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Abstract. A classical two-mass system of modal
speed regulation containing an ungable subsystem has
been considered. The dependence of the basic
characteristics on the membership function parameters
and a mean-geometric root has been ascertained. The
system behavior under external perturbations has been
also investigated.
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1. Introduction

Today the methods of adaptive control providing the
optimum performance of the system in the conditions of
object’s parameters change and of a g-point, under the
impact of external perturbations are widely used in the
technical systems. Such systems may also include the
systems constructed on the basis of the piecewise-
linearization method. For each system coefficients
providing the stable work are calculated by means of
Lyapunov’s method.

Considerable success in the construction of such
systems is connected with the use of the fuzzy-control
theory. By means of such approach a smooth conversion
from one tuning of a regulator to another or even to other
structure of the regulator during the system work is
possible. The papers [1] and [2] are dedicated to the
investigation of the systems of the adaptive control with
fuzzy logic. An important question at the analysis of
such systems is a question of stability. Although there
are many works devoted to the question of stability of
the systems with separate subsystems, in particular [3-
10], the case when one of the subsystems is unsteady has
been scantily explored. At the sametime, using unsteady
subsystem acquires new traits of the system as a whole.
Thus, during the step signal in transition from the tuning
corresponding to the unstable subsystem to the tuning of
the regulator corresponding to the stable subsystem the
improvement of integral criteria of quality for the ITAE
type occurs. And in transition from the stable system to
the unstable one it is possible to obtain the oscillation
mode in the area of a set value with ability to adjust the
frequency and the amplitude of vibrations.

2. Problem statement
Let us consider the two-mass classical system
typical for many electromechanical systems. The

structure chart of such a system is represented in figure 1
(see[11]).

Fig. 1. Classical structure scheme of two-mass system
of modal speed regulation

The transfer function of such a system is the
following
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ents characterizing the system and described in [11].

Traditionally, feedback controllers are tuned either to
the binomia form or the Butterwort one. The
coefficients of feedback controllers are calculated by
equating the coefficients at corresponding powers of
characteristic polynomial and a desirable standard form.
The disadvantage of the first system is the lower speed
of the performance, and the disadvantage of the second
one is retuning which may be inadmissible for the
technical reasons.

The improvement of the system characterigtics is
ensured by the combination of the mentioned tunings of
feedback controllers in the systems with fuzzy logic [7].
A further gain is possible using the unstable system on
the primary stage [8, 9]. In this paper coefficients are
determined as followsin (2), (3), (4)
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and the membership function is determined as follows
(fig. 2, see. [12)])
i0, u<a,
G(ua,b)={(u-a)/(b-a), atutb, (5
%l u>b,
Where a and b are parameters with values defining the

operating range of the unstable system and the width of
the trangition interval correspondingly; and parameter

u :|e(t)| :|yset - yout(tx isan error value.

G(u;a,b)

Fig. 2. Membership function G(u;a , b)

The case of the system with coefficients (2), (3)

At firgt let us consider the case of the system with
one root in the right half plane, that is, one root with a
positive real part. The signa equal to 100 at time equal
to 1 second is given to theinput of the system.

It is obvious that the behavior of the system will
depend on the value of a mean-geometric root w, and

membership function parameters a and b . For the

convenience of the caculations ingead of these
parameters we introduce derivative ones. Da is the

width of theinterval and a” isthe middle of theinterval
Da =b-a,
a’ =05%a +b).
It should also be noted that, depending on the value

of the mean-geometric root, the system (1) may behave
either as the one- or the two-mass system (see [11]). In

this case, the system behaves as the one-mass when
W, <15.64 and as the two-mass whenw, >19.56 .

Here are some graphs illustrating the system
behavior at the different values of w,, Da,a" fig.3-4.
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Fig. 3. The simulation result for thesystemat w, = 4
and different values of parameters a”, Da.
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Fig. 4. Smulation results for thesystemat w, = 32 and

different values of the parametersa”, Da.

Thus in a system with one root in the right half
plane the change of the value of the mean-geometric root
provides the oscillation frequency change. The average
output value depends on the value of parameter b.

More detailed study of value characterigtics are
given in the following tables, namely: the amplitude of

oscillations (table 1-2), the average output value (table 3-
4), the dispersion (table 5-6). Here the amplitude is
understood as the difference between the highest and the
lowest value of the output signa after the transition to
the mode of steady state oscillations. Here and further
the first columns of the tables define the a” values, and
their first rowsintroduce Da values.

Table 1

Dependence of the amplitude
ona and Da at w,=4

01 | 05 1 5 10
0.1 041 | 156 | 3.11 | 9.31 | 13.66
0.2 041 | 1.27 | 241 | 9.25 | 13.64
0.5 1.06 | 1.81 | 8.82 | 13.56
1 1.03 | 1.58 | 6.84 | 13.24
150 | 5.17 | 11.17
5 392 | 7.42
10 349 | 584
20 5.00
Table 2
Dependence of the amplitudeon a”
and Da at w, =32
0.1 0.5 1 5 10

0.1 0.0008 | 0.0030 | 0.0061 | 0.0182 | 0.0267
0.2 0.0008 | 0.0025 | 0.0047 | 0.0181 | 0.0267
0.5 0.0021 | 0.0035 | 0.0172 | 0.0265
1 0.0020 | 0.0031 | 0.0133 | 0.0259
0.0029 | 0.0101 | 0.0218
5 0.0076 | 0.0145
10 0.0068 | 0.0114
20 0.0097

Let us put investigation results (tabl. 3-4) to estimate
real influence of mean-geometric root alteration on the
average output value.

Table3

Dependence of aver age output valueon a”
and Da atw,=4

0.1 0.5 1 5 10
0.1 99.37 | 100.88 | 102.89 | 112.71 | 121.41
0.2 99.41 | 100.62 | 102.21 | 112.65 | 121.40
0.5 100.53 | 101.73 | 112.24 | 121.32
100.70 | 101.68 | 110.35 | 121.03
101.98 | 108.96 | 119.09
108.67 | 116.10
10 109.92 | 116.03
20 118.39
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Table 4

Dependence of the average output valueon a”
and Da at w, =32

0.1 0.5 1 5 10
0.1 0.1941 | 0.1970 | 0.2009 | 0.2201 | 0.2371
0.2 0.1942 | 0.1965 | 0.1996 | 0.2200 | 0.2371
0.5 0.1963 | 0.1987 | 0.2192 | 0.2370
0.1967 | 0.1986 | 0.2155 | 0.2364
0.1992 | 0.2128 | 0.2326
5 0.2122 | 0.2267
10 0.2147 | 0.2266
20 0.2312

Further increase of the values of membership
function (5) parameters leads to the increase of the
oscillation amplitude. It is not expedient from the
practical point of view, that iswhy this case has not been
considered in thiswork.

The results of the investigating the dependence of the
dispersion on the membership function (5) parameters
are given in the tables 5-6.

We can see that in the case of two-mass system
dispersion is practically negligible.

Thus it is evident that the behavior of the studied
system can be completely controlled by changing three
parameters w,,a", Da .

Taking into account the form of characterigtic
polynomia from (1), we can date that the vibration
nature of the system is natural since oscillations occur
only as the control of the system passes from the stable
subsystem to the unstable one, because all roots of
characteristic polynomial are real and the unstable
behavior of the subsystem is provided only by the

component €"*, which is the monotonously increasing
function. That is why the average output value is raised
up in comparison with the stable system which output
signal approachesto the g-point (seefig. 3-4).

The research shows that there is no fundamental
difference in the behavior between one- and two-mass
systems.

The case of the system with coefficients (2), (4)
In the case of the system with two roots in the right
half plane, the behavior of the system is dightly different

Table5 (seefig. 5-6).
Dependence of the dispersion on a” The dependence of the behavior of the system on
and Da atw,=4 the control parameters w,,a”, Da in the same way that
in the case of the unstable subsystem with one root in the
0.1 05 1 > 10 positive real part. Here are theresults of investigating the
01 0.08 115 4.64 40.03 88.81 amplitude dependence on these parameters (tabl. 7-8).
0.2 0.08 0.73 2.69 39.64 88.71
0.5 0.53 157 36.79 87.92
1 0.49 115 21.61 84.25
1.06 12.78 58.27 ) / . . N .
5 739 | 2638 \ VaRvanvany / \/ Ve
10 5.97 16.73 /
20 12.32 - /
Table6 : = s = e

Dependence of dispersion ("10")on a”
and Da at w, =32

0.1 0.5 1 5 10
0.1 | 2949 | 42.706 | 170.645 |1528.318| 3310.778
0.2 | 2946 | 28.131 | 101.898 |1505.733| 3307.000
0.5 19.748 | 57.918 |1373.666| 3268.207
18.706 | 43.945 | 826.407 | 3117.550
40.269 | 475.724 | 2228.928
5 279.291 | 998.489
10 227273 | 634.843
20 468.737
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C) a.* :0.5, Da =1 =

da =05 Da=02
Fig. 6. Smulation results for thesystemat w, = 32 and
different values of parametersa”, Da.

Table 7
Dependence of the amplitudeon a”
da =05 Da=02 and Da at w, =4
Fig. 5. Smulation results for thesystemat w, = 4 and 01 05 1 5 10
different values of parametersa”,  Da. 01 | 037 | 212 | 425 | 2131 | 4262
02 | 025 | 208 | 423 | 2130 | 4261
0.5 184 | 410 | 2127 | 4260
1 124 | 367 | 2117 | 4255
247 | 2077 | 4234
5 18.37 | 40.97
10 1235 | 36.74
20 24.70
Table 8

aya =05 Da=05 .
: ; Dependence of the amplitude on a

and Da at w, =32

0.1 0.5 1 5 10
0.1/0.00074| 0.00430 | 0.00864 | 0.04329 | 0.08658

0.2/0.00050| 0.00422 | 0.00860 | 0.04328 | 0.08658

R EATATA I }\UU\\ Il | I\/H 0.5 0.00373 | 0.00832 | 0.04322 0.08655
I T e T oo T oot oo

( s L L . S 2 0.00506 | 0.04222 0.08603
D ba =1 Da=05 5 0.03739 | 008329
10 0.02531 | 0.074781

20 0.050636

Table9

Dependence of the average
output value on w,

W, Average output value
4 98.82
9a =05 Da=1 32 0.193
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For estimating the dependence of the amplitude on
the mean-geometric root as in the previous case let us
demonstrate the average output value (table 9). Unlike
the previous case, it depends neither on a”™ nor on Da
and is constant for each specific value of w;.

One can see that the downward trend of the ordinate
axe of the oscillation at the mean-geometric root increase
is kept here as well. This is concerned with the form of
characteristic polynomia from (1). Unlike the case of
the system with coefficients (2), (3), there is no
dependence of the average output value neither on a”
nor on Da here, as the oscillating character of the
output signal is caused not only by the transtion
between stable and ungtable subsystems, but also by the
presence of complex-conjugated roots with positive real
parts, that is the presence of the term e *(cosdx +isindx)
(see. (4)) in the solution of the differential equation
which models the output signal of the system. Moreover,
from (4) one can seethat ¢<0.

Let us show the dependence of the investigated system
disperson on the parameters of the membership function
(5) at the different values of w;, in thetables 10-11.

Table 10

Dependence of the dispersionon a”
and Da atw,=4

0.1 0.5 1 5 10

0.1 0.06 179 6.90 163.34 654.25
0.2 0.03 1.72 6.84 163.28 654.19
0.5 1.29 6.37 162.84 653.76
1 0.66 4.96 161.28 652.26
2.62 155.21 646.44

5 129.00 611.97
10 65.84 548.99
20 273.80

Table 11

Dependence of the dispersion ("10")on a”
and Da at w, =32

0.1 0.5 1 5 10
0.1{2.1504 | 69.4609 | 280.3320 | 7028.8012 | 28118.1972
0.2]1.1135| 66.9583 | 277.7515 | 7026.1168 | 28115.2779
0.5 53.7598 | 260.3649 | 7007.5886 | 28096.6209

27.5413| 215.0147 | 6942.0919 | 28030.6902

110.1149 | 6696.7074 | 27771.7612

5375.6104 | 26259.8987

10 2778.6422 | 21503.5389
20 11137.0155

Having considered these tables, one can come to the
same conclusions about the influence of w,,a” and Da
on the system frequency as in the previous paragraph of
thisarticle.

In general we can say that qualitative characteristics
of the influence of both membership function parameters
and the mean-geometric root do not differ in each
considered case.

The case of the system under external perturbation

A system functioning in the real-life environment
undergoes external impacts. Let us investigate the
behavior of the systems (1), (2), (3) and (1), (2), (4)
under the external perturbation.

The results of the research at the load exposure are
giveninfig. 7-11
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130

b) 10%M
Fig. 8. Smulation results for the system with coefficients
(2,(@ata" =05 Da =05, w, =4 and different
loads

a) 100%M

b) 30%M
Fig. 9. Smulation results for the system with coefficients
(2, (@ ata” =10, Da =20, w, =4 and different loads

The effect of the perturbation begins at the time equa
to 10 seconds and stopsin 5 seconds. It isinteresting that
despite the disturbance action, in some cases the output
value increases unlike the stable system. It happens
because the transfer function for a perturbation of the
system has the following form (see [11]):

L |9+1
pgp T, e

2k1 1 k+1o aek1*+k3* o

p’+ p
T gTT M2 TTM1EI gTTmTMzEI

M1

and at the change of k',i =1, 3 correspondingly to
Ko=mdk, , +(1-m)xkg ,, =13

Its sign changes.

Under the load the system can leave the zone of the
oscillation modes. After eimination the load, the
oscillations will reappear in the system.

a) 40%M

b) 125%M ,
Fig. 10. Smulation results for the system with coefficients
(2,(3ata’ =Da =05, w, =32 and different loads
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b) 10%M,

Fig. 11. Simulation results for the system with coefficients
(2), @) at @ =Aa =05, @, =32 and different loads

Conclusions

The application of this approach (the case of fuzzy
control) can provide new properties to the system.

The amplitude of oscillations in the system depends
on its switching function. By changing the range of
overlapping of switch functions one can adjust the
amplitude. The oscillation frequency is determined by
the value of the mean-geometric root of the system.
Unlike classical systems, the value of initial coordinates
does not decrease with the load increase. It increases due
to the change in sign of the polynomial in the numerator
of the transfer function for perturbation during the
transition from one subsystem to another.

In a system with one root in the right half-plane the
average value of the output coordinate depends on the
parameter S of the switching function.

In a system with the pair of complex conjugates roots
in the right half-plane, the average output value
corresponds to output signal of stable system.
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PO3rJIHYTO KJIaCHYHY JBOMAcOBY CHUCTEMY MOJIaJIbHOTO
KEepyBaHHS INBUJKICTIO, IIO MICTHTh HECTIHKY MiJICHCTEMY.
BCTaHOBIICHO 3aJI€KHICTh OCHOBHHX XapaKTEPUCTHK CHCTEMH
BiJi mapaMmeTpiB (YHKII HaJeXHOCTI Ta CepeIHbOTCOMET-
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€10 30BHIMIHIX 30ypeHb.
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