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Abstract. In the paper we present the results of an 
advanced investigation of dynamics of variations of the 
atmospheric pollutants (sulphur dioxide) concentrations 
in the air basins of Polish industrial cities (Gdansk 
region) by using the improved non-linear prediction and 
chaos theory methods.  

Chaotic behavior of the sulphurous anhydride 
concentration time series at two sites in the city of 
Gdansk has been computed. As usually, to 
reconstruct the corresponding chaotic attractor, it is 
necessary to determine time delay and embedding 
dimension. The former is determined by the methods 
of autocorrelation function and average mutual 
information, and the latter is calculated by means of 
the correlation dimension method and algorithm of 
false nearest neighbours. Further, the Lyapunov 
exponents’ spectrum, the Kaplan-Yorke dimension 
and the Kolmogorov entropy and other invariants are 
calculated.  An existence of a low-D chaos in the 
cited system is confirmed and using polynominal 
algorithm with neural networks block allows making 
an improved short-term forecast of the atmospheric 
pollutant fluctuations dynamics. 

 
Key words:  air pollution dynamics, studying and 
forecasting, chaos theory methods. 

1. Introduction 

Many studies in different fields of science have 
appeared where the methods of a chaos theory were used 
to a great number of various dynamical systems [1–35]. 
Especial interest atytracts its usinf under solving 
different problems in the Earth and environmental 
science as athe most of dynamical characteristics of 
environmental, hydrometeorological and ecological 
systems manifest typically non-linear chaotic behaviour. 
Nevertheless the studies concerning this behaviour in the 
time series of atmospheric constituent concentrations are 
sparse, and their outcomes are ambiguous [1–3]. The 
key problem of the Earth and environmental science is 
carrying out a forecasting model deals with the known 
problems. In this essense the methods of dynamical 
system and chaos theories could be especially useful. 
Let us remind that although a chaos theory puts 
fundamental limits for a long-rage forecasting [1–8], at 
the same time it can be used in order to obtain quite 
effective short-term prediction . 

In ref. [5] the NO2, CO, O3 concentrations time 
series analysis was analysed and it was noted that O3 
concentrations in Cincinnati (Ohio) and Istanbul are 
evidently chaotic, so it is required essentially non-linear 
modeling the corresponding series [6]. In ref. [5] there is 
an analysis of the NO2, CO, O3 concentrations time 
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series in Gdansk region and evidence of chaos has been 
definitely received. More over, a short-term forecast of 
atmospheric pollutants using a non-linear prediction 
method has been given. These studies have proved that 
non-linear methods of chaos theory and dynamical 
systems with satisfactory accuracy can be used for short-
term forecasting the temporal dynamics of atmospheric 
pollutants concentrations, though a prediction model 
should be maken more exact.  It is important to note that 
the time series are however not always chaotic, and thus 
chaotic elements should be found for each series.  

In the paper we present the results of an advanced 
investigation of dynamics of variations of the 
atmospheric pollutants (sulphur dioxide) concentrations 
in the air basins of Polish industrial cities (Gdansk 
region) by using the improved non-linear prediction and 
chaos theory methods. It is presented an advanced 

analysis and forecasting of chaotic behaviour in the 
sulphurous anhydride concentration time series at two 
sites in the city of Gdansk. All calculations are 
performed with using “Geomath” and “Quantum Chaos” 
computational codes [3,5,9–39]. 

 
2. Testing of chaos in time series  

2.1. Data 

We have re-analysied the EU monitoring system 
data for time series concentrations of sulfur dioxide 
(SO2) for the city of Gdansk (2003–2004). The 
multiyear hourly values of the corresponding 
concentrations (one-year total of 20×8760 data points) 
were studied. The examples of the time series of SO2 
concentration (in mg/m3) are listed in Fig. 1. 
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Fig. 1. Time series of SO2 concentrations (in mg/m3) 

 
2.2. Testing of chaos in time series 

Testing for chaos procedure in time series is described in 
details in [2, 14–18]. Here we are limited only by the key 
aspects. AS usually, we consider time series:  

                       s(n)=s(t0+ n∆t) = s(n),  
where t0 is a start time, ∆t is a time step, and n is a 
number of the measurements. The valuable s(n) in our 
case means an atmospheric pollutant concentration. The 
next step is in reconstruction of a phase space using the 
information contained in s(n). Such reconstruction leads 
to a set of d-dimensional y(n)-vectors for each scalar 

measurement of the atmospheric pollutant concentration. 
The main idea is the direct use of variable lags s(n+τ), 
where τ is some integer to be defined, which determines 
the coordinate system where a structure of orbits in 
phase space can be restored using a set of time lags to 
create a vector in d dimensions,  

y(n)=[s(n),s(n + τ),s(n + 2τ),..,s(n +(d−1)τ)], 
the required coordinates are provided. In a nonlinear 
system, s(n + jτ) there are some unknown nonlinear 
combinations of the actual physical variables. The space 
dimension d is the embedding dimension dE. 
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2.3. Time lag 

The choice of a proper time lag is important for 
subsequent reconstruction of phase space. If  τ is too 
small, then the coordinates s(n + jτ),  s(n +(j +1)τ)  are 
so close to each other in numerical value that they 
cannot be distinguished from each other. If τ is too 
large, then s(n+jτ), s(n+(j+1)τ) are completely 
independent of each other in a statistical sense. If τ is 
too small or too large, then the correlation dimension 
of attractor can be under-or overestimated. So, the 
optimal valus has some intermediate position between 
the above listed cases.  

The first well knowjn approach to computing time 
lag is provided by a linear autocorrelation function CL(δ) 
method. The main idea is to determine such time lag in 
which CL(δ) is the fastest when passing through 0.  

Another alternative approach is to use a nonlinear 
concept of independence, e.g. the average mutual 
information algorithm.  The average mutual information 
I of two measurements ai and bk is symmetric and non-
negative, and equals to 0 if only the systems are 
independent. The average mutual information between 
any values ai from system A and bk from B is averaged 
over all possible measurements of IAB(ai, bk). In ref. [4] it 
is suggested to choose such value of τ where the first 
minimum of I(τ) occurs.  

2.4. Embedding dimension 

The goal of the embedding dimension determination 
is to reconstruct Euclidean space Rd large enough 
sothat the set of points dA can be unfolded without 
ambiguity. In other words, we can choose a fortiori 
large dimension dE, e.g. 10 or 15, since the previous 
analysis provides us prospects that the dynamics of 
our system is probably chaotic. The correlation 
integral analysis is one of the widely used 
techniques to investigate chaos in time series. The 
analysis uses the correlation integral, C(r), to 
distinguish between chaotic and stochastic systems. 
If the time series is characterized by an attractor, the 
correlation integral C(r) is related to the radius r as  

0

log ( )lim
logr

N

C rd
r→

→∞

= , 

where d is a correlation exponent. If the correlation 
exponent attains saturation with an increase in the 
embedding dimension, then the system is generally 
considered to have a chaotic dynamics. The saturation 
value of the correlation exponent is defined as the 
correlation dimension (d2) of the attractor (see [3,7]). 

In Fig. 2 we list the computed dependence of the 
correlation integral C (r) of radius r for different 
embedding dimensions d for SO2 (b) at site 6 of Gdansk 
in 2003. 
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Fig. 2. The dependence of the correlation integral C (r) of radius r  

for different embedding dimensions d for SO2 (b) at site 6 of Gdansk in 2003–2004 
 

3. Results for atmospheric pollutant time series 
3.1. Results 

Table 2 summarizes the results for the time lag 
calculated for first 103 values of time series.  

The autocorrelation function for all time series 
remains positive. The values, where the autocorrelation 
function first crosses 0.1, can be chosen as τ, but in  [1] 

it is shown that an attractor cannot be adequately 
reconstructed for very large values of τ. So, before 
making up a final decision we calculate the dimension of 
attractor for all values in Table 1. The outcomes explain 
not only inappropriate values of τ, but also shortcomings 
of the correlation dimension method [7]. If algorithm [1] 
is used, then a percentage of false nearest neighbours is 
comparatively large in the case of large τ. If time lag is 
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determined by average mutual information, then 
algorithm of false nearest neighbours provides dE = 6 for 
all air pollutants. 

Table 1 
Time lags (hours) subject to different values of CL, 

and first minima of average mutual information,Imin1, 
for the time series of SO2 at the sites of Gdansk 

CL = 0 CL = 0,1 CL = 0,5 Imin1  
Site 6 

SO2 – 233 13 19 

 Site 9 

SO2 – 148 27 18 

 
3.2. Nonlinear prediction model 

First of all, it’s important to define how predictable a 
chaotic system is. The predictability can be estimated by 
the Kolmogorov entropy, which is proportional to a sum 
of positive Lyapunov exponents.   

The spectrum of the Lyapunov exponents is one of 
dynamical invariants of non-linear system with chaotic 
behaviour. The limited predictability of the chaos is 
quantified by local and global Lyapunov exponents, 
which can be determined from measurements. The 
Lyapunov exponents are related to the eigenvalues of 
the linearized dynamics across the attractor. Negative 
values show stable behaviour while positive values show 
local unstable behaviour.  

For chaotic systems, that are both stable and 
unstable, the Lyapunov exponents indicate the 
complexity of the dynamics. Large positive values 
determine some average prediction limit. Since the 
Lyapunov exponents are defined as asymptotic average 
rates, they are independent of the initial conditions, and 
hence the choice of trajectory, and they do comprise an 
invariant measure of the attractor. The estimate of this 
measure is the sum of positive Lyapunov exponents. The 
estimate of the attractor dimension is provided by the 
conjecture dL  and the Lyapunov exponents are taken in 
descending order. The dimension dL gives values close 
to the dimension estimates discussed earlier and is 
preferable when estimating high dimensions. To 
compute the Lyapunov exponents, we use a method of 
linear fitted maps [3], although the maps with higher 
order polynomials can be used too. 
 
3.3. Nonlinear model 

Nonlinear model of chaotic processes is based 
on the concept of a compact geometric attractor on 
which observations evolve plus (so-called chaos 
geometric approach). Since an orbit is continually 
folded back on itself by dissipative forces and the 

non-linear part of dynamics, some orbit points yr(k), 
r = 1, 2, ..,NB can be found in the neighbourhood of 
any orbit point y(k), and points yr(k) arrive in the 
neighbourhood of y(k) at quite different times k.  

One can then choose some interpolation 
function, which accounts for whole neighbourhood 
of phase space and how they evolve from near y(k) 
for the whole set of points near y(k+1). The 
implementation of this concept is to build 
parameterized non-linear function F(x, a) which 
transforms y(k) into  

                       y(k+1) = F(y(k), a)  
and  uses various criteria to determine parameters of 
a. Since one has the notion of local neighbourhoods, 
one can build up one's model by processing 
neighbourhood by neighbourhood and, after piecing 
these local models together, produce a global non-
linear model that captures much of the structure in 
an attractor itself. 
 
3.4. Short-term forecast of atmospheric pollutant 
time series 

Table 2 shows the calculated parameters: correlation 
dimension (d2), embedding dimension (dE), Kaplan-
Yorke dimension (dL), two first Lyapunov exponents, 
E(λ1,λ2),  and the average limit of predictability (Prmax, 
hours) for time series of the SO2 at the sites of Gdansk 
(in 2003-2004).  

Firstly, it should be noted that presence of two (from 
the six) positive λi suggests that the system broadens in 
the line of two axes and converges along the rest four 
axes in the six-dimensional space. The time series of 
SO2 at site 10 have the highest predictability (more than 
2 days), and other time series have the predictabilities 
slightly less than 2 days. 

Table 2 
The correlation dimension (d2),  

embedding dimension (dE), first two Lyapunov 
exponents, E(λ1,λ2),  the Kaplan-Yorke  
dimension (dL), and the average limit  

of predictability (Prmax, hours) for time series  
of SO2 at the sites of Gdansk (in 2003) 

τ d2 dE λ1 λ2 dL Prmax K 
 

Site 1 

SO2 19 1,58 6 0,0164 0,0066 5,01 43 0,71 

 Site 2 

SO2 17 3,40 6 0,0150 0,0052 4,60 49 0,73 
 

The concrete example is presented in Figure 3, where 
the empirical (solid bold line) and theoretical forecasting 
(solid thin line by the polynomial-type prediction algorithm 
with neural networks block and dotted line by the standard 
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polynomial-type algorithm [5, 17–19]) concentration lines 
SO2 (for the one hundred points) are presented. As one 
can see, despite the fact that almost all the peaks on 
the actual curve repeat, as forecasted, the difference 

between the forecasted and actual data in the case of 
high concentrations of the ingredients can be quite 
large. In a whole, the results of this forecast can be 
considered as very satisfactory. 

 

 
Fig. 3. The empirical (solid bold line) and forecasted (solid thin line and dotted line)  

curves of SO2 concentration for the last six hundred members of time series shown in Fig. 1.  
Axis X – a serial number of the term (see text) 

 
4. Conclusions 

In this work, we have studied the dynamics of 
variations of the atmospheric pollutants (sulphur 
dioxide) concentrations in the air basins of Polish 
industrial cities (Gdansk) by using non-linear 
prediction and chaos theory methods. Chaotic 
behaviour in the sulphurous anhydride concentration 
time series at a few sites of Gdansk is numerically 
investigated. Usually, to reconstruct the corresponding 
attractor, the time delay and embedding dimension are 
needed. The former is determined by the methods of 
autocorrelation function and average mutual 
information, and the latter is calculated by means of 
the correlation dimension method and the algorithm of 
false nearest neighbours. Further, the Lyapunov 
exponents’ spectrum, the Kaplan-Yorke dimension and 
the Kolmogorov entropy are calculated. The improved 
results on the short-term forecast of the SO2 
atmospheric pollutant time fluctuations dynamics in 
Gdansk region are given. 
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