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An axially symmetric problem for a hollow cylinder with unloaded bases is considered. On
the inner and outer cylindrical surfaces, the normal and tangential loads are prescribed.
The problem is reduced to a biharmonic equation with corresponding boundary conditions.
Application of the method of variables separation results in a homogeneous boundary
value problem for the ordinary differential equation. Its eigenfunctions have been used to
construct an infinite system of homogeneous solutions for the initial biharmonic problem.
Its solution, represented as a series expansion in terms of homogeneous solutions, depends
on four infinite sequences of real constants. To determine them, the variational method
has been applied, in which the subordination of the solution to the boundary conditions,
given on cylindrical surfaces, is performed in the norm Ls. It brings to an infinite system
of algebraic equations which has been solved by the reduction method. The quantitative
studies have confirmed the good convergence of the method.

Keywords: elasticity problem, hollow cylinder, variational method of homogeneous solu-
tions.
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1. Introduction

Despite the intensive development of software systems that implement various numerical methods,
analytical solutions of boundary value problems still remain used in solid mechanics. There are several
reasons for this: precise analytical solutions are indispensable tools for testing numerical methods; it
is easier on their basis to obtain approximate formulae for engineering applications; many nonlinear
problems can be reduced to sequences of linear ones that can be effectively solved analytically. It is also
important that the development of new analytical methods shapes the scientific basis for the creation
of new software systems for the quantitative analysis of new classes of direct and inverse problems,
formulated in the framework of new mathematical models that are not provided in the existing software
environments.

By analyzing the known analytical approaches to the study of the axially symmetric strain-stressed
state of the hollow cylinder, several classes of problems can be identified.

The first is the linear plane axially symmetric problems. Their solutions are functions that depend
only on the radial coordinate. Among them, in particular, is the problem [1] formulated within the
framework of an elasticity model, which takes into account both macro- and micro-stresses in a media

This work was supported by the grant on the National Academy of Sciences of Ukraine “Mathematical models, variational
and iteration methods for solving of direct and inverse problems for theory of field interaction in solid bodies” (Number
of State Registration 0119U100675).
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with microstructure. To this class, we also attribute the axially symmetric elasticity problems for the
thick-walled cylinder with radial-dependent material characteristics (see papers [2—4] and the reviews
of recent publications in this direction, presented in them).

The second class is linear axially symmetric problems for an infinite hollow cylinder under local
loading [5,6]. Analytical solutions for them are being obtained using the Fourier transform. In this
connection, we also note the publication [7], in which the contact axially symmetric problem for
composite axially-homogeneous infinite cylinder, resting under a local loading applying to its outer
surface, is considered.

To the third class, we attribute axially symmetric problems for a finite hollow cylinder. In the
paper [8], an exact solution of such a problem was obtained using the method of cross-superposition.
By this method, the components of displacement vector are represented as expansions in complete
systems of orthogonal functions (trigonometric, hyperbolic and cylindrical). It allowed us to precisely
satisfy the boundary conditions both on the cylindrical surfaces and at the ends of the cylinder. In [9]
an axially symmetric problem for the finite hollow cylinder with traction-free ends is considered. It
was solved by applying the representation of the solution in the form of expansions in systems of
homogeneous solutions.

Homogeneous solutions are systems of functions that satisfy the equation of the theory of elasticity
in body volume and homogeneous conditions on a part of the body surface. They came to such func-
tion considering two-dimensional problems for a rectangular domain, on two parallel sides of which
homogeneous conditions in stresses or displacements are prescribed (see literature reviews in the mono-
graph [10] and article [11]). Using some special representations of the solution in form of separated
variables and subordinating them to the homogeneous conditions given at two opposite sides, one can
come to complete systems of eigenfunctions that satisfy some integral conditions (quasi-orthogonality
relations) [10]. This allows a series expansion of the problem solution in terms of the eigenfunctions.
Such representation of the solution automatically satisfies all problem equations within the domain as
well as the homogeneous conditions prescribed at two sides of its boundary. The expansion coefficients
can be determined by subordinating the solution to the non-homogeneous boundary conditions pre-
scribed at other two sides of the boundary. But, applying the quasi-orthogonality conditions makes
it possible obtaining closed-form formulae for the expansion coefficients only for the mixed boundary
conditions (when normal displacement and tangential traction, or, vice versa, normal traction and
tangential displacement are prescribed at two opposite sides of the rectangle).

In the variational method of homogeneous solutions [12,13], the solution of the problem, presented
in the form of the series expansion in terms of eigenfunctions, is subordinated to non-uniform boundary
conditions without using the point-wise convergence, but applying the convergence in the quadratic
norm. With this aim, a functional is introduced. It defines in norm Lo the deviation of the problem
solution from all specified boundary conditions. The minimum conditions of the functional lead to
an infinite system of linear algebraic equations for the expansion coefficients. The system can be
solved using the methods developed in monograph [14]. The variation method is applicable to the
boundary conditions in stresses, displacements and mixed ones. Solutions for some contact [15,16] and
inverse [12,17-19] problems were obtained with its application.

In [20-22], the variational method of homogeneous solutions was extended to axially symmetric
elasticity problems for the solid cylinder of semi-infinite and finite length, with the traction-free lateral
boundary and loaded end faces. In [23|, this method was used to solve an inverse problem for deter-
mining axially symmetric residual stresses in a finite solid cylinder with the use of the data obtained
by the photo-elasticity method.

In this paper, we develop the variational method of homogeneous solutions for a finite hollow
cylinder, on the ends of which the homogeneous conditions in stresses are prescribed. The inner and
outer cylindrical surfaces of the body are subjected to normal and tangential tractions. We reduced
the problems to biharmonic ones.
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50 Chekurin V. F., Postolaki L. 1.

2. Problem formulation

We consider axially symmetric elasticity problem for the hollow cylinder of finite length 2b V =
{rin <7 <7out, 0 <O <27, —b < z < b}, where r, z and 0 are radial, axial and hoop cylindrical coor-
dinates, rout and ri, stand for outer and inner radii of the cylinder. Let on the inner r = ry, and outer
7 = rout cylindrical surfaces of the body the normal i, (z) and oot (z), tangential 73, (2) and Tout(2)
tractions are prescribed:

UTT‘r:rin = oin(2), UT’z,r:rin = Tin(2), Urr‘r:rout = Oout (%), UTZ’r:rout = Tout(%)- (1)
The end surfaces z = £b of the cylinder are stress-free:
O-ZZ|Z::|:I):0’ O-TZ|Z=:|:b:0 (2)

Here 0,p, 04, 049, 0r, stand for components of the stress tensor in cylindrical coordinates. They
satisfy in domain V the equilibrium equations:

10 0

;E (TUTT) + %Urz - ;069 =0,

10 0

;E (TO'TZ) + %O’zz = O (3)

and can be express via components of strain tensor £;; by the elasticity relations

o= T y)](i —opy (1= Ve + vlees + o))
o =T y)](i —gpy (1= Ve +vler +<0n))
0= T (1= Ve +vles +6),
Ors = T (4)

Here F is Young’s modulus, v is Poisson’s ratio.
Applying the Cauchy relations [24]

ou, ou, U 1 <8ur 8u2>

T
" or’ =927 r’ "2\ 0z Or

(5)

we obtain from (3), (4) the governing equations in displacement for axially symmetric strain-stressed
state [24]

1 9 wu
2 ro_
U+ 1—2v0r r? 0,
1 0e
vt T, 0z 0 (©)

Here ¢ = ¢, + €5, + €99 =
operator.

To reduce the problem to non-dimensional form, we introduce the non-dimensional spatial coor-
dinates & = 7/rout, ( = 2/Tout, non-dimensional displacement u = wu,/rout, v = U, /Tout and stress
o =o./E, T = 0,,/E components. We also introduce the other two non-dimensional components of
stress tensor by the mappings ogg/E — 099, 0.,/ FE — 0,,.

2 2, . .
%% (ruy) — %, V2 = aig + %% + 68—25 is axially symmetric Laplace’s
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Now to obtain relations (5) in non-dimensional form one should to put in them E = 1, 0, = o,
o, = 7. Similarly, one should make the substitutions u, = u, u, = v, 9/0r — 0/9¢ and 9/9z — 0/0¢
in relations (6) to reduce them to non-dimensional form.

It is convenient to use the Love function y for the axially symmetric problem. Its dimension is
[N -m]. We introduce a non-dimensional Love function by the mapping x < x/(Erout). With its
using we can reduce the system (6) to the biharmonic equation

ViV = 0. (7)

Non-dimensional components of the stress tensor and displacement vector are expressed via intro-
duced function y by (8) and (9) correspondingly

9 52 0 0
= (), =3 (07 53).
d 0? ) 19
Ozz = a_C <(2—V) sz_ a—é>7 090 = 8_C (VVZX— 28_2() (8)
o2 0
“:_(H”)faxg’ v:2(1—y2)v2x—(1+u)8—2§- 9)

Using these formulas we obtain the presentation of the boundary conditions (1) and (2) in terms
of the Love function (relations (10) and (11) correspondingly):

0 9 9%y o
a¢ <VV X 5—£2> ‘g:gm = om(0),

a% ((1 — ) V2 — %) L:Em = Tin (Q),

a% <1/V2X - %) 'ﬁZI = oout (€),

2 (0w g%) =) (10)
% (@-nvn- )|, -

Since the ends of the cylinder are unloaded, the tangential tractions on its lateral surface should
satisfy the relation

b b
[ mnlcrac+ [ matcydc =o
To make the problem well-behaved it also is necessary to subordinate the functions of tangential

tractions to the conditions
Tin(ﬂ:b) = 0, Tout(zl:b) =0.
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3. Eigenfunctions of axially symmetric biharmonic problems for a hollow cylinder

3.1. Separation of the variables

We will seek the solution of biharmonic equation (7) in the form of separated variables [9]:

X(§,¢) = ho(§) (), (12)

choosing the radial function hg(§) in the form
ho(€) = CVH (7€) + COHP (7).

where ¢(¢) is unknown function, C(\) and C® are undefined constants, Ho(l)(’yg) and H0(2) (7€) stand
for Hankel functions (Bessel functions of the third kind) [25], 7 is undefined constant.
After substitution of presentation (12) into relations (8), (9), we obtain

7= ho(€) (9" () + (1= )77¢/(€)) = £ m(€)#'(<), (13)
7=y (€) (v () + v (1 = 1)9(Q)) , (14)
022 = ho(€) (1 - 1)¢" () — (2 — 1 (0)) , (15)
o = vho(€) (¢"'(C) = V¢ (Q)) + £ha(€)#'(C), (16)
w=(1+v)7h()¢(©), (17)
0= (1+1)ho(€) (1 - 20)¢" () + 243 (v — V() , (18)

where hy(§) = CWH{V (7€) + CAHP (1¢).
Substituting (12) into equation (7), we come to the ordinary differential equation for axial func-
tion ¢(Q):
"V (Q) = 272¢"(¢) + 70 (¢) = 0. (19)

This equation also appears, when the method of homogeneous solutions is used to solve plane
elasticity problems for a rectangular area, on two opposite sides of which homogeneous boundary
conditions in stresses or displacement are prescribed [10,12,13]. Its general solution is the function

©(¢) = (A + B() cosh(y¢) + (€' + D¢) sinh(y(), (20)

dependent on four undefined constants A, B, C, D.
It is convenient to consider function ¢(¢) as the sum of its odd

¢(¢) = Lysinh(v¢) + LaC cosh((), (21)

and even
¢(¢) = L1 cosh(v() + La¢ sinh(y¢) (22)
parts, both of which depend only on two undefined constants.

If function ¢(¢) in presentation (12) is taken in form (21), then function x (&, ) defines symmetrical
with respect to the plane ¢ = 0 strain-stressed state. In the other case, when ¢(() is taken in form (22),
X(&,¢) determine the antisymmetric state of the cylinder.

Decomposing both the normal and tangential tractions of boundary conditions (10) on odd and
even parts:

Uiond,gut (€) = 1/2 (0in,0ut(C) = Tin,out(—C)) J?II%IIIt(g)
Tt (©) = 1/2 (Tin0ut(¢) = Tinout (—C)) , Tinout ()

1/2 (Jin,out(C) + Uin,out(_C)) )
1/2 (Tin,out (€) + Tin,out (—C))
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and applying the superposition method, we can split each of the initial biharmonic problem (10),
(11) on the symmetrical and antisymmetric ones. In the symmetrical problems functions aﬁggut(g)
and 7/0%; (¢) should be used as boundary data in (10), whereas in antisymmetric ones — o/ (C)
and 7294 (¢). To determine the unknown constants in (21) and (22), we can utilize the boundary
condition (11), prescribed on the end faces of the cylinder.

3.2. The transcendental equations

Taking the odd axial function ¢(¢) in presentation (12) and substituting obtained Love function x (&, ¢)
into boundary conditions (11), we come to the homogeneous linear system of equations for the unknown
coefficients in function (21):

v cosh(vb) L1 + ((2v — 1) cosh(vb) + vbsinh(yb)) La = 0, (23)
v sinh(yb) L1 + (2v sinh(yb) + b cosh(yb)) Lo = 0.
Its compatibility condition leads to the transcendental equation
sinh(2vb) + 2vb = 0, (24)
which has only the trivial real root v = 0, therefore we will consider an infinite sequence of complex-
valued roots vy = ag + i8k, k = 1,2,..., where a and Sy are real numbers, ¢ stands for imaginary
unit.

Asymptotic formulas at £ — oo for real oy and imaginary S parts of the roots 7, can be easily
obtained from the system

sinh(2bay, ) cos(2b5) + 2bay, = 0, (25)
cosh(2bay, ) sin(2b5) + 268 = 0,
following from (24). They are the next
a 1 a ™
ap =35 In(m + 4nk), Br = ~7 + k. (26)
It is easy to see that, if 4 is a root of equation (24), then —y, = —ap — Bk, & = ar — B
and —4; = —ag + 10k are also its roots. In accordance with this, we obtain four sequences of odd
eigenfunctions of equation (19):
©r(¢) = kg sinh(yx¢) + ¢ cosh(yx(), (27)
where 7 and j are the roots of transcendental equation (24) and
ki = (1 = 2v) /v — btanh(vyb). (28)

Taking even axial function ¢(¢) in presentation (12), we come to other linear homogeneous system
for the unknown coefficients in function (22):

~sinh(yb) L1 4+ ((2v — 1) sinh(vb) + b cosh(yb)) L = 0, (29)
v cosh(yb) L1 + (2v cosh(yb) + vbsinh(yb)) L = 0.
Compatibility condition of this system brings to the transcendental equation
sinh(2vb) — 2vb = 0. (30)

This equation, as well as equation (24), has two pair of sequences of complex-conjugated roots
Y&, Y& and —vyg, —Y&, kK = 1,2,.... This enables to consider four sequences of even eigenfunctions of
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Table 1. Positive values of the real and imaginary  equation (19):

parts of roots of equations (24) and (30). .
(20 and (50 @1(Q) = ricosh(34) + Csinh(C). (31)

Odd Even

k Qg B Qg B where v and kj are the roots of transcendental

1 ] 1.02335 | 3.79089 | 0.74374 | 2.17518 equation (31) and

2 | 1.32419 | 6.97383 | 1.19683 | 5.38669

3 | 1.50895 | 10.13593 | 1.42517 | 8.55631 kp = (1 —2v) /v — beoth(yxd).  (32)

4 | 1.64319 | 13.29009 | 1.58059 | 11.71367 Asymptotic solution of equation (31) at k —

5 | 1.74880 | 16.44027 | 1.69879 | 14.86554 o0 is

6 | 1.83590 | 19.58816 | 1.79425 | 18.01444 . 1 . T

7 | 1.91003 | 22.73459 | 1.87434 | 21.16153 o = 5 In(m +dnk), By =7 +mk.  (33)

8 | 1.97457 | 25.88003 | 1.94335 | 24.30742

9 [2.03172 | 29.02476 | 2.00396 | 27.45247 We solved transcendental equations (24), (30)

10 12.08300 | 32.16897 | 2.05302 | 30.59693 numerically. The positive values of the real and

11 1219950 1 3531278 | 2.10679 | 3374092 imaginary parts of their first 20 roots are pre-

12 1217204 | 3345629 | 215122 | 36.88457 sented in Table 1. In the last row of the table the

13 1221125 | 4159954 | 2.19203 | 40.02794 values of ratio error of the corresponding roots

14 | 2.24760 | 44.74250 | 2.22975 | 43.17109 Zalcuggted with asy‘;lptﬂic formulas (26>’1 (313> a&

15 | 2.28149 | 47.88547 | 2.26483 | 46.31405 = 40 are presented. The errors were calculate

16 | 2.31322 | 51.02822 | 2.29761 | 49.45686 |

17 | 2.34307 | 54.17085 | 2.32837 | 52.59955 day, = |G — gl /o, 6Bk = |Br — Br|/Br, (34)

18 | 2.37123 | 57.31338 | 2.35734 | 55.74213 o

10 [ 2.39788 | 60.45583 | 2.33473 | 58.88462 | " I°rC Slymb‘)lshw“h tﬂ.‘ii (;.)tmeatlﬁ thelasylgp’
totic values, whereas without it — the values de-

(?2(; (2)3(2)3(1)2 6323330 (2)3(1)8?1) 6(2)8(2)(7)33 termined by numerical solving of corresponding

- - - - transcendental equation.

3.3. The odd and even eigenfunctions

Using function sequences (27) and (31), we can build the odd

g, ¢) = HP (7€) (g sinh(1€) + Ccosh(y0)), p=1,2 (35)
and even
X(,0) = HY (3€) (rg cosh(rxC) + Csinh(1€)), p=1,2 (36)

eigenfunctions of biharmonic problems for hollow cylinder with stress-free ends.
These functions identically satisfy equations (7) in the volume V and homogeneous boundary con-
ditions (11) on the ends of the cylinder at any k =1,2,... and p=1,2,....

4. The systems of homogeneous solutions of axisymmetric elasticity problems for hollow
cylinder

Using obtained systems of eigenfunctions of biharmonic problems and formulas (13)—(18), one can
obtain the systems of homogeneous solutions for corresponding elasticity problems.
In the case of symmetric problems they are

U;(gp) (&,Q) = % (%f(?’/ + 1+ k) HP (7€) — (1 + yerege) HP) (%f)) sinh(yx()

2
4 '%C (%gHép) (348) — HY (%é)) cosh (74¢) , (37)
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P(€,¢) = 2HP (1€) (2 + yurr) sinh (1:€) + 1 cosh(1,0)), (38)

o (€,¢) = —() 2 HP (3€) (vC sinh (3C) + (20 — 1 + yrp) cosh(7x0)), (39)
o€, = 7; CHP) () sinh (1)

g (2neH 006) + (14 um) HY (016) ) cosh(0). (40)

uP (€,¢) = (1 + )1 H P (1€) (1€ sinh(3,C) + (1 + arip) cosh(10)), (41)

o (€,¢) = —(1+ v)HE () (4v — 2+ sr) sinh(1C) + ¢ cosh(1C)). (42)

Here € € [&in, 1], C € [=,b], p=1,2, %, k = 1,2,... are the roots of transcendental equation (24), ki
are determined by formula (28).
For antisymmetric problems the homogeneous solutions have a look

(5 Q)= 3 <7k€(27/ +1+ ’Vk/‘ik)H(p (&) — (14 ywkn) pr) (%5)) cosh(7x()
+ T (uem (048) — I (04)) s (340), (13)
7P(€,¢) = HP (7€) (2v + yirin) cosh(14C) + k¢ sinh(140)), (44)
zzk(€ ¢) = —(w)2HP (1) (%CCOSh(%C) + (20 — 1 + k) sinh (7)), (45)
o (€,¢) = ”; CHP (44€) cosh(11,€) + < T 2wy HE (i) + (1 + vierir) HP (18)) sinh(y4C),  (46)
WP (€,¢) = (1 + v)pHP ('ka)(’mécosh(’m() + (1 4 ykx) sinh(1Q)), (47)
v,i’” (€,¢) = —(1+ ) HP (1) (4 — 2 + i) cosh(1:€) + € sinh(x0)). (48)

Here € € [&in, 1], C € [=b,b], p=1,2, %, k = 1,2,... are the roots of transcendental equation (31), Ky
are determined by formula (33).

Each homogeneous solution {0 &0, (§ (),o0 sz(§ <), aeek(g <), uk (§ <), ’uk (§ C)} identi-

cally satisfy equations (3)—(6) in volume V and homogeneous boundary conditions (2) on the ends of
cylinder.

5. Solution representation

We represent the Love function as a series expansion in terms of eigenfunctions (35) and (36). As the
eigenfunctions are complex-valued, to obtain the real Love function x(¢, (), we take it in the form

oo 4
ZZCR Xk (49)

k=1X=1

NI)—t

Here we use the denotations: C} and C? are undefined complex constants, xL(&,¢) = (1)(5 (),
X360 = X260 36O = (60, X Q) = XV (€.0), CF = CL, O} = C2, the symbols with
overline denote corresponding complex conjugate values.

In the case of an even problem we take in the right hand part of equation (49) the odd eigenfunc-
tions (35), in the other case — the even eigenfunctions (36).

We represent the solution of problem (7), (10), (11) for both symmetric and antisymmetric cases
in the form
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a:%<uv2x—ag§>+ 0 TZ%((l—I/)V2 —%)-F 0
Uzz—(%<(2—V)V2X—%>, 099:(%< v? —%g—?>+029 (50)
u__(1+y)§§28x§+ 0, v:2(1—y2)V2x—(1+u)%+vo (51)
Here y is the Love function (49) and the functions ¢°, 7%, 69, have the form
o 6—1261 e, 0= %, ooy = _Clgiz + ca. (52)

The function u° and v° are determined follow on the base of functions from (52) with the use of
relations (4) and (5):

'LLOZ— ‘ + 626 ’UO:—C Vig
2G¢ ' 2G(1+v)’ 226G (1+v)

In formulas (52), (53) c1, c2, c3 are undefined real constants: for the case of symmetry c3 = 0,
whereas ¢; = co = 0 for antisymmetry.

It is easy to verify that the strain-stressed state determined by functions o, 79, 089, 0. =0
satisfy the equation of equilibrium (3) and the compatibility equations in stresses (Beltrami-Mitchell
equations [26]).

Solution Presentation (50), (51) identically satisfies the equations (3)—(6) in the body volume V and
homogeneous boundary conditions (2) on its the cylinder bases for arbitrary values of the coefficients
in Love function series expansion (49).

+2c3(1+v)Iné€. (53)

6. The variational method of homogeneous solutions

We subordinate the solutions (49) to the boundary conditions (10) in the quadratic norm Lo, intro-
ducing functional

F= /Ob [(U!5=§in — Q)"+ (le=g,, - Tin(O)z] @

b
2 2
+/ [(O-|§:1 - Uout(()) + (T|§:1 - Tout(C)) :| d< (54)
0
Substituting into the functional presentation (50) and applying to it the necessary conditions of the
minimum OF OF
— =0, — =0, =1,2,..., A=1,...,4, j=1,....4
acH, dc; " J
we come to the linear algebraic system
co 4
NS Mmyck=K),, m=12.., A=1...4 (55)
k=1 p=1

Its coefficients for symmetric problems are determined as
VR B L A
My =3 /0 (2 (€ )k (6 ) + 7o (s O (600, ) ) €

b
3 [ (0ot 0.0 + R 0ra.0)
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L e b e * 5 b
_%</0 am(im,C)dC/o ak(ﬁm,odu/o am(1,<)dg/0 ak(1,<)d<>, (56)

K = /O b (10 () (Eins ) + Tn(C)7n (Ems ©) ) dC

+ /Ob (Fout (Qam(1.€) + 7o (Qrn(1,€) ) dC

__</ o dC/ A (€m: ) d<+/baout dc/ 1<dc> (57)

Functions o} (£,¢), 71/(£,¢) in these formulas are calculated by formulas (37), (38), in which ~;, are
roots of equation (24) and constants rj, are defined by formula (28).
In the case of antisymmetry, the coefficients of system (55) have the look

1 b
33 = 5 [ (A6 Ot €0, ) + 7o 6. ))

+%/Ob(0%<1,<> £(1,0) + (L, OT(1,Q)) de

3 b b b
o ([ ntmrac [ attencrac+ [ onacac [(atacac). 69

K = /0 b (710 () (€ns ) + ()7 (6ns ©) ) dC

+ /Ob (Fout (Qom(1,€) + 7o Qrn (1,€) ) ¢

__< / oin(C)dC / A (6, O)dC + /baout e 1<d<> (59)

Functions o} (£, ¢), 71/ (§,¢) in these formulas are calculated by formulas (43), (44), in which ~;, are
roots of equation (30) and constants kj, are defined by formula (32).
We used the following notations in the formulas (56)—(59):

oh(€,0) = o (€,0), 02EQ) =0 (E,Q), ad(€,0) =5 (E,C), al(€,¢) = 5D C),
60 =1 EQ), TEQ =0, TEQ) =TE 0, TEQ) =700

The constants ¢; are determined as

2
o=y [ (53S0 (016 0)  o£11.0) () + ()

k=1p=1
1
“wa

2
C3 = —

co 4
Z Z C“ ( in0k (gm, <) - O-IQL(L C)) - gizno-in(g) + Uout(<)> d<7
=1 /,1,:1

2
k
b oo 4
/ (% Z Z C;: (Ug(fin, C) - Ug(la C)) - Uin(C) + Uout(<)>dC7
k=1 p=1

I

B(1—¢&)

3 b 1 oo 4
4= ey /0 <§ ;; Cyt (€03 (€n, Q) = o3 (1,0)) = &hoin(O) + aout@))dc.
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7. Numerical study of the problem solutions

We solved the system (55) with the use of reduction method, keeping in the expansion (49) a finite
number N of terms. This leads to the linear 4N x 4N system of algebraic equations in the form:

N 4
ZZM%QCZL:K% m=12...,N, A=1,...,4. (60)
k=1 p=1

To evaluate numerically the convergence of reduction method, we took the functions of right-hand
sides in the boundary conditions (10) for symmetric and antisymmetric cases in forms (61) and (62)

respectively:
2
oin(¢) = —0.700 exp <—%> 7
1
—(C — 2 _ 9
Tin(¢) = 0.779 exp <(<d—g8<0)> — 0.7p exp <(C+d—g8<0)> )
Tout () = a9 exp <(<d7§®)> + 0 exp <(C+%C0)> ,
A — ) . 2
Tout(¢) = —7o €xp <%> =+ To €xXp (%) . (61)
and 2 2
2 2
oin(¢) = 0.770 exp <—(C—d$ﬁo)> — 0.7T1p exp (ﬁ#) ,
! 1
2
Tin(¢) = —0.700 exp (—%) 7
1
2 2
Uout(C) = —00p€xXp <_(C;2CO)> + og exp <_(C%C0)> ,
da dj
Tout (¢) = 7o €xp <%> + To €xp (%) . (62)
2 2

Errors for the obtained solutions were evaluated by the values of corresponding functionals as:
1/2
5ry = (FN)? 2. (63)

The errors of solutions, obtained at og = 0.05, 79 = 0.05, v = 0.25, &, = 0.4, (o = 0.5b, d; = 0.15b,
do = 0.1b, b = 2 for different number N in the cases of problem symmetry and antisymmetry are given
in Table 2.

Table 2. Reduction errors.
N 3 5 7 9 11 13 15
0r,, symmetric 0.15504 | 0.08583 | 0.04294 | 0.01762 | 0.00665 | 0.00201 | 0.00067
0r,, antisymmetric | 0.15365 | 0.07521 | 0.03776 | 0.01754 | 0.00647 | 0.00203 | 0.00071

The plots of dimensionless stress components o/og, 7/79, 0gg/00 and o0,./0( as functions of axial
coordinate, calculated at various values of the radial coordinate £ € {0.4, 0.55, 0.75, 1} (curves 1 to 4
correspondingly) for the symmetric problem are shown in Figs. 1-4.

Plots of the same dimensionless stress components as functions of axial coordinate, calculated at
¢ € {0.4, 0.55, 0.75, 1} (curves 1 to 4 correspondingly) for the antisymmetric problem are shown in
Figs. 5-8.
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Fig. 3. Axial distributions of the hoop stress compo-
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Fig. 5. Axial distributions of the normal stress com-
ponent at various values of radial coordinate.

0.5

0.0

-0.5

~1.0 | : |
—2 ~1 0 1 ¢

Fig. 2. Axial distributions of the tangential stress
component at various values of radial coordinate.
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Fig. 4. Axial distributions of the axial stress compo-
nent at various values of radial coordinate.
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Fig.6. Axial distributions of the tangential stress
component at various values of radial coordinate.

All the curves presented in Figs. 1-8 were calculated at N = 15. As one can see, if the boundary
data are sufficiently smooth functions, the graphs of stress components o, and o,, on the inner and
outer surfaces (curves 1 and 4 in Figs. 1, 2, and 5, 6) coincide with the corresponding graphs of the
prescribed on these surfaces normal o and tangential T traction.

To study how the method behaves when the boundary data in conditions (10) are high-gradient
functions, we solved two problems for the case of symmetry problem, using as boundary data func-
tions (64) and (65), and another two problems for the case of antisymmetry with boundary functions
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in forms (66) and (67):

0.5, I¢| <1,
Uin(C) = 07 Tin(C) = 07 Uout(() =00 _17 1< ‘C‘ < 157 Tout(C) = 0;
0, IC| > 1.5,
0, IC| <1,
(=0, () =0, o) =0, mn(@=m Y SKSLS
0, ¢ > 1.5;
0.5, [¢]<1,
O-in(C) = 0’ Tin(C) 07 Uout(C) 0’ Tout({) =170 _17 1< ‘C‘ < 157
0, ¢l > 1.5;
O-in(C) 0’ Tin(C) 07 Uout(C) 0o { _0055 é- ; 87 Tout(C) =0.

~14 | . |
-2 ~1 0 1 ¢ —2 ~1

Fig. 7. Axial distributions of the hoop stress compo-
nent at various values of radial coordinate.
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Fig. 8. Axial distributions of the axial stress compo-
nent at various values of radial coordinate.
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Fig.9. Axial distributions of the normal stress

component for solution, obtained at boundary func-
tions (64).

0

;

Fig.10. Axial distributions of the tangential stress
component for solution, obtained at boundary func-
tions (65).

In Figs.9 and 10 axial dependencies of the non-dimensional normal o /o and tangential 7 /7y stress
components calculated for £ € {0.4, 0.55, 0.75, 1} (curves 1-4) with the use of solutions, obtained
for boundary functions in forms (64) and (65) correspondingly are shown. Curves 5 correspond the
functions prescribed on the boundary. The solutions were obtained for N = 15.

Similar plots for antisymmetric problems with boundary functions (66), (67) are presented in

Figs. 11, 12.
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component for solution, obtained at boundary func-  component for solution, obtained at boundary func-
tions (66). tions (67).

As we can see, even for discontinuous boundary functions obtained numerical solutions are rather
precise — the reductions errors for both symmetric and antistmmertic problems do not exceed 6-1073%.

8. Conclusions

The hollow cylinder is a three-dimensional body, bounded by two systems of surfaces: the lateral
surface boundary is formed by two coaxial cylindrical surfaces, and the bases are two plane areas.
Using the principle of superposition, the problems of the theory of elasticity for such bodies can be
reduced to a sequence of two problems: in the first case, the homogeneous boundary conditions are
given on a system of the lateral surfaces boundary, and in the second case — they are given on another
one of the cylinder’s bases. If the lateral surface is formed by coaxial circular cylinders, and the
bases are orthogonal to them, then, under the appropriate boundary conditions, one can consider the
axially symmetric statement for both of these cases. Using the Love function, axisymmetric problems
of the theory of elasticity for a straight circular cylinder can be reduced to a biharmonic equation in
cylindrical coordinates with the corresponding boundary conditions.

We have considered the elasticity problem for the straight hollow cylinder, on the basis of which
homogeneous boundary conditions in stresses are given. Applying to this problem the method of
variables separation, according to which the biharmonic problem solution is presented as the product
of axial and radial functions, we came to a homogeneous boundary value problem for the ordinary
differential equation regarding the axial function. Using the eigenfunctions of this problem, we con-
structed a system of homogeneous solutions of an axially symmetric elasticity problem for the hollow
cylinder with unloaded bases. In fact, the solution of the biharmonic problem was represented by its
development in terms of the obtained systems of homogeneous solutions.

This representation depends on the four infinite sequences of real constants, which can be used
to subordinate the solution to four boundary conditions, prescribed on the lateral boundary. We
have applied for that the variational method, which was previously developed for plane elasticity
problems in a rectangular domain, as well as for a solid cylinder. Under this method subordination the
solution to the boundary condition is carried out not pointwise, but “in average”, i.e. in the norm L.
For this purpose, a functional, which determines the mean square deviation of the problem solution
from all boundary functions, prescribed on the lateral surface, was introduced. Applying the necessary
minimum conditions to this functional, we obtain the infinite system of algebraic equations with respect
to series expansion coefficients C,’; .

The system was solved applying the reduction method. By this method the representation of
biharmonic equation solution is restricted by first N number of terms in its series development, what
leads to a finite system of algebraic equations of size N x .
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The carried out numerical studies confirmed the good convergence of the solution with growth of
N value. The reduction error, calculated from the value of target functional at N = 15 for continuous
boundary functions, does not exceed 7-107°%. The study of the solution convergence for problems with
boundary functions containing jump discontinuity (piecewise homogeneous) also gave a good result —
the reduction error, calculated by the value of the target functional, is of order 6 - 1073%.
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Ocecnmetpuyna 3apaqa Teopii NPY>XHOCTI 411 NOPOXKHUCTOrO
UUNiHApa 3 HEHaBaHTaXXeHMMUN OCHoBamu. AHanituqxe
pO3B'SI3yBaHHA i3 BUKOPUCTaHHAM BapiauiiniHOro MeToay OA4HOPIAHMNX
po3B’s3KiB

Yexypin B. ©.12, TTocromaxi JI. 1.1

L Inemumym npukaadnuz npobrem mexariu i mamemamusu im. . C. Iidempueawa HAH Ypainu,
eys. Hayxosa, 3-6, JIveis, 79060, Yxpaina
2 Kysscoko-Iomopcvruti Ynisepcumem y Budzows,
sya. Topynwocvka, 55-57, Budzow, 85-023, Ioavwa

PosrisinyTo ocecumerpudHy 3a7ady s HOPOXKHUCTOIO IWJIHHAPA i3 HEHABAHTAYKEHUMU
ocuoBamu. Ha BHyTpimHiit i 30BHINHIA MUIIHAPAIHAX MMOBEPXHAX 33/IaHO HOPMAJIBHI i
TaHIMEHIAJbHI HaBaAHTAXKeHHsI. 3a1a9y 3BEJICHO 0 OIrapMOHITHOrO PIBHAHHS 3 BiAIOBiI-
HAMH KPafOBUMHI yMOBAMH. 3a JOTIOMOTOK METOIY BiJOKpEMJIEHHSI 3MIiHHUX OTPUMAHO
OJTHODPIZTHY KpalloBy 3a/1ady st 3BUYARHOTO JudepPEeHIiaIbHOr0 PiBHsIHHS. BUKOpucToBy-
09U BJIacHI GYHKINI 11i€l 3a1a4i, TOOY/LyBAHO CUCTEMY OJHOPITHUX PO3B’SI3KiB BUXiIHOL
GirapmonivHOT 3aa4i. I Po3B’A30K, SIKMil MOJAHUI SK PO3BHHEHHS 3a IUMH (DYHKISMA,
3aJIEKUTH BiJl 90TUPbOX OE3MEXKHUX IOCJIOBHOCTEN HEBU3HAYEHMX JIMCHAX KOHCTAHT.
s Bu3HaUYEHHS HEBIIOMUX KOHCTAHT 3aCTOCOBAHO BapiallifHWil MeTOJ, 3riTHO 3 SKUM
i ATOPSAIKYBaHHS PO3B 3Ky KPAOBUM yMOBaM, IO 3a/IaHi HA IUJIHIPUIHIX TOBEPXHSX,
3JIACHIOETHCST HE IIOTOYKOBO, a “B cepeaHboMy’ — 3a HOPMOIO Lo. 3 Ii€l0 METOI0 BBEJIEHO
dyHKIIOHAN, SKUIl BUSHAYAE CePeIHbOKBAIPATHYHE BiIXMJIEHHS PO3B’'A3KY BiJl KpailoBUX
YMOB, IO 33/IaHi Ha IUIHAPUIHIX OBEPXHAX. Y PE3YyJIbTaTi OTPUMAHO Oe3MEXKHY CHCTe-
My aJredpaldHuX PIiBHSAHB, Ky PO3B’S3aHO 3a IOMMOMOrOI0 MeToay peiykKiii. [Iposemeni
KUTBbKICHI JOCTIIZKEeHHS MiATBEPANIN 100py 30i>KHICTH METOIY.

Kntouosi cnosa: sadaui meopii npyostcrocmi, nopodchucmut yuaindp, sapiauitinutl me-
mod 00HOPIOHUT PO36 A3KI6.
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