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In this paper the general process and the concurrent synthesis realization model of
micr oelectr omechanical systems, which isbased on developed genetic algorithm, are described.
As the synthesis task in the sphere of complex microsystems is very comprehensive and time-
consuming, the actuality of performance and speed issues to generate the novel system and its
components constructionsis still up-to-date unsolved item. The developed model facilitates and
acceler atesthe synthesis of the new and unique micr oelectr omechanical systems structures.
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OnucaHo 3arajbHMiIi mpouec i mapajelbHy MoJedb peaizalii cCMHTe3y MiKpoeJeKTpo-
MEXaHIYHMX CHCTeM, L0 IPYHTYIOTbCSl Ha PO3P00JIEHOMY TIeHeTHYHOMY aaroputMi. Ockiibku
3aBJaHHSl CHMHTe3y Yy c(epi KOMILUIEKCHUX MIKPOCHCTEM € Ay’e CKJIAAHUM Yy CBOill CTPYKTYpi i
3aTPATHUM Y 4aci, aKTyaJIbHICTh MUTAHb BUKOHAHHA i1 IIBUAKOCTI, 00 3reHepyBaTH HOBITHIO
cucteMy i ii CTPYKTYpHi KOMIIOHEHTH, € Bce Ille HeBHPileHOI0 chOoroaHi. Po3podiaena Monenn
CHpHsAE i MPUCKOPIOE CHHTE3 HOBHX 1 YHIKAJILHHUX MIKPOeJIeKTPOMeXaHIYHUX CTPYKTYP CHCTEMM.

KurouoBi cioBa: mikpoenexkrpomexaniuni cucremun (MEMC), cucremMu aBTOMATH30-
paHoro npoexktyBanus (CAIIP), ouroorisi, renernunuii anropurm (IA), cToxacTHYHI MeTOIH,
napaJeJsisM.

Introduction

For present microe ectromechanical systems increase their important part in everyday human activities
and different spheres. For instance, nowadays microsystems began to be actively applied even in micro
liquid, chemical and biological systems, which are built with micromachining technologies usage, etc. The
total appliance of microsystems is stipulated by great number of advantages. microsize, low costs of
fabrications, reliability, and lightness[1].

Actualy, for optimization and synthesis issues solving the genetic algorithm is widely used. That is
why according to sphere of implementation, business, mathematics, and manufacturing many realization
variations exist. Such prevalence is caused by the simplicity in genetic agorithm implementations,
adaptability and quick solution search [2, 3, 4, 5]. To principa peculiarities of evolutionary algorithm
belong: the need of little information for some solutions generation, ability to decode and change the
designed solution and estimate the sustainability and performance of developed decision. These assets
convinced to apply GA for design of new-made sol ution — microelectromeachanical systems.

Genetic Algorithm implementation distinctions
For microelectromechanical systems structure synthesis and their components the great quantity of
methods are well-known. For MEMS synthesis and optimization as the basis was chosen the genetic
algorithm. In comparison with other design approaches our developed redization of GA has a lots
advantages: 1) concurrent model of implementation: 2) discrete calculation of fitness function according to
externally or internally defined constraints; 3) generation of modern, non-standard designs as outpui.

105



During the search process of novel solutions and their further optimization the main principle of
genetic algorithm provides to pursuit the most optimal microsystem structure or components, their
relations at different system levels. The searching is fulfilled in the cycle till the moment of the best
solution finding — the satisfaction of internally determined fitness function [6], the rules of MEMS
elements combinations, microsystems’ design laws, physical ones, and conformity to external constraints
defined by designer. At Fig.1 the functioning process of genetic algorithm is illustrated:
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Fig. 1. Diagram of functioning concurrent model based upon genetic algorithm

The key point of successful GA work linearly depends on implementation procedure of iterative
production and pursuit of the most viable individual’s generation — as new populations — as new
design solutions.

Concurrent GA Modéd
After examine of numbers of implemented synthesis algorithms models for new decisions creation as
outcome was referenced to develop the specific module which should realize the concurrent model of
genetic algorithm proceeding for rapid search of the optimum. As an example, for projection of new
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structure and elements values of accelerator the algorithm will consist of beneath provided steps-functional
blocks:

Block Nel: the initialization of accelerometer elements values, based on specific template which is
fixed out from accelerometer ontology model;

Block Ne2: the creation of several individuals-accelerometers populations in parallel threads;

Block Ne3: accordance computation of proliferated design to MEMS projection rules [7] and defined
fitness function value;

Block Ne4: (in case of appropriate solution absence) the grouping of produced individuals and
selection the best ones according to Pareto law [8];

Block Ne5: the crossover of most fitted individuals with crossover probability 0.7;

Block Ne6: the mutation process to new formed population, mutation coefficient — 0.13.

GA Concurrent Mode I mplementation

The module which is responsible for concurrent model implementation of genetic algorithm for
microsystem synthesis and optimization is written in object-oriented language JAVA [9]. The main object
in developed implementation of concurrent model is the class MemsGAEn gine <T>. In this class the
initialization process of all needed objects for successful GA functionality execution is started:

public MemsGAEngine (CandidateFactory<T> candidateFactory,
EvolutionaryOperator<T> evolutionScheme,
FitnessEvaluator<? super T> fitnessEvaluator,
SelectionStrategy<? super T> selectionStrategy,
Random rng)
&
where 1) Cand idateFactory<T> - the creation of elementary population based upon individulas —
ready-made design decisions (obtained from ontology models);
2) EvolutionaryOperator<T> — the set of operator for generation of novel populations;
3) FitnessEvaluator<? super T> — the computation of fitness function logic for every individual-decision;
4) SelectionStrategy<? super T> — the selection strategy of the most appropriate generated solutions;
5) Random rng — the probability coefficient applied to individuals in their creation and selection stages.

For possibility at back-end side to change grouping of design solutions, the specific selection carrying out,
and mutation it was applied the methodologies of evolutionary strategies, which are implemented upon the class
MemsEvolutionStrategy<T>, and “islands” models. This developed model enables to isolate the determined
number of populations and as result to synthesize numbers of fresh, non-standard design decisions of
microelectromechanical systems and its components structures. In case of solution absence automatically the
deisolation process starts automatically to the populations, and the evolutionary strategy is used to combine the
individuals which almost appropriate to fitness function value. And the GA cycle launches again.

Results of GA concurrent model functioningto MEM S Synthesis
Afterwards of GA concurrent model implementation numbers of experiments were passed for test
purpose and definition of two key milestones: a) time costs of sequential and concurrent GA models for
microsystems synthesis and optimization of its structures; b) the population quantity in which was obtained
the most sufficient and satisfactory solutions to input constraints. The table Nel presents the correlation of
two genetic models:

Table 1
Time spent metrics correlation of sequential and concurrent GA models

Population Time costs (minute) Decreased %

number, n Sequential model Concurrent model time costs correlation

2 ~46 ~35 11 23,91

6 ~109 ~85 24 22,01

9 ~180 ~127 53 29,44

14 ~286 ~204 82 28,67

19 ~477 ~394 83 17,40
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Fig. 2. Correlation diagram of sequential and concurrent GA models functioning

Based upon obtained outcomes of sequential and parallel genetic models it can be summarized that the
most suitable design solutions were found in created fourteen populations of individuals where the spent
time metric in percentage interrelation reached 29.44 value.

Conclusion

The genetic algorithm is grounded upon of nature principles. Every produced population mimics the
searched solution which is mostly appropriate to externally defined fitness function and input design
constraints. Via selection, crossover and mutation processes the accommodation of populations’
individuals is provided. Thereby, genetic algorithm enables to find quickly design solutions.

According to requirements at the initial stage of concurrent GA model implementation was developed
software module. It simulated the GA process appropriately to MEMS design specific rules with use of
JAVA language. The obtained results were presented in table 1 and figure 2, and enable to made strict
conclusion that concurrent GA model decreased the time cost (on average on ~24%) at novel microsystems
and its elementary structure synthesis.
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