Оскільки збільшення кількості етанолу, введеного на екстракцію, зумовлювало посилення конверсійних процесів, наслідком чого був перехід частини Mg^{2+} -іонів у рідку фазу, то вихід продукту за Mg^{2+} зменшувався в обох серіях експериментів.

Висновки. 1. Екстрагуванням хлоридів із суміші хлоридних і сульфатних солей етаноловодним екстрагентом можна отримати продукт, який містить (у перерахунку на сухий, мас. %): K_2O 28....29; MgO 7...8; Cl⁻ 1,5...2 і відповідає вимогам до безхлоридної калімагнезії. Оптимальними умовами екстрагування є концентрація етанолу в екстрагенті 50 мас. % і T:P = 1:(2...2,5).

2. Етанол проявляє селективність стосовно розчинення хлоридів, проте у його присутності в системах, що переробляють, відбувається конверсія, яка супроводжується заміною в продуктах Mg^{2+} на K^+ і Na⁺.

1. Перекупко Т.В., Пічка Л.І. Екстрагування хлоридних мінералів з полімінеральної калійної руди у водно-спиртовому розчиннику // Збірник наукових праць міжнар. науково-практ. конф. "Комплексне використання сировини, енерго- та ресурсозберігаючі технології у виробництві неорганічних речовин". Черкаси, 2004. – С. 118–119. 2. Яворський В.Т., Перекупко Т.В., Кропивницька Л.М. Нова технологія переробки галіто-лангбейнітового залишку виробництва калійних добрив // Хімічна промисловість України. – 2002. – № 6. – С. 3–7.

УДК 544,576. 544,478,13.

Р.В. Дем'янчук, В.Л.Старчевський Національний університет "Львівська політехніка", кафедра загальної хімії

ЗМІНИ КРИСТАЛІЧНОЇ БУДОВИ КАТАЛІЗАТОРА Мо₂В₅ ПРИ ОБРОБЦІ УЛЬТРАЗВУКОМ

© Дем'янчук Р.В., Старчевський В.Л., 2013

Досліджено каталітичну активність гетерогенного каталізатора Mo₂B₅, який активували обробленням ультразвуком, для процесу епоксидування олефінів молекулярним киснем. Рентгеноструктурним методом показано, що внаслідок ультразвукової обробки кристалічна будова каталізатора змінюється. Наведені дані рентгеноструктурного аналізу.

Ключові слова: активація, гетерогенний каталізатор, ультразвук, Мо₂В₅, рентгеноструктурний аналіз.

In this paper olefins epoxidation by molecular oxygen when using heterogeneous catalysts activated by ultrasonic treatment was studied. It is shown that due to ultrasonic treatment, the crystal structure of the catalyst is changed. Presented data X-ray analysis. Key words: activation, heterogeneous catalyst, ultrasound, Mo₂B₅, XRD.

Постановка проблеми. Реакція епоксидування олефінів молекулярним киснем є економічно обгрунтованою при високій селективності процесу. Для досягнення високої селективності процесу використовують каталітичні систем, здатні спрямувати процес в необхідний напрямок [1].

Як каталізатори для реакції епоксидування олефінів широко використовуються оксиди перехідних металів: CuO, NiO, Co₂O₃, Co₃O₄, V₂O₅, Fe₂O₃, Cr₂O₃, MoO₃ [2]. У роботах [1,2] показано, що перспективними також можуть бути бориди CrB₂ та Mo₂B₅, MoB₂. Каталізатори на основі боридів молібдену мають, однак, недостатню каталітичну активність і потребують її підвищення.

За допомогою обробки ультразвуком очікується зростання активності каталізатора за рахунок специфічної дії ультразвуку на поверхню каталізатора.

Аналіз останніх досліджень та публікацій. У роботах [3–4] розглядають застосування ультразвуку, а також надаються пояснення ймовірного механізму дії. У нашій попередній роботі [5] було наведено підтвердження ефективності впливу ультразвуку на активність каталізатора Mo₂B₅ в реакції епоксидування та запропоновано схему перетворень октену-1.

Мета роботи – дослідження причин підвищення каталітичної активності гетерогенних каталізаторів Мо₂B₅ під дією ультразвукової кавітації. Вивчення процесу активації геторегених каталізаторів для встановлення оптимальних умов.

Експериментальна частина і обговорення результатів. Початковим етапом дослідження була активація каталізатора під дією ультразвуку частотою 22 кГц в середовищі хлорбензолу. Методика активації каталізатора описана в роботі [5].

Другим етапом роботи було вивчення впливу активованих каталізаторів на процес окиснення октену-1. Швидкість перебігу хімічної реакції визначали за швидкістю поглинання кисню на газометричній установці. Взаємозв'язок між швидкістю поглинання кисню, швидкістю реакції та активністю каталізатора детально показано в роботі [5]. На цьому етапі роботи увагу сконцентровано на досліджені змін, які відбулись під час активації каталізатора. Основними змінами, які можна було очікувати внаслідок ультразвукової обробки, є як поява нових активних центрів, так і збільшенням питомої поверхні каталізатора.

На рис.1 продемонстровано зміну кількості поглинання кисню в часі для процесу окиснення октену-1 в присутності Мо₂В₅, що попередньо озвучували ультразвуком протягом заданих часових інтервалів та каталізатора, що не піддавали дії ультразвукової обробки.

Рис. 1. Залежність об'єму поглинутого O₂ при T=350K від умов активації каталізатора Mo₂B₅: 1 – неактивований каталізатор, 2,3,4 – каталізатор Mo₂B₅ підданий ультразвуковій обробці протягом відповідно 5,10 та 30 хв

На рис. 2 наведено діаграму зміни питомої поверхні досліджуваного гетерогенного каталізатора Мо2В5, яку обчислювали методом низькотемпературної десорбції азоту за методикою [4].

Рис. 2. Залежність питомої площі поверхні каталізатора від часу дії на нього ультразвуку

Рис. 1 та 2 показують, що дія ультразвуку призводить до збільшення питомої поверхні каталізатора Mo_2B_5 від 0,62 м²/₂ до 0,98 (рис. 2). Область оптимальної дії ультразвуку, котра приводить до помітного збільшення площі поверхні каталізатора, знаходиться в районі 5–15 хв. Хоча зростання каталітичної активності спостерігається і для каталізатора, обробленого протягом 30 хв. (рис. 1). Тому основним фактором, що впливає на активність Mo_2B_5 , є не питома поверхня, а поява нових активних центрів на поверхні. Для отримання більш повних даних було проведено глибші дослідження каталізаторів, а саме рентгеноструктурний аналіз. Рентгеноструктурний аналіз був проведений для каталізатора Mo_2B_5 . Дані з рентгеноструктурного аналізу були отримані для зразків каталізатора, які піддавали дії ультразвуку 15, 30, 60 хв, а також неактивований каталізатор Mo_2B_5 , і наведені в табл. 1.

Рентгеноструктурний аналіз каталізаторів Mo2B5, які були піддані ультразвуковій обробці, проводили на дифрактометрі Philips X'Pert з використанням CuKα випромінювання. Розмір кристалітів Dhkl розраховано за величиною розширення рефлексів на дифрактограмах за допомогою рівняння Дебая-Шеррера:

Dhkl = $0.9\lambda/(\Delta \cdot \cos\Theta)$

де λ=0.154 нм – довжина хвилі мідного випромінювання, Θ – кут Брегга з дифрактограми; Δ – кутове розширення піків, виміряне з дифрактограм за допомогою програми Origin. Результати наведено в табл. 1 та 2.

Таблиця.1

Вихідна суміш		15 хв		45 хв		60 хв		MoB ₂ rhombohedral 01-073-0704		
d, Å	Ι	d, Å	Ι	d, Å	Ι	d, Å	Ι	d, Å	Ι	hkl
3,476	1180	3,476	880	3,499	3525	3,499	2375	3.495	645	006
2,577	940	2,567	1740	2,577	4130	2,590	2805	2.591	999	101
2,520	515	2,520	680	2,521	1955	2,521	1445	2.533	282	012
2,331	415	2,321	550	2,341	1325	2,331	1020	2.330	110	009
2,203	540	2,203	1090	2,203	2250	2,212	1775	2.216	381	015
1,961	710	1,954	1880	1,961	2200	1,961	2910	1.968	544	107
1,842	460	1,836	1625	1,842	1750	1,842	2235	1.850	335	018
1,739	290	1,739	590	1,739	935	1,741	920	1.747	100	00 12
1,535	300	1,535	775	1,534	875	1,535	1070	1.539	59	01 11
1,501	640	1,505	2535	1,501	1905	1,508	2450	1.507	247	110
1,379	790	1,379	2535	1,378	1815	1,382	2495	1.372	115	10 13
1,367	600	1,364	1675	1,370	1540	1,370	2195	1,303	85	021
1,296	884	1,296	2185	1,296	1437	1,301	2360	1,295	60	202
1,250	592	1,261	1090	1,250	950	1,250	1195	1,265	33	024
1,243	592	1,243	1195	1,243	950	1,245	1480	1,246	45	205
1,195	992	1,193	2195	1,195	1440	1,197	2050	1,196	82	027
1,165	980	1,165	1645	1,167	1295	1,167	1750	1,168	59	208
1,139	1810	1,139	3105	1,139	2313	1,141	2955	1,141	115	11 12
1,074	830	1,073	3105	1,074	960	1,076	1110	1,077	15	2011
1,024	1930	1,022	1085	1,022	1925	1,024	2340	1,025	49	11 15
1,013	2447	1,012	2900	1,012	2300	1,013	3220	1,014	46	02 13

Значення міжплощинних відстаней (d), інтенсивності рефлексів (I) та індексів Міллера (hkl) для активованих зразків Мо₂B₅ отриманих в результаті рентгеноструктурного аналізу.

Час активування (хв.) Параметри	0	15	45	60
D ₀₀₆ (nm)	14,2	17,1	13,4	10,2
D 101 (nm)	23,0	18,4	19,8	20,7
Ds (nm)	1360	860	980	
I_{101}/I_{006}	0.80	1.98	1.18	1.18

Залежність деяких параметрів кристалічної структури Мо₂В₅ від часу активування

Ds-ефективний розмір частинок розраховується за формулою $D_s = (6/\rho \cdot S) \cdot 10^3$ [нм], ρ – густина зразків (7, 12 см³/г для MoB₂), S – питома поверхня зразків.

Сукупність міжплощинних відстаней d свідчить, що і вихідний, і активовані зразки

представлені ромбоедричною модифікацією дибориду молібдену (JCPDS N 01-073-0704), що видно із зіставлення значень d для досліджуваних зразків та табличних даних (права частина табл. 1).

Але основним найінтенсивнішим рефлексом є рефлекс від площини 006, а не від площини 101, як за табличними даними.

З отриманих даних можна стверджувати, що відбуваються такі зміни у кристалічній структурі:

1) фазовий склад не змінюється – ромбоедрична модифікація зберігається;

2) спостерігається зміщення положень більшості рефлексів (величин d), що свідчить про порушення кристалічної структури;

3) найінтенсивнішим стає рефлекс від площини 101, тобто відбувається переорієнтація площин кристалітів (зокрема на поверхні) – площина 101 більше представлена на поверхні. Інакше кажучи, змінюється текстура (мінералогічний термін). Це добре видно з табл. 2 : величина співвідношення інтенсивності рефлексів від площин 101 та 006 I_{101}/I_{006} різко зростає після 15 хв. активування (з 0.80 до 1.98);

4) розмір первинних кристалітів, розрахований за формулою Шеррера, в напрямку площини 006 D_{006} зростає після 15 хв, а потім зменшується після подальшого активування. Величина D_{101} , навпаки, дещо зменшується після 15 хв активування. Цікаво, що вихідний зразок та зразки після активування протягом 45 та 60 хв складаються з продовгуватих кристалітів ($D_{101} > D_{006}$) в той час як після 15 хв – з кристалітів, можливо, близьких до кубічних;

5) питома поверхня має максимальне значення для зразка, активованого 15 хв. Відповідно розмір полікристалічних зерен (які складаються з первинних кристалітів) Ds, розрахований за формулою $D_s = (6/\rho \cdot S) \cdot 10^3$, – найменший для цього зразка. Для нього ж мінімальний ступінь агрегування первинних кристалітів, який можна оцінити зі співвідношення D_s/D_{101} .

Отже, внаслідок активування відбувається зміна кристалічної будови, передусім переорієнтація кристалографічних площин, без зміни фази. Спостерігається також збільшення питомої поверхні за рахунок дезагрегування полікристалічних зерен та руйнування первинних кристалітів. З описаних в роботі [6] двох механізмів зміни питомої поверхні, реалізується очевидно, процес ерозії поверхні зерен шляхом відриву їх фрагментів. Максимальні зміни спостерігаються для зразка, активованого протягом 15 хв – в подальшому питома поверхня знижується, можливо внаслідок агрегування, хоча каталітична активність зростає.

1. Liang J., Tang Q., Meng G., Wu H., Zhang Q., Wang Y. Simple metal oxides as efficient heterogeneous catalysts for epoxidation of alkenes by molecular oxygen. Chem. Letters. – 2004. – Vol.33. – № 9. – Р. 1140. 2. Булгакова Л.В., Трач Ю.Б. Рідиннофазне окиснення октену-1 і циклооктену молекулярним киснем у присутності VB2 // Вісник Нац. ун-ту "Львівська політехніка",2007. 3. Мокрий Є.М., Старчевський В.Л. Каталітичні реакції в умовах кавітації. – Львів: Світ,1993. 4. Иоффе И.И., Решетов В.А., Добротворский А.М. Гетерогенний катализ. – Л.: Химия, 1985. – С. 207–220. 5. Р.В. Дем'янчук, В.Л.Старчевський Ультразвуковаактивація двокомпонентних молібденових каталізаторів для окиснення октену // Вісник Нац. ун-ту "Львівська політехніка", 2012. – С. 207–220. 6. Marković S., Mitrić M., Starčević G., Uskoković D. Ultrasonic de-agglomeration of barium titanate powder // Ultrason. Sonochem. – 2008. – V. 15. – Р. 16–20.

УДК 539.232

П.Й. Шаповал¹, Р.Р. Гумінілович¹, Й.Й. Ятчишин¹, В.В. Кусьнеж², Г.А. Ільчук² Національний університет "Львівська політехніка", ¹кафедра аналітичної хімії, ²кафедра фізики

СТВОРЕННЯ І ВЛАСТИВОСТІ ФОТОЧУТЛИВИХ ГЕТЕРОСТРУКТУР N-CDS/P-CDTE

© Шаповал П.Й., Гумінілович Р.Р., Ятчишин Й.Й., Кусьнеж В.В., Ільчук Г.А., 2013

Розроблена технологія хімічного поверхневого осадження і отримано тонкі плівки CdS на підкладках p-CdTe. Вивчено склад та структуру отриманих покрить. Досліджено електричні та фотоелектричні властивості гетеропереходів n-CdS/p-CdTe. Показана можливість застосування методу хімічного поверхневого осадження для створення тонкоплівкових сонячних елементів на основі n-CdS/p-CdTe.

Ключові слова: тонкі плівки CdS, хімічне поверхневе осадження, тонкоплівкові гетеропереходи.

This article shows how thin films n-CdS were deposited on p-CdTe substrates by the new chemical surface deposition method. The composition and crystallinity degree of obtained coatings were studied. The high value of n-CdS/p-CdTe heterojunction photoconversion was provided by using the new CdS deposition method. The possibility of n-CdS/p-CdTe thin film solar cell fabrication by chemical surface deposition method was demonstrated.

Key words: CdS thin films, chemical surface deposition, heterojunction.

Вступ. Найефективнішими з енергетичного погляду пристроями для перетворення сонячної енергії на електричну є фотоелектричні перетворювачі (ФЕП), які дозволяють здійснити пряме одноступінчате перетворення сонячної енергії в електричну. Під час розроблення конструкції тонкоплівкових ФЕП для інтенсифікації фотоелектричних процесів використовують ефект широкозонного "вікна", а найефективнішим матеріалом для виготовлення широкозонних "вікон" є кадмію сульфід. CdS має високу фоточутливість і адсорбційність, має задовільну ширину забороненої зони (E_g) 2,4 еВ і фотопровідність (σ) 10² Ом⁻¹см⁻¹ та не змінює своїх характеристик при зростанні температури поверхні СЕ під час роботи. Ще однією особливістю цього матеріалу є відсутність у ньому діркової провідності внаслідок рекомбінації акцепторних домішок і точкових дефектів. Ефективний час життя основних носіїв дуже великий (10–100 мс), що приводить до підсилення первинного фотоструму до 10⁵ разів [1].

Спроби замінити CdS іншими матеріалами, які б не давали токсичних відходів під час виробництва і утилізації CE, мали певний успіх. У результаті наукових пошуків була показана можливість використання у якості буферного шару низки сполук, проте жодна з них не змогла перевершити ефективність CdS. Наприклад, $In(OH)_3$ показав ефективність 88,4 % від звичайного CE з CdS, $Sn(S,O)_2 - 86,8$ %, ZnO – 85 %. На цей момент найкращими аналогами CdS є безкадмієві буферні шари з $In_x(OH,S)_y$ (КПД до 15,4 %), ZnSe (КПД до 14 %), In_xSe_y (КПД до 13 %) [2–5, 6].

Тому дослідження процесу створення фоточутливих гетероструктур на основі тонких плівок CdS, осаджених на напівпровідникові підкладки CdTe та вивчення їх властивостей становлять значний практичний інтерес.