
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 3, No. 1, 2018

MICROPROCESSOR WITH TAGGED REGISTERS
REALIZING PARALLELISM

Volodymyr Dobrovolskyi
Independent CPU Architect, Kyiv, Ukraine
Author's e-mail: vol.dobrovol@gmail.com

Submitted on 07.12.2018

© Dobrovolskyi V., 2018

Abstract: A RISC microprocessor architecture that realizes
a specific method of parallelism including the instruction level
parallelism has been considered. The processor has been
provided for 4-bit data type tag in each register of the register
file. There are 14 data type tag values. The zero data type tag
indicates that the register is free, otherwise it is busy. The
destination register inherits the data type tag from the first
source register. After an operation the data type tags in the
source registers may be either zeroed, or may remain
unchanged for further usage. All machine operations are
classified into computational operations (about 40), and
auxiliary operations (about 35-45). The computational
operations include integer, unsigned, floating point, logical,
string, and conversion operations. The processor has specific
instruction formats in which there are 6-bit fields both for the
operation code and the computational code. A single primary
computational instruction having zero in the operation code
field, and a meaningful code in the computational code field is
enough to express all computational operations. A compiler
generates groups of instructions to perform in parallel, the
reordering of instructions may take place. There are several
clones of the primary computational instruction with
operation codes differing from zero. A clone computational
instruction with a certain operation code is placed as a header
instruction for the instruction group pointing out a certain
number of instructions in the group to issue in parallel. The
primary instructions may be placed inside the groups. The
concept of flux is introduced as a composite of stream of
instructions and a flow of processed data maintained by the
flux hardware. Fluxes improve the usage of multiple functional
units, and may be used for further parallelization.

Index Terms: microprocessor, RISC, instruction set
architecture, instruction level parallelism, flux, register
tags.

I. INTRODUCTION

Parallelization is the mainstream in the con-
temporary microprocessor architecture, and is imple-
menting both within a single processor (uniprocessor or
core), and in multicore processors in which several or
several dozens of uniprocessors are arranged on one die
and are connected with very fast interconnects.

Other trends in parallelization are systems of
massively-parallel computing. First of all, these are
Graphical Processing Units (GPUs), containing hundreds
and thousands of relatively simple processors (cores) on
one die, also they are called manycore processors. They
perform not only graphical, but a wide spectre of other

computations. Also there are spatially distributed
systems of computers, which perform deeply parallelized
problems (cloud computing). Supercomputers are
systems of thousands, or tens of thousands both usual
CPUs, and GPUs with very fast interconnects. Therefore,
the supercomputer is a massively parallel system.
Servers in data centers consist of several tens of poweful
microprocessors.

There are many monographs and manuals on these
vast topics, e. g. [1, 2, 3, 4, 5, 6, 7].

The principal ways of hardware parallelization in the
traditional microprocessors are the following:

1. Multiple functional deployment units (multiunit
architecture) on one die. Availability of multiple
functional units is a mandatory condition for
parallelization, otherwise the parallelization is not
possible, though the data exchange between registers of
CPU and the main computer memory may be performed
in parallel with a computational operation.

2. Superscalar architecture, i. e hardware-based
parallelization of instruction stream onto multiple
functional units. Superscalar parallelization emerged in
the mid of sixties or earlier. It is effective if the
processor has at least two functional units. The
superscalar approach does not demand any special
efforts from the programmer to take into account,
whereas the programming for multicore processors is
more complicated and depends on the number of
processor cores.

3. Speculative execution is used for instructions
performing branch and conditional transfer of control,
thus, enabling to economize one or more machine cycles.

4. Out-of-order execution is a transposition of
instructions performed by hardware in a buffer which
accumulates a score or more of instructions. The
experience shows that such reordering of instructions
substantially increases the efficacy of computations.

5. Simultaneous multithreading (SMT) is the main
contemporary concept of parallelization for unipro-
cessors, invented in the nineties of the past century [8].
The SMT actually absorbs superscalarness, however the
SMT processor may be called the superscalar one. The
threads are named logical processors. They are formed
by the hardware means, and this hardware is rather
complex. It is better for transistors for the SMT hardware
to be used for an additional functional unit. Really, the

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Dobrovolskyi8

most important characteristic of the SMT uniprocessor is
the number of functional units. A significant feature of
the SMT is the fact that each thread has its hardware
context: register file, program counter, stack and register
with the stack address, and the program status word or
record (PSR) with various bit flags. The overwhelming
majority of the contemporary SMT microprocessors has
two threads, but each core of the newest IBM Power9
microprocessor has 8 threads.

Pipelining in functional units may be considered a
specific parallelization in which instructions are issued
with a shift on one machine cycle. It is a well mastered
technology.

The present author proposed also a method of
parallelization on the instruction level parallelism (ILP)
for RISC processors via a special non-pipelined
parallelizing instruction [9].

A separate case of uniprocessor architecture is a
very long instruction word (VLIW) architecture. The
VLIW architecture has been successful for the
specialized processors for image and graphical data
processing etc., but failed as the general purpose
processor.

The proposed method of parallelizing, stated in the
paper, is based, firstly, on the notion of the instruction
group to issue in parallel, and secondly, on the idea of the
tagged registers of the register file [10, 11]. The tagging
permits to form a specific instruction format, so that the
first instruction of an instruction group (a header
instruction) points out the number of instructions in the
group simultaneously. The instruction groups are created
by the smart compiler. The proposed approach secures
much more complete extraction of the ILP for ordinary
programs, though, due to the usage of smart compilers.
Also, the hardware is substantially simpler. Distantly, the
proposed approach resembles a peculiar VLIW processor
with variable number, one to four, of operative fields [12].

The subsequent material is stated on the exemplary
32-register file with 64-bit registers. The data of the
floating point type may embrace 1, or 2 64-bit registers.
The data of the bit, byte, and double byte types may
embrace 1, 2, or 4 64-bit registers. Groups of instructions
are assumed to contain maximally up to 10–15 ins-
tructions to issue in parallel. The instructions are 32-bit.

II. DATA TYPE REGISTER TAGS
The notion of the data tag was used as a data

identification prefix in some computer architectures of
the past. An American inventor J. K. Iliffe pioneered the
usage of tags to mark data in the main computer
memory, specifically to mark machine words [13]. The
stack computers of the Burroughs Corporation in the
early sixties had 3-bit tag to mark the data type of the
48-bit machine word [14]. The Soviet Elbrus-1 and
Elbrus-2 stack computers (multiprocessor computing
complexes) in the seventies were provided with the 8-bit
tag that pointed the data type and the data access rules
for the 64-bit machine word [7]. The tags were
considered as some extension of machine words in the

main computer memory. These computers had register
stacks, not the register files. In both mentioned
computers after the data (with tags) have been loaded
into a stack, an executable instruction explores the tag to
decide what further action to perform if data types were
not adequate to the instruction.

History of computer science has shown that tagging
data in the main memory was a fallacy, this idea
revealed itself nonproductive. Some improvement in
reliability due to tagging demanded large overhead for
additional memory and did not justify tagging in the
main computer memory at all. In the sixties (Burroughs)
and in seventies (Elbrus) the main computer memory
was very expensive, and to spend 6.25 and 12.5 percent
of it was impractical.

The proposed microprocessor architecture has 4-bit
data type tag in each register of the register file. The
code in a register tag defines the data type. There are 14
values of the data type tag. The zero data type tag
indicates that the register is free, otherwise it is busy. In
the most of machine operations the destination register
inherits the data type tag from the first source register.
After an operation the data type tags in the source
registers may be either zeroed, or may remain unchanged
for the usage in other operations. On the micro-
architectural level the tags may be placed separately
from the register file. The idea of the data type tag as an
extension of register considerably reduces the number of
machine operations, simultaneously increasing their
multiplicity [10, 11].

Table 1

Tag table with data type tags

Data type
code

Short
notation Data type description

'0000'b = 0 Register is free for writing

'0001'b = 1 i8, or i 64-bit integer

'0010'b = 2 u8, or u 64-bit unsigned

'0011'b = 3 a8, or a 64-bit unsigned for addresses
in the main computer memory

'0100'b = 4 f8, or f 64-bit floating point

'0101'b = 5 f16 128-bit floating point in 2 registers

'0110'b = 6 t1, or t Bit string in 1 register

'0111'b = 7 b1, or b Byte string in 1 register

'1000'b = 8 d1, or d Double-byte string in 1 register

'1001'b = 9 t2, or t Bit string in 2 registers

'1010'b = 10 b2, or b Byte string in 2 registers

'1011'b = 11 d2, or d Double-byte string in 2 registers

'1100'b = 12 t4, or t Bit string in 4 registers

'1101'b = 13 b4, or b Byte string in 4 registers

'1110'b = 14 d4, or d Double-byte string in 4 registers

'1111'b = 15 Writing operation in register failed

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Microprocessor with Tagged Registers Realizing Parallelism 9

The hardware tag table sets the correspondence
between the tag and the register contents (Table 1). On
the micro-architectural level the tag table may also
contain the information about the kind of the functional
unit to use. The tagged registers are well suited for the

RISC processors, and are hardly suitable for the CISC
processors. Actually, the data type tag may be
considered as a continuation of the operation code at
register to inform the executable instruction which the
data type register contains.

Table 2

List of computational operations

Computational
Operation
Code

Computational Operation Description Computational
Operation Code Computational Operation Description

'000000'b = 0 No operation is supported '011000'b = 24 Logical multiplication AND

'000001'b = 1 Addition '011001'b = 25 Logical exclusive OR (XOR)

'000010'b = 2 Subtraction '011010'b = 26 Logical inversion LINV

'000011'b = 3 Multiplication '011011'b = 27 Logical shift right LSR

'000100'b = 4 Division '010111'b = 23 Logical addition OR

'000101'b = 5 Integer division with remainder '011000'b = 24 Logical multiplication AND

'000110'b = 6 Combined “multiply” and “add” '011001'b = 25 Logical exclusive OR (XOR)

'000111'b = 7 Addition of the constant to the register '011010'b = 26 Logical inversion LINV

'001000'b = 8 Subtraction of the constant from the register '011011'b = 27 Logical shift right LSR

'001001'b = 9 Subtraction of the register from the constant '011100'b = 28 Logical shift left LSL

'001010'b = 10 Multiplication of the constant by the register '011101'b = 29 Logical rotate right LRR

'001011'b = 11 Constant is assigned to the register with the same
sign '011110'b = 30 Logical rotate left LRL

'001100'b = 12 Constant is assigned to the register with the
opposite sign '011111'b = 31 Substitution of the part of string by sub-

string

'001101'b = 13 Two sequential arithmetic operations
r4d = (r3s + r2s) * r1s '100000'b = 32 Search sub-string inside string in the

forward direction

'001110'b = 14 Two sequential arithmetic operations
r4d = (r3s – r2s) * r1s '100001'b = 33 Search sub-string inside string in the

backward direction

'001111'b = 15 Two sequential arithmetic operations
r4d = r3s * r2s + r1s '100010'b = 34 Copy a part of string

'010000'b = 16 Two sequential arithmetic operations
r4d = r3s * r2s – r1s '100011'b = 35 Delete a part of string

'010001'b = 17 Two sequential arithmetic operations
r4d = r3s + r2s + r1s '100100'b = 36 Relocate a part of the string in the same

string

'010010'b = 18 Two sequential arithmetic operations
r4d = r3s + r2s – r1s '100101'b = 37 Concatenation of two strings

'010011'b = 19 Two sequential arithmetic operations
r4d = r3s – r2s + r1s '100110'b = 38 Test for coincidence of strings

'010100'b = 20 Two sequential arithmetic operations
r4d = r3s – r2s – r1s '101111'b = 39 Calculation of address index for array

element

'010101'b = 21 Two sequential arithmetic operations
r4d = r3s * r2s * r1s 40 … 63 Reserve

'010110'b = 22 Conversion

Normally, all data type tags in registers should be
non-zeroes. The hardware checks the correspondence
between the data type tags in source registers with
their adequacy to the prescribed data type fixed in the

destination register. If these conditions are not complied,
the “tag” error occurs, the data type tag gets value
'1111'b, and the current value of the program counter is
copied in the destination register for further analysis.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Dobrovolskyi10

III. SET OF THE COMPUTATIONAL OPERATIONS

All machine operations are classified into two
general classes: (1) computational machine operations;
and (2) auxiliary machine operations (they are described
in the next section). The computational operations
include integer, unsigned, floating point, logical, string,
and conversion operations, i. e. those that perform
processing of the loaded data making useful work. There
is a set of about 40 computational operations, and a set
of about 35–45 auxiliary operations. This classification
is conditional, to some extent. The list of computational
operations is shown in Table 2

IV. INSTRUCTION FORMATS

Taking into account the classification of the machine
operations into the computational and auxiliary one, the
instructions are classified into (1) computational
instructions including a single primary computational
instruction with a collection of its clone computational
instructions; and (2) auxiliary instructions.

The computational instructions should have the
obligatory destination register. These instructions, both
primary and clone ones, have two 6-bit operand fields,
the first for the operation code (OC), and the second for
the computational code (CC). The operation code for the
primary computational instruction is zero, as all
computational machine operations are ensured by the
computational code. One primary instruction induces a
collection of clone instructions; each is intended to
embrace the defined number of instructions in the
instruction group. Details about usage of clone
computational instructions for parallelization are in the
next section.

The auxiliary instructions contain operation code in
the corresponding 6-bit field in the range 1 to 30–40. It is
enough to express all auxiliary operations. They include
instructions for various settings, the transfer of control,
load/store operations, copy register to register, move
register into other register, swap of two registers, push
register into memory, and pull register from memory,
and comparison of two magnitudes. The auxiliary
instructions perform some necessary ancillary work to
secure the processing of data.

Table 3 gives a representation of the operation and
computational codes (OC and CC) in different
instruction formats (the quantity n is the necessary
number of clones).

Table 3

Table of computational operations

Operation Operation Code Computational
Code

Primary
computational

0

Clone computational 64 - n … 63
0 … 63

Auxiliary 1 … 63 - n 0

The structures of the load/store and the
computational instructions are shown in Fig. 1 and Fig. 2
respectively (digits in the second rows are the lengths of
the operand fields in bits). The formats for the other
auxiliary instructions are not considered.

OC Q DTT ST IR BR DR

6 2 4 5 5 5 5

Fig. 1. Format of the load/store instructions

OC CC SR1 SR2 SR3 DR

6 6 5 5 5 5

Fig. 2. Format of the computational instruction

Denotations for operands for the load and
computational instructions are the following: (1) operand
OC (Operation Code) is the 6-bit operation code; (2) Q is
the 2-bit Qualifier that may detail the machine operation
having the same operation code, e. g. to point out
whether or not to zero register data tags after instruction
is performed; (3) operand DTT (Data Type Tag) is the
4-bit data type tag that is fixed by the programmer, and
then assigned to the hardware register tag, and in the
case of the store instruction the DTT is compared with
the hardware register tag for strong verification of the
store operation; (4) operand ST contains the
increment/decrement step (register, or an integer
constant) in machine words that is added to the index
register IR after the load/store operation; (5) operand IR
is the index register which is fixed by the programmer
before a series of the load/store operations, then it is
incremented/decremented with the ST operand upon
completion of each load/store operation; (6) operand BR
is the base register containing the base address (data type
is unsigned for the addresses in the main computer
memory) for multiple usage of the load/store operations,
and the BR is relatively permanent; (7) operand DR is
the destination register being loaded, the data type
register tag is taken from the DTT operand.

And these are specifically designations for operands
for the computational instructions: (8) operand CC is the
6-bit computational code; (9) operands SR1, SR2, and
SR3 contain the source data to process. Also the source
operands may contain an immediate constant, or
constants, in such a case some source operand fields are
merged.

The load instruction loads a single or concatenated
registers, and also the proper register data type tag is
filled in how the programmer specifies it. The store
instruction is analogous to the load instruction, the
operand DTT is used to check the correctness of the data
storing. The computational instructions process data in
the registers. An example of designation of the
computational instruction is as following

madd sr2,sr3,dr

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Microprocessor with Tagged Registers Realizing Parallelism 11

The instruction realizes the formula
dr = dr + sr2 * sr3. The denotation madd means the
multiply-and-add machine operation; registers sr2 and
sr3 contain the source operands; register dr contains the
destination operand. This instruction does not use the
register field sr1.

V. PARALLELIZATION BY USAGE
OF CLONE INSTRUCTION

The set of computational instructions makes up a
collection consisting of a single primary computational
instruction and several clone computational instructions.
Each clone instruction is intended to embrace the defined
number of instructions in the instruction group. The
clone instructions coincide with a primary one
inherently, but have other operation codes. The operation
codes for the clone instructions are placed in the upper
part of the 6-bit operand field for the operation code. For
instance, a collection of 9 clone instructions has
operation codes '111111'b to '110111'b (63 to 55). The
clone computational instruction is used in the capacity of
the header instruction in the instruction group to issue it
in parallel. Groups consisting of a lone instruction are
possible (one-instruction groups). Any other primary
computational instruction does not take part in control of
the parallel group, it is a usual member of an instruction
group together with auxiliary instructions.

In assembler language the denotation for the primary
computational instruction, e. g. for multiplication, might
have the appearance mul 0, sr2, sr3, dr where zero
means the operation code. This zero may be omitted for
shortening: mul sr2, sr3, dr. The denotation for the clone
computational instruction should contain nonzero
operation code with digits 2 to, e. g. 7, pointing out the
number of instructions in the group including the header
instruction. Thus, a clone computational instruction for
the group of 7 instructions has the demotation mul 7, sr2,
sr3, dr.

Instructions Explanation

Previous group

mul 6, r1, r2, r3

load f8, r4, r5, r6, r7
load t1, r8, r9,r10,r11
sub r12, r13, r14
madd r15, r16, r17

cmp r18,r19
jump -250

multiplication
(header for 6 instructions)

load floating point number
load bit string
subtraction of two numbers
computation on formula

r17 = r17 + r15 * r16
comparison of two
magnitudes
jump on 250 bytes in
backward

direction

Next group

Fig. 3. Example of instruction group
 to issue in parallel

The instruction groups are generated by the smart
compiler, and for better efficacy the reordering of

instructions should take place. The smart compiler is
able to investigate large fragments of the source code,
even the whole procedure or function, and extract all
possible static parallelism. The smart text source editor
shows instruction groups due to the feedback between
the compiler and the editor enclosing the formed
instruction groups in parentheses. An example of group
of six instructions to issue in parallel is shown in Fig. 3.
The proposed parallelization is maintained by the
hardware. The actual efficacy of parallelization depends
upon the availability of multiple functional units. Thus,
in the case of shortage of functional units the dispatch of
a parallel group may be done on two or more machine
cycles.

VI. CONCEPT OF FLUX

The flux is defined as a composite that includes the
software and hardware components within the scope of
uniprocessor. From the program point of view, the flux
is a stream of instructions and the corresponding flow of
processed data. These streams and flows are maintained
by the flux hardware that includes register file, program
counter, stack and register with the stack address, the
program status word or record (PSR) with various states
and interrupts bit flags, and other control information
fields. Also, the flux contains the special flux instruction
buffer (described below). The main computer memory
and pipelined functional units are reckoned as a common
resource for all fluxes, and are used on request. Fluxes
may have either individual L1 instruction caches, or a
common L1 instruction cache. The same is true for the
data caches. A flux looks like a partial processor. Also, a
flux may be looked upon as a channel, window, or
medium in which a program executes, using its register
file and PSR, and borrowing the required functional
units from their totality or pool.

For effective work the uniprocessor should be multi-
flux one, i. e. should have at least two fluxes. The
maximal number of fluxes in uniprocessor is 2 to 4 – the
effective width of data paths between a flux and
functional units is a limiting factor. The hardware
discerns fluxes through their n-bit flux distinctive labels,
e. g. for the four-flux processor it is the 2-bit labels. The
functional units remember from which flux the data to
process are received, and to which flux the results should
be returned. A flux maintains either a single program
process or a number of processes in the time-sharing
mode. Also, the parts of a properly designed program
may execute in different fluxes in parallel, interacting
between each other. This is projected by the
programmer, and is maintained by the operation system.
The certain instruction set architecture must contain an
instruction which informs the programmer the number of
fluxes the concrete microprocessor contains.

Each flux is provided with the flux instruction buffer
as a small and very fast intermediate storage where the
instruction groups are accumulated to process them
further in parallel. The buffer has at least two buffer
sections (two-section buffer), each section accumulates

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Dobrovolskyi12

an instruction group. The accepted number of
instructions in the section predetermines the maximal
number of the computational clone instructions plus one
supported by the concrete microprocessor. It is better to
have several buffers to avoid latencies and increase
performance.

The flux control unit fills in the first section, and
simultaneously passes the instruction group from another
section for the further processing and, eventually onto
the functional units. The empty section is free to be filled
with the next instruction group. Instructions came into
the flux buffer in a sequential stream as some input
groups, but issue of instructions is performed in the form
of compiled groups. The hardware controls the
completeness of formed instruction groups. In the
contemporal RISC microprocessors up to 8 instructions
may be fetched simultaneously during one machine
cycle, and they are loaded in a separate primary
instruction buffer which should be located before the
flux buffer, and both buffers make up the unified buffer.

Each instruction occupies a “slot” in the section.
There are 1-bit hardware labels that mark slots: when a
slot is occupied it is marked with '1'b, otherwise with
'0'b. When all labels in a section have the '0'b value then
the section is considered free, and is ready to be filled in
with the next instruction group. The information about
the number of instructions in the group is important, and
is being passed further.

The concept of the flux only remotely resembles the
concept of SMT, and is characterized by the following
features: 1. Structurally, the binary code in the proposed
architecture consists of the instruction groups, and
transfer of control is made to the header instruction of
the group, whereas instructions in the SMT are not
connected with each other, and are not grouped. 2. In the
scope of one flux the groups of instructions, formed by
the compiler, are dispatched for execution from the
special flux buffer, whereas in the scope of one SMT

thread a single instruction is only executed. 3. Program
counter changes its value on the length of the instruction
group (in bytes, or in the number of instructions), not on
the length of the separate instruction. 4. The flux
instruction buffer has quite different and simple
hardware compared with the hardware that forms the
SMT threads and provides for superscalarness.

VII. THE WORK OF MICROPROCESSOR
REALIZING PARALLELIZATION

There are four modes of interactions between the
hardware units and data paths for different kinds of
instructions, maintainig the formation and passing fur-
ther parallel groups of instructions. These modes are for:

(1) load/store instructions; (2) computational
instructions; (3) comparison and branch instruction;
(4) jump instruction. The modes for load/store and
computational instructions are shown in Fig. 4 and Fig. 5
as examples.

The handling of instructions is fulfilled on stages
which are maintained by a certain hardware. For the
proposed microprocessor architecture this hardware
includes: program counter with its controller; fetch unit
with combined instruction buffer; decoder unit; dispatch
unit; tag analyzer; integer-and-logical, floating point, and
other functional units. The sequentiality of actions the
microprocessor with the described architecture fulfills on
different stages, which are as follows:

1. The fetch unit reads the address of next instruction
group from the program counter. The unit partly decodes
operation code of the header instruction of the
instruction group to ascertain the number of instructions
in the group. Then, the unit fetches the rest of
instructions and fills in a section in the flux instruction
buffer with the fetched group. Until a group is
fetched the program counter is not permitted to change
its value.

Program

Counter Fetch

Unit

Instruction

Buffer

Dispatch

Unit

Main Computer Memory

Load

Unit
Store

Unit

Register File

Stream of instruction addresses

Stream of instructions

Flow of data

Fig. 4. Units and data paths for load/store instructions

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Microprocessor with Tagged Registers Realizing Parallelism 13

FPUs

Register File

Program
Counter Fetch

Unit

Instruction
Buffer

Dispatch
Unit

Main Computer Memory

ILUs

Stream of instructions

Stream of instruction addresses

Flow of processed data

Flow of information from tags

Decoder
Unit

Tag
Analyzer

Fig. 5. Units and datapaths for the computational instructions (ILU is Integer-and-Logical Unit, FPU is Floating Point Unit)

2. The decoder unit makes the rest of the decoding
work. It fully decodes all auxiliary instructions. The
decoding of the computational instructions is fulfilled
partly, as on this stage it is impossible to ascertain the
required functional units.

3. The dispatch unit receives fully decoded
instructions in the instruction groups, and issues the
formed groups onto the required pipelined functional
units, group by group on each machine cycle. In the case
of the computational instruction the dispatch unit passes it
to the tag analyser (unit) which explores the register tag of
the first source register ascertaining the data type, and,
therefore, the kind of the required functional unit. If in a
concrete microprocessor the number of the functional
units, or the number of specific kinds of the units is
insufficient, the rest of instructions of the instruction
group may be issued on the next machine cycles.

4. The multiple pipelined functional units work on
traditional scheme. The loading/storing unit loads the
data from the main computer memory to the registers
with the help of the load instruction. The functional units
execute the necessary operation, taking into account the
data type tags in the source and destination registers, the
result of the operation being written in the destination
register together with the tag. At last, the loading/storing
unit stores the data from the destination register to the
main computer memory with the help of the store
instruction. The necessary ancillary instructions are
executed as well.

VIII. CONCLUSIONS
There are three main advantages of the proposed

microprocessor architecture.

Firstly, a method of parallelization has been
considered. It is able to extract all possible parallelism
covering the large source instruction window, though
depending on the perfection of the compiler. Even in
static mode the compiler is able to extract more
parallelism than the two-threaded SMT hardware. Thus,
the proposed microprocessor will show higher
productivity than the processor with the SMT. The
proposed method is based considerably on the idea of
data type tags at registers of the register file, and
demands small amount of hardware.

Secondly, a great advantage of the proposed
architecture is a possibility to diversify operations due to
the data type tags, and simultaneously at lesser number
of instructions. Instructions are generalized, e. g. one
instruction for multiplicaion is applicable to different
data types defined by the data type tags. The architecture
simplifies the processor design due to small number of
instructions. The architecture improves the reliability of
computations on the stages of development of the source
code, compilation, and execution due to the data type
tags.

Thirdly, the concept of the flux is introduced
permitting to use functional units more efficiently, and to
organize execution of parts of a program in parallel in
different fluxes interacting between each other, further
widening of parallelization may be realized by using
multiple cores. In evaluation of the microprocessor
productivity it does not matter what architecture is
implemented, dynamic, or static, what matters is the
number of issued instructions per machine cycle. The
concept of flux supercedes the SMT architecture and
may substitute it at less hardware.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Dobrovolskyi14

REFERENCES

[1] David A. Patterson and John L. Hennessy. Computer Organization
and Design. The Hardware / Software Interface, Fourth edition,
Morgan Kaufmann Publishers, 2009, 940 p.

[2] Andrew Waterman, Yunsup Lee, David A. Patterson, Krste
Asanović. The RISC-V Instruction Set Manual, Volume I: User-
Level ISA, Version 2.0, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2014, 92 p.

[3] David A. Patterson, “Reduced Instruction Set Computers”, in
Communications of the ACM, volume 28, Number 1, January,
1985, pp. 8-21.

[4] Joseph D. Dumas II. Computer Architecture. Fundamentals and
Principles of Computer Design (University of Tennessee at
Chattanooga, Chattanooga, TN, USA), Taylor & Francis Group,
LLC, 2017, 450 p.

[5] Dezső Sima, Terry J. Fountain, Péter Kacsuk. Advanced
Computer Architectures: A Design Space Approach, Addison-
Wesley, 1997, 766 p.

[6] Melnyk A. O. Architecture of Computer. Manual (Lviv Polytech-
nic National University), Lutsk regional printing, Ukraine, 2008,
470 p. (Мельник А. О.Архітектура комп'ютера. Підручник).

[7] Korolev, L. N. Architecture of electronic computers, Nauchny mir,
Moscow, Russia, 2005, 272 p. (Королев Л. Н. Архитектура
электронных вычислительных машин, М, Научный мир).

[8] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo,
Rebecca L. Stamm, Dean M. Tullsen, “Simultaneous
Multithreading: A Platform for Next-Generation Processors”, in
IEEE Micro, September/October, 1997, pp. 12–19.

[9] V. K. Dobrovolskyi, “Microprocessor with Explisit Parallelism”,
in Proceedings of VIth International Scientific Conference SIMU-
LATION-2018 (МОДЕЛЮВАННЯ-2018), September 12–14,
2018, Kyiv, Ukraine, pp. 135–138, ISBN 978-966-02-8587-3.

[10] V. K. Dobrovolskyi, “Microprocessor with Tagged Registers”, in
Proceedings of the Vth International Scientific Conference
Simulation-2016, May 25–27, 2016, Kiev, Ukraine, pp. 57–60,
ISBN 978-966-02-7928-5 (file), ISBN 978-966-02-7927-8
(printed edition).

[11] Dobrovolskyi, Volodymyr. Microprocessor with Tagged
Registers. Version 1.1, Kyiv, University Publishing House
“Pulsary”, 2017, 60 p., ISBN 978-617-615-073-2.

[12] Marc Tremblay, Jeffrey Chan, Shailender W. Conigliaro,
Shing Sheung Tse, “The MAJC Architecture: A Synthesis of
Parallelism and Scalability”, in IEEE MACRO, November-
December, 2000, pp. 12–25.

[13] Iliffe, J. K. Basic Machine Principles, London, MacDonald & Co.,
1968, vii+86 p.

[14] Instruction operations for the B8501 Central Processing Module.
Reference Manual, Burroughs The Corporation, 1966, 101

Dobrovolskyi Volodymyr (Dob-
rovolsky in some publications)
graduated from Lviv Polytechnic
Institute in Technology of Machine
Building, received a PhD in Mathe-

matical Economics from Institute of Economics of National
Academy of Sciences of Ukraine. The research interests are
the CPU and microprocessor architecture, and the mathe-
matical modeling of economy.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

