МОДЕЛЮВАННЯ ЛОКАЛЬНОЇ ВЗАЄМОДІЇ ВАЖКИХ ДІРОК З ПОТЕНЦІАЛОМ ДЕФЕКТІВ В Нате

О.П. Малик^{*a*}, І.С. Собчук^{*b*}

^а Національний університет "Львівська політехніка" вул. С. Бандери 12, 79013, Львів, Україна ^b Львівський Національний медичний університет ім. Данила Галицького, кафедра медичної інформатики

(Отримано 9 липня 2007 р.)

Розглянуто моделі розсіяння важких дірок на близькодіючому потенціалі, зумовленому взаємодією з полярними та неполярними оптичними фононами, п'єзоелектричними та акустичними фононами, іонізованими домішками в HgTe. Розраховані температурні залежності рухливості важких дірок в інтервалі 4.2 - 300 К.

Ключові слова: напівпровідники, явища переносу.

РАСS: 72.10.-D **УДК:** 621.315.592

Вступ

Розсіяння важких дірок у твердому розчині Cd_xHg_{1-x} Те розглядали в наближенні часу релаксації у роботах [1–10]. Однак розглянуті в цих роботах моделі розсіяння мають один істотний недолік – вони є далекодіючими. Крім того, в цих моделях використовується макроскопічний параметр, діелектрична проникність, який не має сенсу в мікроскопічних процесах. З іншого боку, в роботах [11–14] розглядались близькодіючі моделі взаємодії електрона з дефектами кристалічної гратки, в яких були відсутні вищевказані недоліки. Метою цієї роботи є застосування цього підходу для опису процесів розсіяння важких дірок на різних типах дефектів кристалічної гратки.

I. Теорія

У загальному випадку перенесення заряду в HgTe здійснюється трьома типами носіїв заряду: електронами зони провідності, важкими та легкими дірками валентної зони. З рівняння нейтральності випливає, що в інтервалі 4.2 < T < 300K концентрація легких дірок становить величину ~ 1% величини концентрації важких дірок, а отже, внеском легких дірок можна знехтувати. Тоді за наявності двох типів носіїв коефіцієнт Холла і питома провідність визначаються з виразів

$$R = -\frac{\sigma_{12}^n + \sigma_{12}^p}{\left[\left(\sigma_{11}^n + \sigma_{11}^p\right)^2 + \left(\sigma_{12}^n + \sigma_{12}^p\right)^2\right]B}; \sigma = \sigma_{11}^n(0) + \sigma_{11}^p(0),$$

де $\sigma_{ik}(B)$ (i, k = 1, 2) – компоненти тензора провідності для електронів та важких дірок, B – індукція магнітного поля.

Величини σ_{ik} для електронів розраховували на основі близькодіючих моделей. Параметри γ моделей розсіяння електронів вибирались ті самі, що і в роботі [14], за винятком $\gamma_{IД}$ (розсіяння на іонізованій домішці), який приймали таким, що дорівнює 1 для узгодження теорії та експерименту.

Ймовірності переходу важкої дірки зі стану *k* в стан *k'* при взаємодії з полярним оптичним (ПО), п'єзооптичним (ПОП) та п'єзоакустичним (ПАК) фононами та іонізованою домішкою (ІД) вибирали у вигляді [14]:

$$W_{\Pi O}(k,k') = \frac{64\pi^7 \gamma_{PO}^{10} e^4}{225\varepsilon_0^2 a_0^4 G} \frac{M_x + M_{Te}}{M_x M_{Te}} \left\{ \frac{1}{\omega_{LO}} \left[N_{LO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{LO}) + (N_{LO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{LO}) \right] + \frac{2}{\omega_{TO}} \left[N_{TO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{TO}) + (N_{TO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{TO}) \right] \right\};$$
(1)

$$W_{\Pi O \Pi}(k,k') = \left(\frac{32}{75}\right)^2 \frac{\pi^9 e^2 e_{14}^2 \gamma_{PZ}^{10}}{\varepsilon_0^2 G} \frac{M_x + M_{Te}}{M_x M_{Te}} \left\{ \frac{1}{\omega_{LO}} \left[N_{LO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{LO}) + (N_{LO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{LO}) \right] + \frac{2}{\omega_{TO}} \left[N_{TO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{TO}) + (N_{TO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{TO}) \right] \right\};$$

$$(2)$$

$$W_{\Pi A K}(k,k') = \frac{128\pi^7 e^2 e_{14}^2 a_0^2 \gamma_{PZ}^{10} k_B T}{225\varepsilon_0^2 \hbar G \left[x M_{Cd} + (1-x) M_{Hg} + M_{Te} \right]} \left(\frac{1}{c_{LO}} + \frac{2}{c_{TO}} \right)^2 \delta(\varepsilon' - \varepsilon);$$
(3)

$$W_{I\!\mathcal{A}}(k,k') = \frac{\pi e^4 Z_i^2 N_i \gamma_{II}^4 a_0^4}{2\varepsilon_0^2 \hbar V} \delta(\varepsilon' - \varepsilon), \qquad (4)$$

де $M_x = xM_{Cd} + (1-x)M_{Hg}, M_{Hg}, M_{Cd}, M_{Te}$ – маса атома; G – кількість елементарних комірок в об'ємі кристала; ε_0 – діелектрична стала; e – заряд електрона; a_0 – постійна гратки; N_{LO}, N_{TO} – число поздовжніх (LO) та поперечних (TO) фононів з частотою ω_{LO} і ω_{TO} відповідно; e_{14} – компонента п'єзоелектричного тензора; c_{LO}, c_{TO} – поздовжня та поперечна швидкості звуку відповідно; Z_i – кратність іонізації зарядженої домішки; N_i – концентрація іонізованих домішок; $\gamma_{PO}, \gamma_{PZ}, \gamma_{II}$ – параметри розсіяння, які підбиралися так, щоб узгодити теорію та експеримент, $\varepsilon, \varepsilon'$ – енергія носія до і після розсіяння.

Розсіяння важких дірок на неполярних оптичних (НПО) фононах розглядалося на основі ефективного потенціалу деформації, запровадженого в роботі [15]

$$E_{H\Pi O} = \frac{M_x + M_{Te}}{2(M_x M_{Te})^{1/2}} \left[\frac{C_t \left(\frac{C_l}{C_c} + 2 \right)}{2\rho\omega_{LO}^2 a_0^2} \right]^{1/2} d_0, \quad (5)$$

де ρ – густина; $d_0=29.8\;eB$ – оптичний потенціал деформації; $C_l=(3C_{11}+2C_{12}+4C_{44})/5;$ $C_t=(C_{11}-C_{12}+3C_{44})/5;\;C_{11},\;C_{12},\;C_{44}$ – пружні константи.

Розсіяння важких дірок на акустичних (AK) фононах розглядалося на основі ефективного акустичного потенціалу деформації [16]:

$$E_{AK} = \frac{C_l/C_t + 2}{6C_l/C_t} \left[a^2 + \frac{C_l}{C_t} \left(b^2 + \frac{d^2}{2} \right) \right], \quad (6)$$

де *a*, *b*, *d* – потенціали деформації, визначені в роботі [17].

Використовуючи формалізм точного розв'язку рівняння Больцмана [18,19], отримаємо вирази для величин $K^{nm}_{\beta\alpha}$, які необхідні для визначення компонентів тензора провідності σ :

$$\begin{split} K^{nm}_{\beta\alpha} &= \frac{2V}{(2\pi)^3} \frac{16\pi^6 e^4 \hbar^2 \gamma_{PO}^{10} \delta_{\alpha\beta}}{675 \varepsilon_0^2 a_0 k_B T} \frac{M_x + M_{Te}}{M_x M_{Te}} \left(\frac{2m_{hh}}{\hbar^2}\right)^4 \times \\ \times \left[\frac{1}{\omega_{LO}} \int \left\{N_{LO} f_0(\varepsilon) [1 - f_0(\varepsilon + \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \right. \\ \left. + (N_{LO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g + \hbar\omega_{LO})^{1/2} \right\} (-\varepsilon - \varepsilon_g)^{3/2} \varepsilon^{n+m} d\varepsilon + \\ \left. + \frac{2}{\omega_{TO}} \int \left\{N_{TO} f_0(\varepsilon) [1 - f_0(\varepsilon + \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \right. \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g + \hbar\omega_{TO})^{1/2} \right\} (-\varepsilon - \varepsilon_g)^{3/2} \varepsilon^{n+m} d\varepsilon + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \right. \\ \left. + (N_{LO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \\ \left. + (N_{LO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \\ \left. + (N_{LO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \\ \left. + \frac{2}{\omega_{TO}} \int \left\{N_{TO} f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \\ \left. + (N_{TO} + N\omega_{TO}) \right\} \right] \right] \right\}$$

$$K^{nm}_{\beta\alpha\ \Pi A K} = \frac{2V}{(2\pi)^3} \frac{128\pi^6 e^2 e_{14}^2 a_0^2 \gamma_{PZ}^{10} \hbar}{675\varepsilon_0^2 \rho} \left(\frac{1}{c_{LO}} + \frac{2}{c_{TO}}\right)^2 \delta_{\alpha\beta} \left(\frac{2m_{hh}}{\hbar^2}\right)^4 \times \int f_0(\varepsilon) [1 - f_0(\varepsilon)] (-\varepsilon - \varepsilon_g)^2 \varepsilon^{n+m} d\varepsilon;$$

$$\tag{9}$$

$$K^{nm}_{\beta\alpha \ I\mathcal{A}} = \frac{2V}{(2\pi)^3} \frac{Z_i^2 N_i e^4 a_0^4 \gamma_{II}^4 \hbar}{6\varepsilon_0^2 k_B T} \delta_{\alpha\beta} \left(\frac{2m_{hh}}{\hbar^2}\right)^4 \int f_0(\varepsilon) [1 - f_0(\varepsilon)] (-\varepsilon - \varepsilon_g)^2 \varepsilon^{n+m} d\varepsilon. \tag{10}$$

$$K^{nm}_{\beta\alpha}{}_{AK} = \frac{2V}{(2\pi)^3} \frac{\pi^2 \hbar E^2_{AK}}{432\rho} \left(\frac{1}{c_{LO}} + \frac{2}{c_{TO}}\right)^2 \delta_{\alpha\beta} \left(\frac{2m_{hh}}{\hbar^2}\right)^4 \times \int f_0(\varepsilon) [1 - f_0(\varepsilon)] (-\varepsilon - \varepsilon_g)^2 \varepsilon^{n+m} d\varepsilon,$$
(11)

$$K_{\beta\alpha\ H\Pi O}^{nm} = \frac{2V}{(2\pi)^3} \frac{\pi^2 \hbar^2 E_{H\Pi O}^2 a_0}{12 \times 288 k_B T} \frac{M_x + M_{Te}}{M_x M_{Te}} \delta_{\alpha\beta} \left(\frac{2m_{hh}}{\hbar^2}\right)^4 \times \\ \times \left[\frac{1}{\omega_{LO}} \int \left\{N_{LO} f_0(\varepsilon) [1 - f_0(\varepsilon + \hbar\omega_{LO})](-\varepsilon - \varepsilon_g - \hbar\omega_{LO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{LO}) + \right. \\ \left. + (N_{LO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{LO})](-\varepsilon - \varepsilon_g + \hbar\omega_{LO})^{1/2} \right\} (-\varepsilon - \varepsilon_g)^{3/2} \varepsilon^{n+m} d\varepsilon + \\ \left. + \frac{2}{\omega_{TO}} \int \left\{N_{TO} f_0(\varepsilon) [1 - f_0(\varepsilon + \hbar\omega_{TO})](-\varepsilon - \varepsilon_g - \hbar\omega_{TO})^{1/2} \theta(-\varepsilon - \varepsilon_g - \hbar\omega_{TO}) + \right. \\ \left. + (N_{TO} + 1) f_0(\varepsilon) [1 - f_0(\varepsilon - \hbar\omega_{TO})](-\varepsilon - \varepsilon_g + \hbar\omega_{TO})^{1/2} \right\} (-\varepsilon - \varepsilon_g)^{3/2} \varepsilon^{n+m} d\varepsilon \right];$$

де $\delta_{\alpha\beta}$ – символ Кронекера; $f_0(\varepsilon)$ – рівноважна функція Фермі–Дірака важких дірок; $\theta(x)$ – ступінчата функція; k_B – стала Больцмана; N_{LO} ; N_{TO} – число поздовжніх (LO) та поперечних (TO) фононів з частотою ω_{LO} і ω_{TO} відповідно; m_{hh} – ефективна маса важких дірок.

Рис. 1. Температурні залежності коефіцієнта Холла та електропровідності в НgTe

Рис. 2. Температурна залежність рухливості важких дірок в HgTe. Суцільна крива – змішаний механізм розсіяння

Аналіз отриманих результатів

Порівняння теоретичних і експериментальних температурних залежностей коефіцієнта Холла та електропровідності здійснювали для зразка 14–7 з роботи [1], який при T = 4.2 K мав значення коефіцієнта Холла $R \sim 2 \text{см}^3/\text{Кл}$ при B = 0.6 Тл. Для отримання такого теоретичного значення коефіцієнта Холла необхідно припустити, що концентрація іо-

нізованих акцепторів у цьому зразку становить $N_A^+ \sim$ $3.25\times 10^{18} {\rm cm}^{-3}$. Відповідно розрахунок теоретичних кривих проводили на основі рівняння нейтральності: $p - n = N_A^+$. Як видно з температурних залежностей коефіцієнта Холла та електропровідності, показаних на рис. 1, теоретичні криві достатньо добре узгоджуються з експериментом в інтервалі температур 4.2 – 300 K, тобто, як в області діркового типу провідності так і в області змішаної провідності. Параметри γ для різних механізмів розсіяння важких дірок мають таке значення: $\gamma_{PO} = 0.45, \ \gamma_{PZ} = 0.30,$ $\gamma_{II} = 0.56$. Для оцінки значення різних механізмів розсіяння на рис. 2 пунктирними лініями показані криві для відповідних механізмів розсіяння. Видно, що у всьому розглянутому інтервалі температур основним механізмом є розсіяння на іонізованих домішках та розсіяння на полярних оптичних фононах. Решта механізми – розсіяння на акустичних, п'єзооптичних, п'єзоакустичних та неполярних оптичних фононах – дають нехтувано малий внесок.

Висновки

На основі принципу близькодії розглянуто процеси розсіяння важких дірок на різних дефектах кристалічної гратки в HgTe. Встановлено достатньо добру узгодженість між теорією та експериментом в інтервалі температур 4.2 — 300 K.

Література

- Ivanov-Omskii V.I., Kolomiets B.T., Malkova A.A., Ogorodnikov V.K., Smekalova K.I. // Phys.Status Solidi 8 (1965) 613–618.
- [2] Harman T.S., Honig J.M., Trent P.J. // J. Phys. Chem. Solids 28 (1967) 1995–2000.
- [3] Whitsett C.R., Nelson D.A. // Phys. Rev. B5 (1972) 3125–3129.
- [4] Dziuba Z., Wrobel J. // Phys.Status Solidi (b) 100 (1980) 379–387.
- [5] Dziuba Z., Szlenk K. // J. Phys. Chem. Solids 45 (1984) 97–103.
- [6] Meyer J.R., Bartoli F.J., Hoffman C.A. // J. Vac. Sci. Technol. A5 (1987) 3035–3039.
- [7] Wijewamasuriya P.S., Boukerche M., Faurie J.P. // J. Appl. Phys. 67 (1990) 859–862.
- [8] Yadava R.D.S., Gupta A.K., Warrier A.V.R. // J. Electron. Mater. 23 (1994) 1359–1378.
- [9] Malyk O.P., Budjack Ja.S. // Ukr. J. Phys. 39 (1994) 477–480.

- [10] Yongsheng Gui, Biao Li, Guozhen Zheng, Yong Chang, Shanli Wang, Li He, Junhao Chu // J. Appl. Phys. 84 (1998) 4327-4331.
- [11] Malyk O.P. // J. Alloys Compd. 379 (2004) 60-63.
- [12] Malyk O.P. // Ukr. J. Phys. 49 (2004) 677-680.
- [13] Malyk O.P. // Comput. Mater. Sci. 33 (2005) 153-156.
- [14] Malyk O.P. // Mater. Sci. & Engineering B129 (2006) 161–171.
- [15] Wiley J.D. // Solid State Communs. 8 (1970) 1865– 1868.
- [16] Wiley J.D., DiDomenico M. // Phys. Rev. B2 (1970) 427–433.
- [17] Weill G., Verie C. // C. R. Acad. Sci. 263 (1966) 463–465.
- [18] Malyk O.P. // WSEAS Trans. Math.. 3 (2004) 354-357.
- [19] Malyk O.P. // J. Alloys Compd. 371 (2004) 146-149.

THE MODELING OF THE LOCAL HEAVY-HOLE INTERACTION WITH DEFECT POTENTIAL IN H_GTE

O.P. Malyk^a, I.S. Sobchuk^b

^a National University "Lvivska Politechnika" 12 S. Bandera Str., 79013, Lviv, Ukraine

^bDanylo Galytskii Medical National University, Medical Information Science Department

Models of heave-holes scattering on the short-range potential caused by interaction with polar and nonpolar optical phonons, piezoelectric and acoustic phonons and ionized impurities in HgTe are considered. The temperature dependences of heavy-hole mobility in temperature range 4.2 - 300 K are calculated.

Keywords: semiconductors, transport phenomena.

PACS: 72 10 - D **UDK:** 621 315 592