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The paper deals with the methods of calculation and optimization of constructions  
of  the impact dynamic vibration absorbers (DVA ) for the elongated structures.  An efficient  
numerical approach based on the theoretical-experimental method is proposed to maximize  

the minimal damping of modes in a prescribed frequency range for the tuned-mass  
impact systems. Methods of decomposition and numerical synthesis are considered on the  

basis of an adaptive schemes. The influence of dynamic vibration absorbers and basic design  
elastic and damping properties is under discussion. A technique is developed to give  

the optimal DVA’s for the elimination of excessive vibration in sinusoidal forced systems. 
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Introduction. A tuned mass damper (TMD), or dynamic vibration absorber (DVA), is found to be 

an efficient, reliable and low-cost suppression device for vibrations caused by harmonic or narrow-band 
excitations. In DVA design the stiffness and the damping ratio can be determined by balancing the two 
fixed points in the frequency response [1], in the case of harmonic excitation, or by minimizing the 
mean-square response under the random excitation, or by balancing the poles of system. Most leading 
text books on mechanical vibrations discuss the basic equations of DVA’s to some extend, e.g. [1–3]. 
Among the pioneering publications providing an in-depth theoretical treatment are those by Ormondroyd 
and Den Hartog [4] and Den Hartog [5]. For linear DVA’s a closed theory is available, but due to the 
large number of system parameters and varying technical applications with different requirements no 
unique solution exists. Generally, a significant influence of damping on the vibration reduction 
performance is observed.  

The problem of attaching  DVA to a discrete multi-degree-of-freedom or continuous structure has 
been outlined in many papers and monographs by Bishop and Welbourn [6], Warburton [7], Hunt [8], 
Snowdon [9], Korenev and Rabinovic [10] and Aida et al. [11] to name but a few. Nonlinear DVA have 
been  investigated by Kolovsky [12], Kauderer [13], Pipes [14], Roberson [15]. The article [16] of 
Ibrahim presents a comprehensive assessment of nonlinear DVA’s  in the absence of active control 
means.  

An impact damping system can overcome some limitations by impact as the damping medium and 
impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA or any 
number of such absorbers. Such originally designed absorbers reduce vibration selectively in maximum 
vibration mode without introducing vibration in other modes. For example, the final result is achieved by 
DVA at far less expense compared to the cost needed to replace the machine foundation with a new, 
sufficiently massive one.  

In order to determine the optimal parameters of an absorber the need for complete modelling is 
obvious. Present research has developed a modern prediction and control methodology, based on a 
complex continuum theory and the application of special frequency characteristics of structures. The 
numerical schemes (NS) row for the complex vibroexcitated construction and methods of decomposition 
and the NS synthesis are considered in our paper on the basis of new methods of modal synthesis [17–19]. 
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The DVA designed in accordance with our proposals also has the advantage that it can be constructed such 
that it has a wide-range vibration absorption property. Such originally designed absorbers reduce vibration 
selectively in maximum mode of vibration without introducing vibration in other modes.  

 
Dynamic equations. Problem of vibration fields modeling of complicated designs deformation and 

strain is considered for the purposes of dynamic absorption. The problem is solved on the basis of modified 
method of modal synthesis. The basis of these methods is in deriving solving set of equations in a normal 
form at minimum application of matrix operations. The essence of the first method consists in reviewing 
knots of junctions as compact discrete elements n

iA for which inertial properties are taken into account 

without reviewing their strain, and massive connected parts - as deformable elements c
iA , their inertion 

being taken into account on the basis of modal expansion.  
For every point X=(x, y, z)  of  c

iA  we have 
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Here )(1 Xiϕ ,…, )(Xniϕ  are coordinate functions, )(1 tq i ,…, )(tqni – corresponding independent time 

functions. By variation of strain c
iU and kinetic c

iK energies for c
iA we have 
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By variation of strain n
iU  and kinetic n

iK  energies for connecting and attached discrete element  n
iA  

we have 
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Here ijX are point of contact of discrete element n
iA  and continual element c

jA  and ijk  – 

corresponding rigidity of connection. For the mass-less joints of continual elements we must add to the 
strain energy such terms 
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Kinetic energy variation of discrete one-mass element n
iA  is 
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By Hamilton-Ostrogradsky variation equation  
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equating terms by independent variation parameters in (2-5) we obtain [20–22] 
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a set of ordinary differential equations. Here the viscous damping is added by means of matrix C. M is the 
mass matrix and K – rigidity matrix. 

 
Elongated element with the impact DVA. Let us consider condensed model of DVA-elongated 

element system. For the element modeling let us consider uniform Timoshenko beam. The kinematical 
hypothesis are (for pure bending) are  

 

,),(),,,( ZtxtZYXU ⋅= γ    ).,(),,,( txwtZYXW =                                      (7) 
 

By substitution of (7) into the variation Hamilton-Ostrogradsky equation 
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and taking the modal series expansion for the functions: 
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we obtain a set of ordinary differential equations for unknown time dependent functions (written in matrix 
form) 

[ ] [ ]
→→

→

=+ frC
dt

rdM 2

2

.                                                            (10) 

 

Here [M] and [C] are well known mass and rigidity matrix, 





=

→→→
pqr ,  – vector of unknown 

functions, 
→
f  vector of outer forces. Vectors F or f  consists of two parts 1: Fe or f e  –beam dynamic 

loading; 2: Fz or   f z – beam DVA connections terms ( ZeZe ffforFFF +=+= ). 
 
Condensed model. In Fig. 1 the condensed model: elongated element – impact mass DVA is 

presented with an additional impact mass in container with elastic barrier elements  
 

 
 

Here M1 and K1 are mass and rigidity parameters of condensed model. These parameters may be 
found theoretically, considering, for example, the first mode of beam vibration in (7-10), or by FEM, or by 
combining experimental and theoretical results of investigations [20-23].  The system of equations in the 
condensed rangy is obtained 
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Fig. 1. Pendulum type DVA with the additional elements 
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Here an arbitrary number N of DVA’s is considered. Parameters 1m , 1k  of the prime system may be 
found by means of FEM or experimentally. The nonlinear functions are 
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Were A – clearans and viK – boundary elements rigidity.  

 
Numerical results, optimization. DVA’s are appropriately optimized by genetic algorithms near 

the beam first eigen-frequency Rf . The evaluation function is 
 

( )( ) RR fffuMaxCiL βα <<= f,1 ,    (13) 
 

The process and results of optimization for the DVA (Fig. 1) is presented in Fig. 2 for different 
DVA’s masses 
 

______________________________N = 2121___________________ 
  Dx  .263E-01   Dx2   .265E-01  DG  .544E-02   Ax  .150E+02   CiL  .404E-01 
  fx  .996E+00   fx2  .879E+00   Ekx  .959E-05   Mx  .750E+00 
______________________________N = 5585__________________________ 
  Dx  .173E-01   Dx2   .746E-02  DG  .855E-01   Ax  .150E+02   CiL  .273E-01 
  fx  .892E+00   fx2  .100E+01   Ekx  .193E-03   Mx  .100E+01 
______________________________N = 1602_________________________ 
  Dx  .275E-01   Dx2   .167E-01  DG  .664E-01   Ax  .150E+02   CiL  .168E-01 
  fx  .100E+01   fx2  .885E+00   Ekx  .601E-04   Mx  .200E+01 
______________________________N = 5844__________________________ 
  Dx  .151E-01   Dx2   .208E-01  DG  .577E-01   Ax  .150E+02   CiL  .132E-01 
  fx  .911E+00   fx2  .100E+01   Ekx  .494E-02   Mx  .250E+01 
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Fig. 2. The process (a) and results (b) of optimization for the two DVA’s 

 
Here 4 parameters of optimization are used: fx, fx2 DVA’s eigenfrequencies; Dx, Dx2  – 

proportional viscous damping (added to all equations terms dt
duDk i

XiXi ). The prime system mass 

is 1m =10kg, the prime system eigenfrequency  – Rf =1Hz=6.28 Rad/s,  the proportional damping  –
D1=0.03.  For system with two dangerous frequency intervals the grate number of DVA’s may be used 
(Fig. 3)  
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Fig. 3. The results of optimization for system with two frequency intervals by number of DVA’s 2, 4AN =  

For 4AN =  the better result may be seen 

 
For the four DVA’s better result may be seen then for two in the two frequency intervals. The 

DVA’s mass sum is equal to 4kg in both cases.   
 

Conclusions. In order to determine the optimal parameters of DVA the complete modeling of 
dynamics of devices should be made. Traditional design methodology, based on decoupling models of 
structures and machines are not effective for vibration decreasing since they do not give a possibility to 
determine vibration levels. Paper deals with the new methods for the explicit determination of the 
frequency characteristics of the impact dynamic vibration absorbers by narrow frequency excitation. Few 
parameters numerical schemes of vibration analysis are under discussion. The new vibroabsorbing 
elements are proposed. Present research develops a modern prediction methodology, based on coupled 
theory. The result may be highly improved by applying the genetic algorithms for optimal design searching 
by discrete-continuum DVA’s system – base system modeling.  
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