Георгій Мелех, Артур Бондарук

Львівський науково-дослідний радіотехнічний інститут

ТЕПЛОФІЗИЧНИЙ АНАЛІЗ ГЕРМЕТИЧНОГО БЛОКА З ТЕПЛОПРОВІДНИМИ ДРУКОВАНИМИ ПЛАТАМИ

© Мелех Георгій, Бондарук Артур, 2004

Наведено результати теплофізичного розрахунку та виготовлення п'ятикоміркового герметичного блока з теплопровідними друкованими платами.

The results of thermophysical design and manufacture of a five-cell hermetic unit with a heat-conducting printed board are presented.

Однією з важливих проблем надійності радіоелектронної апаратури (РЕА) в процесі її експлуатації є забезпечення нормальних теплових режимів елементної бази. Причина цього криється в різних фізичних та хімічних процесах, які за підвищення температури або розвиваються лавиноподібно, або призводять до посиленого старіння матеріалів. Зі збільшенням температури всередині блоків на 10 °С інтенсивність відмов в середньому збільшується на 25 % [1]. У [2] показано, що ефективним методом температурного розвантаження елементної бази з одночасним зменшенням маси та габаритів блоків є використання теплопровідних друкованих плат. Існують математичні моделі різного рівня складності [3-5], за допомогою яких з'являється можливість прогнозування теплових навантажень блоків різного конструктивного виконання, в тому числі герметичних, де як комутаційні комірки використовуються звичайні дво- або багатошарові плати. При виготовленні герметичних блоків, в яких застосовуються теплопровідні друковані плати, істотно зменшується температурний градієнт по площині плати і відповідно поліпшуються теплові режими елементної бази. Але через те, що до останнього часу використання теплопровідних друкованих плат з різних причин було досить обмежене, аналіз ефективності їх використання практично не проводився. Метою роботи ϵ порівняльний аналіз теплових режимів елементної бази герметичного блока із звичайними багатошаровими та теплопровідними платами.

Аналіз проводився для таких вихідних даних:

робоча температура довкілля +55 °C;

- атмосферний тиск 780 мм. рт. ст.;

охолодження блока природне, повітряне;

170 х 200 мм; - габарити комірки

- розсіювані (теплові) потужності комірок 10 BT:

 $0.05 \div 0.35 \text{ BT};$ розсіювані (теплові) потужності мікросхем

+85 °C; - допустима робоча температура елементної бази

- час неперервної роботи 8 гол.

Конструктивні дані (компонування комірок в блоці та мікросхемі на комірках, розміри, матеріали і покриття конструктивних елементів блока і комірок) прийняті згідно з комплектом конструкторської документації (КД).

Розрахунок стаціонарного теплового режиму проводився в такій послідовності. На основі компонування блока і комірок визначалась фізична модель розміщення основних елементів та вузлів конструкції, на підставі фізичної моделі складалась теплова модель-система тіл (елементів теплової моделі) з ізотермічними поверхнями та джерелами тепла, між якими здійснюється теплообмін. На базі теплової моделі складалась математична модель-система нелінійних алгебраїчних рівнянь теплового балансу для всіх елементів теплової моделі виду [3]:

$$\sigma_{ic}(t_i - t_c) + \sum_{j=1}^{n} \sigma_{ij}(t_i - t_j) = P_i \quad (i = 1, 2...n) ,$$
 (1)

де t_i , t_c – температури i-го елемента теплової моделі і довкілля, °C; σ_{ij} , σ_{ic} — теплові провідності між i-им та j-им елементами, і-м елементом і довкіллям при теплообміні конвекцією, випромінюванням і теплопровідністю, $B\tau$ /°C; P_i — розсіювана потужність i-го елемента, $B\tau$; n — кількість елементів теплової моделі.

Теплова модель показана на рис. 1.

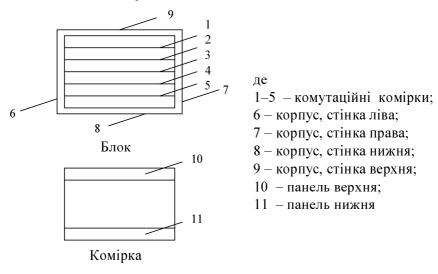


Рис. 1. Теплова модель блока

Теплові провідності розраховуються за формулами [3]

$$\sigma_{ij}^{KB} = \sigma_{ic}^{K} + \sigma_{ic}^{B} , \qquad (2)$$

$$\sigma_{ij}^{nB} = \sigma_{ij}^n + \sigma_{ij}^B \quad , \tag{3}$$

$$\sigma^K = \alpha^K F^K \,, \tag{4}$$

$$\sigma^B = \alpha^B F^B \ , \tag{5}$$

$$\sigma^n = \alpha^n F^n , \qquad (6)$$

$$\sigma_{ij}^{T} = \frac{1}{R_{ij}^{T}} , \qquad (7)$$

де $\sigma_{ic}^{\ K\ B}$ — теплова провідність за рахунок вільної конвекції в необмеженому просторі; $\sigma_{ij}^{\ n}$ — теплова провідність природної конвекції у повітряних прошарках; $\sigma_{ic}^{\ b}$, $\sigma_{ij}^{\ b}$ — випромінювання;

 σ_{ij}^T — теплопровідність, Вт/град; α — коефіцієнт тепловіддачі, Вт/м²-град; F — площа теплопровідності, м²; R_{ij}^T — тепловий опір, град/Вт.

Коефіцієнт тепловіддачі випромінюванням розраховується за формулами

$$\alpha_{ij}^{b} = \epsilon_{nij} \varphi_{ij} f(t_i \cdot t_j), \qquad (8)$$

$$f(t_i, t_j) = 5,67 \cdot 10^{-8} \frac{(t_i + 273, 2)^4 - (t_j + 273, 2)^4}{t_i - t_j};$$
 (9)

$$\varepsilon_{nij} = \frac{1}{\frac{1}{\varepsilon_i} + \frac{1}{\varepsilon_j} - 1} , \qquad (10)$$

де ε – ступінь чорноти; φ – коефіцієнт опромінювання.

Коефіцієнти конвективної тепловіддачі пластини за рахунок вільної конвекції в необмеженому просторі розраховується за формулами [4]

$$\alpha_{ic}^{K} = \frac{N u_L \cdot \lambda}{L} , \qquad (11)$$

$$N u_{L} = C (G r \cdot P r)_{L}^{n} , \qquad (12)$$

де Nu_L – критерій Нусельта; $Pr - \kappa pumepій Прандля; <math>\lambda$ – коефіцієнт теплопровідності повітря, Br/м-град.; L – вертикальний розмір пластини, м; C, n – емпіричні коефіцієнти.

Коефіцієнти конвективної тепловіддачі у повітряних прошарках між комутаційними платами розраховуються за формулами [5]

$$\alpha_{ij}^{n} = \frac{N_{u\delta} \cdot \lambda}{\delta} , \qquad (13)$$

$$N_{u\delta} = 0, 18 (G r \cdot P r)^{0,25} , \qquad (14)$$

де δ – товщина повітряного прошарку, м

Теплові опори при кондуктивній теплопередачі розраховуються за формулою

$$R^{T} = \frac{l}{\lambda^{T} \cdot F^{T}}, \qquad (15)$$

де l – довжина провідника тепла, м; λ^T – коефіцієнт теплопровідності матеріалу провідника тепла, Вт/м·град; F^T – площа поперечного січення провідника тепла, м².

Система рівнянь для п'ятикоміркового блока має такий вигляд:

$$\sigma_{I-2}^{Bn}(t_1 - t_2) + \sigma_{I-6}^{T}(t_1 - t_6) + \sigma_{I-7}^{T}(t_1 - t_7) + \sigma_{I-8}^{Bn}(t_1 - t_8) = 10 ,$$

$$\sigma_{2-1}^{Bn}(t_2 - t_1) + \sigma_{2-3}^{Bn}(t_2 - t_3) + \sigma_{2-6}^{T}(t_2 - t_6) + \sigma_{2-7}^{T}(t_2 - t_7) = 10 ,$$

$$\sigma_{5-4}^{Bn}(t_5 - t_4) + \sigma_{5-6}^{T}(t_5 - t_6) + \sigma_{5-7}^{T}(t_5 - t_7) + \sigma_{5-9}^{Bn}(t_5 - t_9) = 10 ,$$

$$\sigma_{A-3}^{Bn}(t_4 - t_3) + \sigma_{A-5}^{Bn}(t_4 - t_5) + \sigma_{A-6}^{T}(t_4 - t_6) + \sigma_{A-7}^{T}(t_4 - t_7) = 10 ,$$
(16)

$$5 \qquad \sigma^{B\,n}_{5-4}\left(t_{5}\,-t_{4}\,\right) + \sigma^{T}_{5-6}\left(t_{5}\,-t_{6}\,\right) + \sigma^{T}_{5-7}\left(t_{5}\,-t_{7}\,\right) + \sigma^{B\,n}_{5-9}\left(t_{5}\,-t_{9}\,\right) = 10 \ ,$$

$$6 \qquad \frac{\sigma_{6-1}^T(t_6-t_1)+\sigma_{6-2}^T(t_6-t_2)+\sigma_{6-3}^T(t_6-t_3)+\sigma_{6-4}^T(t_6-t_4)+\sigma_{6-5}^T(t_6-t_5)+\sigma_{6-8}^T(t_6-t_8)+\sigma_{6-9}^T(t_6-t_9)+\sigma_{6-10}^T(t_6-t_{10})+\sigma_{6-11}^T(t_6-t_{11})+\sigma_{6-c}^{BK}(t_6-t_c)=0}{\sigma_{6-8}^T(t_6-t_8)+\sigma_{6-9}^T(t_6-t_9)+\sigma_{6-10}^T(t_6-t_{10})+\sigma_{6-11}^T(t_6-t_{11})+\sigma_{6-c}^{BK}(t_6-t_c)=0} \ ,$$

$$7 \qquad \frac{\sigma_{7-1}^T(t_7-t_1)+\sigma_{7-2}^T(t_7-t_2)+\sigma_{7-3}^T(t_7-t_3)+\sigma_{7-4}^T(t_7-t_4)+\sigma_{7-5}^T(t_7-t_5)+}{\sigma_{7-8}^T(t_7-t_8)+\sigma_{7-9}^T(t_7-t_9)+\sigma_{7-10}^T(t_7-t_{10}+\sigma_{7-1}^T(t_7-t_{11})+\sigma_{7-c}^{BK}(t_7-t_c)=0, }$$

$$8 \qquad \frac{\sigma_{8-1}^{Bn}(t_8-t_1)+\sigma_{8-6}^{T}(t_8-t_6)+\sigma_{8-7}^{T}(t_8-t_7)+\sigma_{8-10}^{T}(t_8-t_{10})+\sigma_{8-11}^{T}(t_8-t_{11})+\sigma_{8-6}^{BK}(t_8-t_c)=0}{\sigma_{8-c}^{BK}(t_8-t_c)=0} \ ,$$

$$9 \qquad \frac{\sigma_{g-5}^{Bn}(t_9-t_5)+\sigma_{g-6}^T(t_9-t_6)+\sigma_{g-7}^T(t_9-t_7)+\sigma_{g-10}^T(t_9-t_{10})+\sigma_{g-11}^T(t_9-t_{11})+\sigma_{g-6}^{BK}(t_9-t_c)=0}{\sigma_{g-6}^{BK}(t_9-t_c)=0} \ ,$$

$$10 \qquad \sigma_{II-6}^{T}\left(t_{11}-t_{6}\right)+\sigma_{II-7}^{T}\left(t_{11}-t_{7}\right)+\sigma_{II-8}^{T}\left(t_{1}-t_{8}\right)+\sigma_{II-9}^{T}\left(t_{11}-t_{9}\right)+\sigma_{II-c}^{BK}\left(t_{11}-t_{c}\right)=0,$$

$$11 \qquad \sigma_{10-6}^{Bn}\left(t_{10}-t_{6}\right)+\sigma_{10-7}^{T}\left(t_{10}-t_{7}\right)+\sigma_{10-8}^{T}\left(t_{10}-t_{8}\right)+\sigma_{10-9}^{T}\left(t_{10}-t_{9}\right)+\sigma_{10-c}^{BK}\left(t_{10}-t_{c}\right)=0.$$

Розв'язок системи рівнянь проводився чисельним методом за допомогою спеціально розробленої програми. Результати розрахунків наведені у таблиці на рис. 2.

- 1 звичайна багатошарова плата завтовшки 3 мм, $\lambda = 2$;
- 2 багатошарова плата з металевою основою з алюмінієвого сплаву АМцН, λ = 155;
- 3 багатошарова плата з основою з алюмінієвого сплаву АД1H, λ = 218;
- 4 багатошарова плата з основою з міді M1, $\lambda = 385$.

Товщина металевої основи – 2 мм.

Результати розрахунків

Елемент теплової моделі		Розрахункова температура, °С			
		1	2	3	4
1	Комірка 1	131,34	71,47	70,71	69,82
2	Комірка 2	168,80	72,94	71,89	70,70
3	Комірка 3	179,96	73,13	72,03	70,79
4	Комірка 4	170,82	72,98	71,92	70,72
5	Комірка 5	136,27	71,75	70,93	69,99
6	Корпус стінка ліва	62,93	65,38	65,40	65,43
7	Корпус стінка права	62,92	65,38	65,40	65,43
8	Корпус стінка задня	64,71	63,26	63,24	63,22
9	Корпус стінка передня	64,79	62,93	62,91	62,89
10	Панель верхня	61,66	61,63	61,63	61,63
11	Панель нижня	61,94	62,12	62,12	62,12

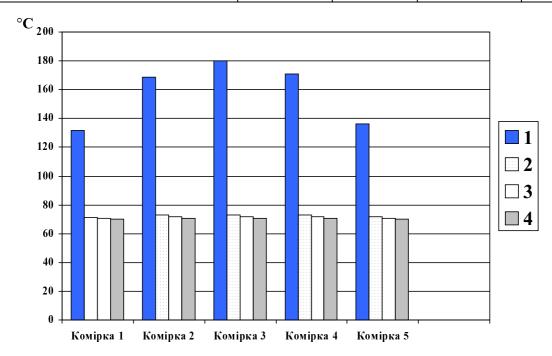


Рис. 2. Результати розрахунків теплових режимів комірок 1–5

Висновки

Аналіз отриманих розрахунків і заміри теплових режимів на реальних виробах показують:

- 1. За відсутності кондуктивного тепловідведення від комірок до корпусу блока (звичайні багатошарові плати) середня температура комірок збільшується на 60–107 °C.
- 2.3а відсутності індуктивного тепловідведення температури комірок відрізняються між собою на $49~^{\circ}$ С.
 - 3. За наявності теплостоків температури комірок практично не відрізняються (на 1,7 °C).

- 4. Без застосування теплостоків (теплопровідних друкованих плат) температури комірок недопустимо високі.
- 5. Для забезпечення оптимального теплового режиму в конструкцію комірки повинен входити теплосток завтовшки близько 2 мм з коефіцієнтом теплопровідності приблизно 155 Вт/м·град. Застосовувати матеріали з більшою теплопровідністю немає необхідності.

Виконаний теплофізичний аналіз доводить ефективність використання теплопровідних друкованих плат і може бути основою для конструювання герметичних теплонавантажених блоків перспективної спеціалізованої РЕА і відмовою від застосування дорогих матеріалів з більшою теплопровідністю.

1. Роктон Л.П., Спокойный Ю.Е. Обеспечение тепловых режимов при конструировании РЭА. — М., 1976. 2. Овсищер П.И. и др. Несущие конструкции радиоэлектронной аппаратуры. — М., 1988. 3. Дульнев Г.Н., Тарновский Н.Н. Тепловые режимы электронной аппаратуры. — Л., 1971. 4. Дульнев Г.Н., Семяшкин Э.М. Теплообмен в радиоэлектронных аппаратах. — Л., 1968. 5. Тепло- и массообмен. Теплотехнический эксперимент: Справочник / Под общей ред. В.А. Григорьева и В.М. Зорина. — М., 1982.