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Abstract. A classical two-mass system of modal 
speed regulation containing an unstable subsystem has 
been considered. The dependence of the basic 
characteristics on the membership function parameters 
and a mean-geometric root has been ascertained. The 
system behavior under external perturbations has been 
also investigated. 
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1. Introduction 
Today the methods of adaptive control providing the 

optimum performance of the system in the conditions of 
object’s parameters change and of a q-point, under the 
impact of external perturbations are widely used in the 
technical systems. Such systems may also include the 
systems constructed on the basis of the  piecewise-
linearization method. For each system coefficients 
providing the stable work are calculated by means of 
Lyapunov’s method. 

Considerable success in the construction of such 
systems is connected with the use of the fuzzy-control 
theory. By means of such approach a smooth conversion 
from one tuning of a regulator to another or even to other 
structure of the regulator during the system work is 
possible. The papers [1] and [2] are dedicated to the 
investigation of the systems of the adaptive control with 
fuzzy logic. An important question at the analysis of 
such systems is a question of stability. Although there 
are many works devoted to the question of stability of 
the systems with separate subsystems, in particular [3-
10], the case when one of the subsystems is unsteady has 
been scantily explored. At the same time, using unsteady 
subsystem acquires new traits of the system as a whole. 
Thus, during the step signal in transition from the tuning 
corresponding to the unstable subsystem to the tuning of 
the regulator corresponding to the stable subsystem the 
improvement of integral criteria of quality for the ITAE 
type occurs. And in transition from the stable system to 
the unstable one it is possible to obtain the oscillation 
mode in the area of a set value with ability to adjust the 
frequency and the amplitude of vibrations. 

2. Problem statement 
Let us consider the two-mass classical system 

typical for many electromechanical systems. The 

structure chart of such a system is represented in figure 1 
(see [11]).  

 
Fig. 1. Classical structure scheme of two-mass system  

of modal speed regulation 

The transfer function of such a system is the 
following  
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Here 11_1 12_1 13_1, ,k k k  are unknown coefficients of a 

feedback controller, and 13 1 2, , ,M M Cc T T T  are the coeffici-

ents characterizing the system and described in [11].  

Traditionally, feedback controllers are tuned either to 
the binomial form or the Butterwort one. The 
coefficients of feedback controllers are calculated by 
equating the coefficients at corresponding powers of 
characteristic polynomial and a desirable standard form. 
The disadvantage of the first system is the lower speed 
of the performance, and the disadvantage of the second 
one is retuning which may be inadmissible for the 
technical reasons.  

The improvement of the system characteristics is 
ensured by the combination of the mentioned tunings of 
feedback controllers in the systems with fuzzy logic [7]. 
A further gain is possible using the unstable system on 
the primary stage [8, 9]. In this paper coefficients are 
determined as follows in (2), (3), (4) 
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and the membership function is determined as follows 
(fig. 2, see. [12]) 
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Where α and β are parameters with values defining the 
operating range of the unstable system and the width of 
the transition interval correspondingly; and parameter 

( ) ( )tyyteu outset −==  is an error value. 
 

 

Fig. 2. Membership function ( )βα ,;uΓ  

The case of the system with coefficients (2), (3) 
At first let us consider the case of the system with 

one root in the right half plane, that is, one root with a 
positive real part. The signal equal to 100 at time equal 
to 1 second is given to the input of the system. 

It is obvious that the behavior of the system will 
depend on the value of a mean-geometric root 0ω  and 
membership function parameters α  and β . For the 
convenience of the calculations instead of these 
parameters we introduce derivative ones: ∆α  is the 
width of the interval and *α  is the middle of the interval 

( )*

,
0.5 .

∆ = −

= ⋅ +

α β α

α α β
 

It should also be noted that, depending on the value 
of the mean-geometric root, the system (1) may behave 
either as the one- or the two-mass system (see [11]). In 

this case, the system behaves as the one-mass when 
0 15.64<ω  and as the two-mass when 0 19.56>ω . 

Here are some graphs illustrating the system 
behavior at the different values of *

0 , ,∆ω α α fig.3-4. 
 

 
a) * 0.5, 0.5α α∆= =  

 
b) * 1, 0.5α α∆= =  

 
c) * 0.5, 1α α∆= =  

 
d) * 0.5, 0.2α α∆= =  

Fig. 3. The simulation result for the system at 0 4ω =  

 and different values of parameters * , .α α∆  

( )βα ,;uΓ  

u  
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a) * 0.5, 0.5α α∆= =  

 
b) * 1, 0.5α α∆= =  

 
c) * 0.5, 1α α∆= =  

 
d) * 0.5, 0.2α α∆= =  

Fig. 4. Simulation results for the system at 0 32ω =  and 

different values of the parameters * , .α α∆  
Thus in a system with one root in the right half 

plane the change of the value of the mean-geometric root 
provides the oscillation frequency change. The average 
output value depends on the value of parameter .β  

More detailed study of value characteristics are 
given in the following tables, namely: the amplitude of 

oscillations (table 1-2), the average output value (table 3-
4), the dispersion (table 5-6). Here the amplitude is 
understood as the difference between the highest and the 
lowest value of the output signal after the transition to 
the mode of steady state oscillations.  Here and further 
the first columns of the tables define the *α  values, and 
their first rows introduce ∆α  values. 

Table 1 
Dependence of the amplitude  

on *α  and α∆  at 0 4ω =  

 0.1 0.5 1 5 10 

0.1 0.41 1.56 3.11 9.31 13.66 

0.2 0.41 1.27 2.41 9.25 13.64 

0.5  1.06 1.81 8.82 13.56 

1  1.03 1.58 6.84 13.24 

2   1.50 5.17 11.17 

5    3.92 7.42 

10    3.49 5.84 

20     5.00 
 

Table 2 

Dependence of the amplitude on *α   
and α∆  at 0 32ω =  

 0.1 0.5 1 5 10 

0.1 0.0008 0.0030 0.0061 0.0182 0.0267 

0.2 0.0008 0.0025 0.0047 0.0181 0.0267 

0.5  0.0021 0.0035 0.0172 0.0265 

1  0.0020 0.0031 0.0133 0.0259 

2   0.0029 0.0101 0.0218 

5    0.0076 0.0145 

10    0.0068 0.0114 

20     0.0097 

Let us put investigation results (tabl. 3–4) to estimate 
real influence of mean-geometric root alteration on the 
average output value. 

Table 3 

Dependence of average output value on *α  
and α∆  at 0 4ω =  

 0.1 0.5 1 5 10 

0.1 99.37 100.88 102.89 112.71 121.41 

0.2 99.41 100.62 102.21 112.65 121.40 

0.5  100.53 101.73 112.24 121.32 

1  100.70 101.68 110.35 121.03 

2   101.98 108.96 119.09 

5    108.67 116.10 

10    109.92 116.03 

20     118.39 
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Table 4 

Dependence of the average output value on *α   
and α∆  at 0 32ω =  

 0.1 0.5 1 5 10 

0.1 0.1941 0.1970 0.2009 0.2201 0.2371 

0.2 0.1942 0.1965 0.1996 0.2200 0.2371 

0.5  0.1963 0.1987 0.2192 0.2370 

1  0.1967 0.1986 0.2155 0.2364 

2   0.1992 0.2128 0.2326 

5    0.2122 0.2267 

10    0.2147 0.2266 

20     0.2312 
 

Further increase of the values of membership 
function (5) parameters leads to the increase of the 
oscillation amplitude. It is not expedient from the 
practical point of view, that is why this case has not been 
considered in this work.  

The results of the investigating the dependence of the 
dispersion on the membership function (5) parameters 
are given in the tables 5–6. 

Table 5 

Dependence of the dispersion on *α   
and α∆  at 0 4ω =  

 0.1 0.5 1 5 10 

0.1 0.08 1.15 4.64 40.03 88.81 

0.2 0.08 0.73 2.69 39.64 88.71 

0.5  0.53 1.57 36.79 87.92 

1  0.49 1.15 21.61 84.25 

2   1.06 12.78 58.27 

5    7.39 26.38 

10    5.97 16.73 

20     12.32 
 

Table 6 

Dependence of dispersion ( 710−× ) on *α   
and α∆  at 0 32ω =  

 
 0.1 0.5 1 5 10 

0.1 2.949 42.706 170.645 1528.318 3310.778 

0.2 2.946 28.131 101.898 1505.733 3307.000 

0.5  19.748 57.918 1373.666 3268.207 

1  18.706 43.945 826.407 3117.550 

2   40.269 475.724 2228.928 

5    279.291 998.489 

10    227.273 634.843 

20     468.737 

We can see that in the case of two-mass system 
dispersion is practically negligible. 

Thus it is evident that the behavior of the studied 
system can be completely controlled by changing three 
parameters *

0 , , ∆ω α α . 
Taking into account the form of characteristic 

polynomial from (1), we can state that the vibration 
nature of the system is natural since oscillations occur 
only as the control of the system passes from the stable 
subsystem to the unstable one, because all roots of 
characteristic polynomial are real and the unstable 
behavior of the subsystem is provided only by the 
component 0xeω , which is the monotonously increasing 
function. That is why the average output value is raised 
up in comparison with the stable system which output 
signal approaches to the q-point (see fig. 3–4).  

The research shows that there is no fundamental 
difference in the behavior between one– and two-mass 
systems. 

The case of the system with coefficients (2), (4) 
In the case of the system with two roots in the right 

half plane, the behavior of the system is slightly different 
(see fig. 5–6). 

The dependence of the behavior of the system on 
the control parameters *

0 , ,ω α α∆  in the same way that 
in the case of the unstable subsystem with one root in the 
positive real part. Here are the results of investigating the 
amplitude dependence on these parameters (tabl. 7–8). 

 

 

a) * 0.5, 0.5α α∆= =  

 

b) * 1, 0.5α α∆= =  
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c) * 0.5, 1α α∆= =  

 
d) * 0.5, 0.2α α∆= =  

Fig. 5. Simulation results for the system at 0 4ω =  and 

different values of parameters * , .α α∆  

 
a) * 0.5, 0.5α α∆= =  

 
b) * 1, 0.5α α∆= =  

 
c) * 0.5, 1α α∆= =  

 
d) * 0.5, 0.2α α∆= =  

Fig. 6. Simulation results for the system at 0 32ω =  and 

different values of parameters * , .α α∆  
 
 

Table 7 

Dependence of the amplitude on *α   
and α∆  at 0 4ω =  

 0.1 0.5 1 5 10 

0.1 0.37 2.12 4.25 21.31 42.62 

0.2 0.25 2.08 4.23 21.30 42.61 

0.5  1.84 4.10 21.27 42.60 

1  1.24 3.67 21.17 42.55 

2   2.47 20.77 42.34 

5    18.37 40.97 

10    12.35 36.74 

20     24.70 
 

Table 8 

Dependence of the amplitude on *α   
and α∆  at 0 32ω =  

 0.1 0.5 1 5 10 

0.1 0.00074 0.00430 0.00864 0.04329 0.08658 

0.2 0.00050 0.00422 0.00860 0.04328 0.08658 

0.5  0.00373 0.00832 0.04322 0.08655 

1  0.00253 0.00747 0.04301 0.08644 

2   0.00506 0.04222 0.08603 

5    0.03739 0.08329 

10    0.02531 0.074781 

20     0.050636 
 

Table 9 

Dependence of the average  
output value on 0ω  

0ω  Average output value 
4 98.82 

32 0.193 
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For estimating the dependence of the amplitude on 
the mean-geometric root as in the previous case let us 
demonstrate the average output value (table 9). Unlike 
the previous case, it depends neither on *α  nor on ∆α  
and is constant for each specific value of 0ω . 

One can see that the downward trend of the ordinate 
axe of the oscillation at the mean-geometric root increase 
is kept here as well. This is concerned with the form of 
characteristic polynomial from (1). Unlike the case of 
the system with coefficients (2), (3), there is no 
dependence of the average output value neither on *α  
nor on ∆α  here, as the oscillating character of the 
output signal is caused not only by the transition 
between stable and unstable subsystems, but also by the 
presence of complex-conjugated roots with positive real 
parts, that is the presence of the term )sin(cos dxidxe cx +−  
(see. (4)) in the solution of the differential equation 
which models the output signal of the system. Moreover, 
from (4) one can see that 0c < . 

Let us show the dependence of the investigated system 
dispersion on the parameters of the membership function 
(5) at the different values of 0ω  in the tables 10–11. 

Table 10 

Dependence of the dispersion on *α   
and α∆  at 0 4ω =  

 0.1 0.5 1 5 10 

0.1 0.06 1.79 6.90 163.34 654.25 

0.2 0.03 1.72 6.84 163.28 654.19 

0.5  1.29 6.37 162.84 653.76 

1  0.66 4.96 161.28 652.26 

2   2.62 155.21 646.44 

5    129.00 611.97 

10    65.84 548.99 

20     273.80 
 

Table 11 

Dependence of the dispersion ( 710−× ) on *α   
and α∆  at 0 32ω =  

 0.1 0.5 1 5 10 

0.1 2.1504 69.4609 280.3320 7028.8012 28118.1972 

0.2 1.1135 66.9583 277.7515 7026.1168 28115.2779 

0.5  53.7598 260.3649 7007.5886 28096.6209 

1  27.5413 215.0147 6942.0919 28030.6902 

2   110.1149 6696.7074 27771.7612 

5    5375.6104 26259.8987 

10    2778.6422 21503.5389 

20     11137.0155 

Having considered these tables, one can come to the 
same conclusions about the influence of 0ω , *α  and ∆α  
on the system frequency as in the previous paragraph of 
this article.  

In general we can say that qualitative characteristics 
of the influence of both membership function parameters 
and the mean-geometric root do not differ in each 
considered case. 

The case of the system under external perturbation 
A system functioning in the real-life environment 

undergoes external impacts. Let us investigate the 
behavior of the systems (1), (2), (3) and (1), (2), (4) 
under the external perturbation. 

The results of the research at the load exposure are 
given in fig. 7-11 

 
a) 10% nM  

 
b) 40% nM  

Fig. 7. Simulation results for the system with coefficients 
(2), (3) at * 0.5, 0.5α α∆= = , 0 4ω =  and different loads 

 
a) 1% nM  
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b) 10% nM  

Fig. 8. Simulation results for the system with coefficients 
(2), (4) at * 0.5, 0.5α α∆= = , 0 4ω =  and different 

loads 

 
a) 10% nM  

 
b) 30% nM  

Fig. 9. Simulation results for the system with coefficients 
(2), (4) at * 10, 20α α∆= = , 0 4ω =  and different loads 

 
The effect of the perturbation begins at the time equal 

to 10 seconds and stops in 5 seconds. It is interesting that 
despite the disturbance action, in some cases the output 
value increases unlike the stable system. It happens 
because the transfer function for a perturbation of the 
system has the following form (see [11]): 

( )

* *
1 2

* ** *
3 2 1 31 2

1 2 1 1 2

1
1 1

11
c

M C M C M C M M

k kp p
Tm Tm Tc

W p
k kk kp p p

T T T T T T T T

  +
+ +  ⋅ = −

   ++
+ + + +   

   

 

and at the change of * , 1, 3ik i =  correspondingly to  

( )*
1 _1 1 _ 21 , 1,3i i ik k k i= ⋅ + − ⋅ =µ µ  

Its sign changes. 
Under the load the system can leave the zone of the 

oscillation modes. After elimination the load, the 
oscillations will reappear in the system.  

 
a) 40% nM  

 
b) 125% nM  

Fig. 10. Simulation results for the system with coefficients 
(2), (3) at * 0.5α α∆= = , 0 32ω =  and different loads 

 
a) 5% nM 5% 
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b) 10% nM  

Fig. 11. Simulation results for the system with coefficients 
(2), (4) at * 0.5α αΔ= = , 0 32ω =  and different loads 

Conclusions 
The application of this approach (the case of fuzzy 

control) can provide new properties to the system. 
The amplitude of oscillations in the system depends 

on its switching function. By changing the range of 
overlapping of switch functions one can adjust the 
amplitude. The oscillation frequency is determined by 
the value of the mean-geometric root of the system. 
Unlike classical systems, the value of initial coordinates 
does not decrease with the load increase. It increases due 
to the change in sign of the polynomial in the numerator 
of the transfer function for perturbation during the 
transition from one subsystem to another. 

In a system with one root in the right half-plane the 
average value of the output coordinate depends on the 
parameter β of the switching function. 

In a system with the pair of complex conjugates roots 
in the right half-plane, the average output value 
corresponds to output signal of stable system.  
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ФОРМУВАННЯ КЕРОВАНИХ ВПЛИВІВ  
В СИСТЕМІ З НЕЧІТКИМ РЕГУЛЯТОРОМ 

А. Лозинський Л. Демків 

Розглянуто класичну двомасову систему модального 
керування швидкістю, що містить нестійку підсистему. 
Встановлено залежність основних характеристик системи 
від параметрів функції належності та середньогеомет-
ричного кореня. Також досліджено поведінку системи під 
дією зовнішніх збурень. 

. 
 
 
 
 
 
 
 
 
 

 

Andrew Lozynskyi , DSc. (2004), 
professor (2006). Graduating student 
(1993) of electromechanics faculty of the 
Lviv polytechnic institute, specialized in 
"Drive and automation of industrial options 
and technological complexes".  

After completion of post-graduate 
and PhD thesis (1996) worked at the 
department of electrical machinery and 

apparatus at the University, where he rose from assistant to 
professor. Since May 2004 - Deputy Rector for Research at 
Lviv Polytechnic National University. Expert of the Phare / 
Tacis CBC project, implemented in 2000 at Lviv Polytechnic 
National University. The Ukrainian Cabinet of Ministers Grant 
Holder in 2001-2002. Leaded the accomplishment of President 
of Ukraine Grant for support of scientific researches of young 
scientists in 2006. Took part in execution of the series of the 
researches state budgets works of MOS of Ukraine in 1997 - 
2009  

 

Basic direction of scientific researches is development of 
the intellectual control systems by the electrical engineering 
devices. Author and coauthor of 1 monograph, over 100 
scientific articles, 5 tutorials, 4 patents of Ukraine and 2 patents 
of a Russian Federation. 

 

Lyubomyr Demkiv , PhD  (2006). 
Graduating student (2003) of applied 
mathematics and fundamental sciences 
institute, specialized in "Applied 
mathematics". Since November 2006 – 
lecturer at the Department of applied 
mathematics at Lviv Polytechnic 
National University.  

Obtained the Diploma (2001) of 
presidium of National Science Academy 
of Ukraine on competition of young 

scientists and students of higher educational establishments.  
The main direction of his scientific research is 

development of the intellectual control systems with help of 
electrical engineering devices. 

 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


