0.00007 0.0003 0.00051 0.0003

equation (19):

ϕk(ζ) = κk cosh(γkζ) + ζ sinh(γkζ), (31)

where γk and κk are the roots of transcendental
equation (31) and

κk = (1− 2ν)/γk − b coth(γkb). (32)

Asymptotic solution of equation (31) at k →
∞ is

αak =
1

2
ln(π + 4πk), βak =

π

4
+ πk. (33)

We solved transcendental equations (24), (30)
numerically. The positive values of the real and
imaginary parts of their first 20 roots are pre-
sented in Table 1. In the last row of the table the
values of ratio error of the corresponding roots
calculated with asymptotic formulas (26), (33) at
k = 20 are presented. The errors were calculated
as

δαk = |α̃k − αk|/αk, δβk =
∣∣β̃k − βk

∣∣/βk, (34)

where symbols with “tilde” (∼) mean the asymp-
totic values, whereas without it — the values de-
termined by numerical solving of corresponding
transcendental equation.

3.3. The odd and even eigenfunctions

Using function sequences (27) and (31), we can build the odd

χ
(p)
k (ξ, ζ) = H

(p)
0 (γkξ) (κk sinh(γkζ) + ζ cosh(γkζ)) , p = 1, 2 (35)

and even
χ
(p)
k (ξ, ζ) = H

(p)
0 (γkξ) (κk cosh(γkζ) + ζ sinh(γkζ)) , p = 1, 2 (36)

eigenfunctions of biharmonic problems for hollow cylinder with stress-free ends.
These functions identically satisfy equations (7) in the volume V and homogeneous boundary con-

ditions (11) on the ends of the cylinder at any k = 1, 2, . . . and p = 1, 2, . . ..

4. The systems of homogeneous solutions of axisymmetric elasticity problems for hollow
cylinder

Using obtained systems of eigenfunctions of biharmonic problems and formulas (13)–(18), one can
obtain the systems of homogeneous solutions for corresponding elasticity problems.

In the case of symmetric problems they are

σ
(p)
k (ξ, ζ) =

γk
ξ

(
γkξ(2ν + 1 + γkκk)H

(p)
0 (γkξ)− (1 + γkκk)H

(p)
1 (γkξ)

)
sinh(γkζ)

+
γ2kζ

ξ

(
γkξH

(p)
0 (γkξ)−H(p)

1 (γkξ)
)

cosh (γkζ) , (37)
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τ
(p)
k (ξ, ζ) = γ2kH

(p)
1 (γkξ)

(
(2ν + γkκk) sinh (γkζ) + γkζ cosh(γkζ)

)
, (38)

σ
(p)
zzk(ξ, ζ) = −(γk)

2H
(p)
0 (γkξ)

(
γkζ sinh (γkζ) + (2ν − 1 + γkκk) cosh(γkζ)

)
, (39)

σ
(p)
θθk(ξ, ζ) =

γ2k
ξ
ζH

(p)
1 (γkξ) sinh(γkζ)

+
γk
ξ

(
2νγkξH

(p)
0 (γkξ) + (1 + γkκk)H

(p)
1 (γkξ)

)
cosh(γkζ), (40)

u
(p)
k (ξ, ζ) = (1 + ν)γkH

(p)
1 (γkξ)

(
γkζ sinh(γkζ) + (1 + γkκk) cosh(γkζ)

)
, (41)

v
(p)
k (ξ, ζ) = −(1 + ν)γkH

(p)
0 (γkξ)

(
(4ν − 2 + γkκk) sinh(γkζ) + γkζ cosh(γkζ)

)
. (42)

Here ξ ∈ [ξin, 1], ζ ∈ [−b, b], p = 1, 2, γk, k = 1, 2, . . . are the roots of transcendental equation (24), κk
are determined by formula (28).

For antisymmetric problems the homogeneous solutions have a look

σ
(p)
k (ξ, ζ) =

γk
ξ

(
γkξ(2ν + 1 + γkκk)H

(p)
0 (γkξ)− (1 + γkκk)H

(p)
1 (γkξ)

)
cosh(γkζ)

+
γ2kζ

ξ

(
γkξH

(p)
0 (γkξ)−H(p)

1 (γkξ)
)

sinh (γkζ) , (43)

τ
(p)
k (ξ, ζ) = γ2kH

(p)
1 (γkξ)

(
(2ν + γkκk) cosh(γkζ) + γkζ sinh(γkζ)

)
, (44)

σ
(p)
zzk(ξ, ζ) = −(γk)

2H
(p)
0 (γkξ)

(
γkζ cosh(γkζ) + (2ν − 1 + γkκk) sinh(γkζ)

)
, (45)

σ
(p)
θθk(ξ, ζ) =

γ2k
ξ
ζH

(p)
1 (γkξ) cosh(γkζ) +

γk
ξ

(
2νγkξH

(p)
0 (γkξ) + (1 + γkκk)H

(p)
1 (γkξ)

)
sinh(γkζ), (46)

u
(p)
k (ξ, ζ) = (1 + ν)γkH

(p)
1 (γkξ)

(
γkζ cosh(γkζ) + (1 + γkκk) sinh(γkζ)

)
, (47)

v
(p)
k (ξ, ζ) = −(1 + ν)γkH

(p)
0 (γkξ)

(
(4ν − 2 + γkκk) cosh(γkζ) + γkζ sinh(γkζ)

)
. (48)

Here ξ ∈ [ξin, 1], ζ ∈ [−b, b], p = 1, 2, γk, k = 1, 2, . . . are the roots of transcendental equation (31), κk
are determined by formula (33).

Each homogeneous solution
{
σ
(p)
k (ξ, ζ), τ

(p)
k (ξ, ζ), σ

(p)
zzk(ξ, ζ), σ

(p)
θθk(ξ, ζ), u

(p)
k (ξ, ζ), v

(p)
k (ξ, ζ)

}
identi-

cally satisfy equations (3)–(6) in volume V and homogeneous boundary conditions (2) on the ends of
cylinder.

5. Solution representation

We represent the Love function as a series expansion in terms of eigenfunctions (35) and (36). As the
eigenfunctions are complex-valued, to obtain the real Love function χ(ξ, ζ), we take it in the form

χ(ξ, ζ) =
1

2

∞∑

k=1

4∑

λ=1

Cµkχ
µ
k(ξ, ζ). (49)

Here we use the denotations: C1
1 and C2

k are undefined complex constants, χ1
k(ξ, ζ) = χ

(1)
k (ξ, ζ),

χ2
k(ξ, ζ) = χ

(2)
k (ξ, ζ), χ3

k(ξ, ζ) = χ̄
(1)
k (ξ, ζ), χ4

k(ξ, ζ) = χ̄
(2)
k (ξ, ζ), C3

k = C̄1
k , C

4
k = C̄2

k , the symbols with
overline denote corresponding complex conjugate values.

In the case of an even problem we take in the right hand part of equation (49) the odd eigenfunc-
tions (35), in the other case — the even eigenfunctions (36).

We represent the solution of problem (7), (10), (11) for both symmetric and antisymmetric cases
in the form
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σ =
∂

∂ζ

(
ν∇2χ− ∂2χ

∂ξ2

)
+ σ0, τ =

∂

∂ξ

(
(1− ν)∇2χ− ∂2χ

∂ζ2

)
+ τ0,

σzz =
∂

∂ζ

(
(2− ν)∇2χ− ∂2χ

∂ζ2

)
, σθθ =

∂

∂ζ

(
ν∇2χ− 1

ξ

∂χ

∂ξ

)
+ σ0θθ. (50)

u = − (1 + ν)
∂2χ

∂ξ∂ζ
+ u0, v = 2

(
1− ν2

)
∇2χ− (1 + ν)

∂2χ

∂ζ2
+ v0. (51)

Here χ is the Love function (49) and the functions σ0, τ0, σ0θθ have the form

σ0 =
1

ξ2
c1 + c2, τ0 =

c3
ξ
, σ0θθ = −c1

1

ξ2
+ c2. (52)

The function u0 and v0 are determined follow on the base of functions from (52) with the use of
relations (4) and (5):

u0 = − c1
2Gξ

+
c2ξ

2G (1 + ν)
, v0 = −c2

νζ

2G (1 + ν)
+ 2c3 (1 + ν) ln ξ. (53)

In formulas (52), (53) c1, c2, c3 are undefined real constants: for the case of symmetry c3 ≡ 0,
whereas c1 = c2 ≡ 0 for antisymmetry.

It is easy to verify that the strain-stressed state determined by functions σ0, τ0, σ0θθ, σ
0
zz ≡ 0

satisfy the equation of equilibrium (3) and the compatibility equations in stresses (Beltrami-Mitchell
equations [26]).

Solution Presentation (50), (51) identically satisfies the equations (3)–(6) in the body volume V and
homogeneous boundary conditions (2) on its the cylinder bases for arbitrary values of the coefficients
in Love function series expansion (49).

6. The variational method of homogeneous solutions

We subordinate the solutions (49) to the boundary conditions (10) in the quadratic norm L2, intro-
ducing functional

F =

∫ b

0

[(
σ|ξ=ξin − σin(ζ)

)2
+
(
τ |ξ=ξin − τin(ζ)

)2]
dζ

+

∫ b

0

[(
σ|ξ=1 − σout(ζ)

)2
+
(
τ |ξ=1 − τout(ζ)

)2]
dζ. (54)

Substituting into the functional presentation (50) and applying to it the necessary conditions of the
minimum

∂F

∂Cλm
= 0,

∂F

∂cj
= 0, m = 1, 2, . . . , λ = 1, . . . , 4, j = 1, . . . , 4

we come to the linear algebraic system

∞∑

k=1

4∑

µ=1

Mλµ
mkC

µ
k = Kλ

m, m = 1, 2, . . . , λ = 1, . . . , 4. (55)

Its coefficients for symmetric problems are determined as

Mλµ
mk =

1

2

∫ b

0

(
σλm(ξin, ζ)σµk (ξin, ζ) + τλm(ξin, ζ)τµk (ξin, ζ)

)
dζ

+
1

2

∫ b

0

(
σλm(1, ζ)σµk (1, ζ) + τλm(1, ζ)τµk (1, ζ)

)
dζ
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− 1

2b

(∫ b

0
σλm(ξin, ζ)dζ

∫ b

0
σµk (ξin, ζ)dζ +

∫ b

0
σλm(1, ζ)dζ

∫ b

0
σµk (1, ζ)dζ

)
, (56)

Kλ
m =

∫ b

0

(
σin(ζ)σλm(ξin, ζ) + τin(ζ)τλm(ξin, ζ)

)
dζ

+

∫ b

0

(
σout(ζ)σλm(1, ζ) + τout(ζ)τλm(1, ζ)

)
dζ

− 1

b

(∫ b

0
σin(ζ)dζ

∫ b

0
σλm(ξin, ζ)dζ +

∫ b

0
σout(ζ)dζ

∫ b

0
σλm(1, ζ)dζ

)
. (57)

Functions σµk (ξ, ζ), τµk (ξ, ζ) in these formulas are calculated by formulas (37), (38), in which γk are
roots of equation (24) and constants κk are defined by formula (28).

In the case of antisymmetry, the coefficients of system (55) have the look

Mλµ
mk =

1

2

∫ b

0

(
σλm(ξin, ζ)σµk (ξin, ζ) + τλm(ξin, ζ)τµk (ξin, ζ)

)
dζ

+
1

2

∫ b

0

(
σλm(1, ζ)σµk (1, ζ) + τλm(1, ζ)τµk (1, ζ)

)
dζ

− 3

2b3

(∫ b

0
σλm(ξin, ζ)dζ

∫ b

0
σµk (ξin, ζ)dζ +

∫ b

0
σλm(1, ζ)dζ

∫ b

0
σµk (1, ζ)dζ

)
, (58)

Kλ
m =

∫ b

0

(
σin(ζ)σλm(ξin, ζ) + τin(ζ)τλm(ξin, ζ)

)
dζ

+

∫ b

0

(
σout(ζ)σλm(1, ζ) + τout(ζ)τλm(1, ζ)

)
dζ

− 3

b3

(∫ b

0
σin(ζ)dζ

∫ b

0
σλm(ξin, ζ)dζ +

∫ b

0
σout(ζ)dζ

∫ b

0
σλm(1, ζ)dζ

)
. (59)

Functions σµk (ξ, ζ), τµk (ξ, ζ) in these formulas are calculated by formulas (43), (44), in which γk are
roots of equation (30) and constants κk are defined by formula (32).

We used the following notations in the formulas (56)–(59):

σ1k(ξ, ζ) = σ
(1)
k (ξ, ζ), σ2k(ξ, ζ) = σ

(2)
k (ξ, ζ), σ3k(ξ, ζ) = σ̄

(1)
k (ξ, ζ), σ4k(ξ, ζ) = σ̄

(2)
k (ξ, ζ),

τ1k (ξ, ζ) = τ
(1)
k (ξ, ζ), τ2k (ξ, ζ) = τ

(2)
k (ξ, ζ), τ3k (ξ, ζ) = τ̄

(1)
k (ξ, ζ), τ4k (ξ, ζ) = τ̄

(2)
k (ξ, ζ).

The constants cj are determined as

c1 = − ξ2in
b(1− ξ2in)

∫ b

0

(
1

2

∞∑

k=1

4∑

µ=1

Cµk
(
σµk (ξin, ζ)− σµk (1, ζ)

)
− σin(ζ) + σout(ζ)

)
dζ,

c2 =
1

b(1− ξ2in)

∫ b

0

(
1

2

∞∑

k=1

4∑

µ=1

Cµk
(
ξ2inσ

µ
k (ξin, ζ)− σµk (1, ζ)

)
− ξ2inσin(ζ) + σout(ζ)

)
dζ,

c3 = − 3ξ2in
b3(1− ξ2in)

∫ b

0

(
1

2

∞∑

k=1

4∑

µ=1

Cµk
(
σµk (ξin, ζ)− σµk (1, ζ)

)
− σin(ζ) + σout(ζ)

)
dζ,

c4 =
3

b3(1− ξ2in)

∫ b

0

(
1

2

∞∑

k=1

4∑

µ=1

Cµk
(
ξ2inσ

µ
k (ξin, ζ)− σµk (1, ζ)

)
− ξ2inσin(ζ) + σout(ζ)

)
dζ.
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7. Numerical study of the problem solutions

We solved the system (55) with the use of reduction method, keeping in the expansion (49) a finite
number N of terms. This leads to the linear 4N × 4N system of algebraic equations in the form:

N∑

k=1

4∑

µ=1

Mλµ
mkC

µ
k = Kλ

m, m = 1, 2, . . . , N, λ = 1, . . . , 4. (60)

To evaluate numerically the convergence of reduction method, we took the functions of right-hand
sides in the boundary conditions (10) for symmetric and antisymmetric cases in forms (61) and (62)
respectively:

σin(ζ) = −0.7σ0 exp

(
−ζ

2

d21

)
,

τin(ζ) = 0.7τ0 exp

(
−(ζ − 0.8ζ0)2

d21

)
− 0.7τ0 exp

(
−(ζ + 0.8ζ0)2

d21

)
,

σout(ζ) = σ0 exp

(
−(ζ − ζ0)2

d22

)
+ σ0 exp

(
−(ζ + ζ0)

2

d22

)
,

τout(ζ) = −τ0 exp

(
−(ζ − ζ0)2

d22

)
+ τ0 exp

(
−(ζ + ζ0)

2

d22

)
. (61)

and

σin(ζ) = 0.7τ0 exp

(
−(ζ − 0.8ζ0)2

d21

)
− 0.7τ0 exp

(
−(ζ + 0.8ζ0)2

d21

)
,

τin(ζ) = −0.7σ0 exp

(
−ζ

2

d21

)
,

σout(ζ) = −σ0 exp

(
−(ζ − ζ0)2

d22

)
+ σ0 exp

(
−(ζ + ζ0)

2

d22

)
,

τout(ζ) = τ0 exp

(
−(ζ − ζ0)2

d22

)
+ τ0 exp

(
−(ζ + ζ0)

2

d22

)
. (62)

Errors for the obtained solutions were evaluated by the values of corresponding functionals as:

δL2 =
(
FN
)1/2

/2. (63)

The errors of solutions, obtained at σ0 = 0.05, τ0 = 0.05, ν = 0.25, ξin = 0.4, ζ0 = 0.5 b, d1 = 0.15b,
d2 = 0.1 b, b = 2 for different number N in the cases of problem symmetry and antisymmetry are given
in Table 2.

Table 2. Reduction errors.
N 3 5 7 9 11 13 15

δL2 , symmetric 0.15504 0.08583 0.04294 0.01762 0.00665 0.00201 0.00067
δL2 , antisymmetric 0.15365 0.07521 0.03776 0.01754 0.00647 0.00203 0.00071

The plots of dimensionless stress components σ/σ0, τ/τ0, σθθ/σ0 and σzz/σ0 as functions of axial
coordinate, calculated at various values of the radial coordinate ξ ∈ {0.4, 0.55, 0.75, 1} (curves 1 to 4
correspondingly) for the symmetric problem are shown in Figs. 1–4.

Plots of the same dimensionless stress components as functions of axial coordinate, calculated at
ξ ∈ {0.4, 0.55, 0.75, 1} (curves 1 to 4 correspondingly) for the antisymmetric problem are shown in
Figs. 5–8.
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Fig. 1. Axial distributions of the normal stress com-
ponent at various values of radial coordinate.

Fig. 2. Axial distributions of the tangential stress
component at various values of radial coordinate.
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Fig. 3. Axial distributions of the hoop stress compo-
nent at various values of radial coordinate.

Fig. 4. Axial distributions of the axial stress compo-
nent at various values of radial coordinate.
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Fig. 5. Axial distributions of the normal stress com-
ponent at various values of radial coordinate.

Fig. 6. Axial distributions of the tangential stress
component at various values of radial coordinate.

All the curves presented in Figs. 1–8 were calculated at N = 15. As one can see, if the boundary
data are sufficiently smooth functions, the graphs of stress components σrr and σrz on the inner and
outer surfaces (curves 1 and 4 in Figs. 1, 2, and 5, 6) coincide with the corresponding graphs of the
prescribed on these surfaces normal σ and tangential τ traction.

To study how the method behaves when the boundary data in conditions (10) are high-gradient
functions, we solved two problems for the case of symmetry problem, using as boundary data func-
tions (64) and (65), and another two problems for the case of antisymmetry with boundary functions
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in forms (66) and (67):

σin(ζ) = 0, τin(ζ) = 0, σout(ζ) = σ0





0.5, |ζ| < 1,
−1, 1 6 |ζ| 6 1.5,
0, |ζ| > 1.5,

τout(ζ) = 0; (64)

σin(ζ) = 0, τin(ζ) = 0, σout(ζ) = 0, τout(ζ) = τ0





0, |ζ| < 1,
1, 1 6 |ζ| 6 1.5,
−1, −1.5 6 |ζ| 6 −1,
0, |ζ| > 1.5;

(65)

σin(ζ) = 0, τin(ζ) = 0, σout(ζ) = 0, τout(ζ) = τ0





0.5, |ζ| < 1,
−1, 1 6 |ζ| 6 1.5,
0, |ζ| > 1.5;

(66)

σin(ζ) = 0, τin(ζ) = 0, σout(ζ) = σ0

{
0.5, ζ < 0,
−0.5, ζ > 0,

τout(ζ) = 0. (67)
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Fig. 7. Axial distributions of the hoop stress compo-
nent at various values of radial coordinate.

Fig. 8. Axial distributions of the axial stress compo-
nent at various values of radial coordinate.
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Fig. 9. Axial distributions of the normal stress
component for solution, obtained at boundary func-

tions (64).

Fig. 10. Axial distributions of the tangential stress
component for solution, obtained at boundary func-

tions (65).

In Figs. 9 and 10 axial dependencies of the non-dimensional normal σ/σ0 and tangential τ/τ0 stress
components calculated for ξ ∈ {0.4, 0.55, 0.75, 1} (curves 1–4) with the use of solutions, obtained
for boundary functions in forms (64) and (65) correspondingly are shown. Curves 5 correspond the
functions prescribed on the boundary. The solutions were obtained for N = 15.

Similar plots for antisymmetric problems with boundary functions (66), (67) are presented in
Figs. 11, 12.
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Fig. 11. Axial distributions of the normal stress
component for solution, obtained at boundary func-

tions (66).

Fig. 12. Axial distributions of the tangential stress
component for solution, obtained at boundary func-

tions (67).

As we can see, even for discontinuous boundary functions obtained numerical solutions are rather
precise — the reductions errors for both symmetric and antistmmertic problems do not exceed 6·10−3%.

8. Conclusions

The hollow cylinder is a three-dimensional body, bounded by two systems of surfaces: the lateral
surface boundary is formed by two coaxial cylindrical surfaces, and the bases are two plane areas.
Using the principle of superposition, the problems of the theory of elasticity for such bodies can be
reduced to a sequence of two problems: in the first case, the homogeneous boundary conditions are
given on a system of the lateral surfaces boundary, and in the second case — they are given on another
one of the cylinder’s bases. If the lateral surface is formed by coaxial circular cylinders, and the
bases are orthogonal to them, then, under the appropriate boundary conditions, one can consider the
axially symmetric statement for both of these cases. Using the Love function, axisymmetric problems
of the theory of elasticity for a straight circular cylinder can be reduced to a biharmonic equation in
cylindrical coordinates with the corresponding boundary conditions.

We have considered the elasticity problem for the straight hollow cylinder, on the basis of which
homogeneous boundary conditions in stresses are given. Applying to this problem the method of
variables separation, according to which the biharmonic problem solution is presented as the product
of axial and radial functions, we came to a homogeneous boundary value problem for the ordinary
differential equation regarding the axial function. Using the eigenfunctions of this problem, we con-
structed a system of homogeneous solutions of an axially symmetric elasticity problem for the hollow
cylinder with unloaded bases. In fact, the solution of the biharmonic problem was represented by its
development in terms of the obtained systems of homogeneous solutions.

This representation depends on the four infinite sequences of real constants, which can be used
to subordinate the solution to four boundary conditions, prescribed on the lateral boundary. We
have applied for that the variational method, which was previously developed for plane elasticity
problems in a rectangular domain, as well as for a solid cylinder. Under this method subordination the
solution to the boundary condition is carried out not pointwise, but “in average”, i.e. in the norm L2.
For this purpose, a functional, which determines the mean square deviation of the problem solution
from all boundary functions, prescribed on the lateral surface, was introduced. Applying the necessary
minimum conditions to this functional, we obtain the infinite system of algebraic equations with respect
to series expansion coefficients Cµk .

The system was solved applying the reduction method. By this method the representation of
biharmonic equation solution is restricted by first N number of terms in its series development, what
leads to a finite system of algebraic equations of size N ×N .
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The carried out numerical studies confirmed the good convergence of the solution with growth of
N value. The reduction error, calculated from the value of target functional at N = 15 for continuous
boundary functions, does not exceed 7·10−5%. The study of the solution convergence for problems with
boundary functions containing jump discontinuity (piecewise homogeneous) also gave a good result —
the reduction error, calculated by the value of the target functional, is of order 6 · 10−3%.
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Осесиметрична задача теорiї пружностi для порожнистого
цилiндра з ненавантаженими основами. Аналiтичне

розв’язування iз використанням варiацiйного методу однорiдних
розв’язкiв

ЧекурiнВ.Ф.1,2, ПостолакiЛ. I.1

1Iнститут прикладних проблем механiки i математики iм.Я.С.Пiдстригача НАН України,

вул. Наукова, 3-б, Львiв, 79060, Україна
2Куявсько-Поморський Унiверситет у Бидгощi,

вул. Торуньська, 55-57, Бидгощ, 85-023, Польща

Розглянуто осесиметричну задачу для порожнистого цилiндра iз ненавантаженими
основами. На внутрiшнiй i зовнiшнiй цилiндричних поверхнях задано нормальнi i
тангенцiальнi навантаження. Задачу зведено до бiгармонiчного рiвняння з вiдповiд-
ними крайовими умовами. За допомогою методу вiдокремлення змiнних отримано
однорiдну крайову задачу для звичайного диференцiального рiвняння. Використову-
ючи власнi функцiї цiєї задачi, побудувано систему однорiдних розв’язкiв вихiдної
бiгармонiчної задачi. Її розв’язок, який поданий як розвинення за цими функцiями,
залежить вiд чотирьох безмежних послiдовностей невизначених дiйсних констант.
Для визначення невiдомих констант застосовано варiацiйний метод, згiдно з яким
пiдпорядкування розв’язку крайовим умовам, що заданi на цилiндричних поверхнях,
здiйснюється не поточково, а “в середньому” — за нормою L2. З цiєю метою введено
функцiонал, який визначає середньоквадратичне вiдхилення розв’язку вiд крайових
умов, що заданi на цилiндричних поверхнях. У результатi отримано безмежну систе-
му алгебраїчних рiвнянь, яку розв’язано за допомогою методу редукцiї. Проведенi
кiлькiснi дослiдження пiдтвердили добру збiжнiсть методу.

Ключовi слова: задачi теорiї пружностi, порожнистий цилiндр, варiацiйний ме-

тод однорiдних розв’язкiв.
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