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Abst ract .  The Cournot-Puu duopoly model is 
considered. Delayed feedback control method (DFC-method) 
is applied to this model. The dependence of rate coming of the 
system at Cournot equilibrium on the feedback coefficient K  
choice is shown. The optimal value of this coefficient is 
defined. The dependence of rate coming of the system at 
Cournot equilibrium on parameter rc  (the ratio of marginal 
cost firms) is set. The application of DFC-method with two 
control laws to duopoly model is considered. 

Ke y words : Cournot-Puu duopoly model, Cournot 
equilibrium, chaos, stability, delayed feedback control method 
(DFC-method). 

INTRODUCTION 

Review of the literature of recent years (see review 
in [15, 27]) shows the great interest of researchers to 
study of the oligopoly models and nonlinear dynamics, 
which is typical for them. The simplest but at the same 
time the most investigated among them is the Cournot 
oligopoly model [12]. One of the modifications of the 
model was proposed by T. Puu. He introduced the 
assumption that demand in oligopoly must be isoelastic 
and competitors must have constant, but different 
marginal costs [24]. 

Recent studies also indicate the existence of the 
chaotic dynamics in oligopoly models [1-3, 5, 6, 8-11, 
13, 19, 21-23, 25, 26, 29, 30]. Among them, much 
attention is paid to the duopoly model, including the 
model of Cournot-Puu. 

Our recent papers have been devoted to the 
construction of the generalized Cournot-Puu oligopoly 
model and study the stability of its equilibrium point 
[14, 17, 18, 20]. And in [18, 20] we described in detail 

duopoly model and defined such parameters of the 
system (the marginal cost of the firms), at which 
equilibrium point is stable, and there is chaos in the 
system (more precisely, there is a cascade of period 
doubling, which leads to chaos). 

In this regard, there is a need to control this chaotic 
dynamic because unstable oscillations are undesirable 
for any economic system or process. Some methods for 
chaos control, such as OGY chaos control method [4,7], 
the adaptive control method and pole placement method 
[21] were applied to the Cournot-Puu duopoly model. In 
particular, in [11], the authors proposed the delayed 
feedback control method (DFC-method) to control the 
chaos that occurs in the Cournot-Puu duopoly model. 
This method is based on a feedback of the difference 
between the current state and the delayed state of the 
system. It requires relatively little information about the 
system and, therefore, is easy to use. We have 
implemented a generalization of this method for the case 
of presence n  firms in the market (situation of 
oligopoly) for the generalized Cournot-Puu model, with 
the possibility of the application k  ( nk ≤≤1 ) control 
laws to stabilize the system [16]. 

However, there are several important aspects that 
require detailed consideration and study. The first 
question is: what should be the optimal value of the 
feedback coefficient K  at which the system will come 
to the Cournot equilibrium on the minimum number of 
steps (minimum time)? The second question is: far as 
will increase or decrease the number of time steps which 
must be executed to reach a state of equilibrium, 
depending on admissible values of the system 
parameters (marginal costs of the firms ic ). And the 
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third, how effective the use of more than one control law 
to control the chaos is effective? Let us consider these 
questions in detail, for example for duopoly. 

INFLUENCE OF CHOICE OF THE FEEDBACK 
COEFFICIENT K  TO SPEED OF SETTING THE 

SYSTEM AT COURNOT EQUILIBRIUM 

In the case of duopoly there are only two firms 1F  
and 2F  on the market in the same industry, with output 

1q  and 2q  respectively. Firms have constant but 
different marginal costs 1c  and 2c , respectively. 

According to the generalized model [18], Cournot-
Puu duopoly model is as follows (see also [11]): 

( ) ( ) ( )

( ) ( ) ( )

2
1 2

1

1
2 1

2

1 ,

1 .

+ = −

+ = −

q t
q t q t

c

q t
q t q t

c

                  (1) 

Functions ( )1 1+q t  and ( )2 1+q t  with parameter 
values 1 21, 6,25= =c c  and initial conditions 

( ) ( )1 20 0 0,01= =q q  have the form as it is shown in 
Fig. 1. 

 

 
Fig. 1. The reaction functions of the firms 1F  and 2F  

 
Nontrivial equilibrium point of the system (1) – 

Cournot equilibrium (Nash equilibrium) – is a point of 
intersection the reaction curves and has a value: 

( ) ( )
* *2 1
1 22 2

1 2 1 2

,= =
+ +

c c
q q

c c c c
.              (2) 

Profit of the duopolists at the Cournot equilibrium is 
respectively: 

( ) ( )

2 2
* *2 1
1 22 2

1 2 1 2

,= =
+ +

c cU U
c c c c

.              (3) 

Stability of the equilibrium point (2) of system (1) 
is investigated in detail in [18,20], and in [24]. 

Denote the ratio of marginal costs 2

1

= r
c

c
c

, and 

without loss of generality we will assume that 2 1≥c c  
(i.e., 1≥rc ). The equilibrium point (2) is stable if the 
ratio of marginal costs is in the range: 

1 3 8≤ < +rc .                             (4) 
Then equilibrium point is unstable if: 

4/2583 ≤≤+ rc .                    (5) 
Limit cycles and chaos exist in the system at these 

values rc . Bifurcation diagram for firms 2F  with 
output 2q  with respect to the ratio rc  of marginal costs 
is presented in Fig. 2. 

 

 
 

 
Fig. 2. Bifurcation diagram of the firm 2F  with the 

production 2q  
 
Consider the following control form of the duopoly 

model (1): 
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)(tu represents such DFC-law: 

( ) ( ) ( )( ) 1,111 ≥−−= ttqtqKtu ,             (7) 

where: K  is feedback coefficient. 
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In this paper DFC-law is applied to the structure 
(state) (output of the firm) of duopoly model. We can 
consider the application of DFC-law to the parameters 
(the marginal cost of firm) of the model. 

As it is shown in [11], and also in detail in [20], 
Cournot equilibrium ( )*

2
*
1 , qq  (2) is locally asympto-

tically stable if and only if: 

( ) ( )
r

r

r

r
c

cK
c

c
4

11
8

1
2
1 22 −

−<<
−

−− .             (8) 

A graphical depiction of the region of asymptotic 

stability of the equilibrium point ( )*
2

*
1 , qq  in the space of 

parameters { }Kcr ,  is shown in Fig. 3.  

 
Fig. 3. The region of asymptotic stability of the 

equilibrium point ( )*
2

*
1 , qq  when DFC-method is applied to 

the state of duopoly model 
 
This region is determined by the conditions (8) and 

is bounded by the lines: 

( )

( )

2
r

r
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r

r

r r

c 1
K 1 ,

4c

c 11K ,
2 8c

25c 1, c .
4

−
= −

−
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Numerical experiments with using DFC-method to 
the state of Cournot-Puu duopoly model are carried out 
in [11]. The parameters are fixed as ,11 =c , 25,62 =c  
initial conditions ( ) ( ) 01,000 21 == qq , and the feed-
back coefficient 5,0−=K . Chaotic trajectory is 
stabilized at Cournot equilibrium and control DFC-law 

( )tu , acting since time 50=t , tends to zero. But some 
question arises here: how effective is the choice of such 
coefficient K ? Maybe, there is some value of this 
coefficient from the allowable interval (8), for a given 
value of the ratio of marginal costs, which faster leads 

the unstable system to equilibrium point. The answer to 
this question we’ll get in this section. 

Let us consider the range of the parameter rc  at 
which Cournot equilibrium is unstable, i.e., 

4
2583 ≤≤+ rc . Consider the left end of this inter-

val, i.e., 83 +=rc  ( 83,1 21 +== cc ). (We 
consider the ends of the interval of unstability, as they 
are the most interesting to study). Then, coefficient K , 
according to the system of inequalities (8), can be 
selected from the interval: 

01 <<− K .                              (10) 
For the right end of the interval, i.e., values 

4/25=rc  ( 4/25,1 21 == cc ), coefficient K , 
according to the system of inequalities (8), can be 
selected from the interval: 

800
82

800
841 −<<− K , 

namely: 
1025,005125,1 −<<− K .                 (11) 

As we can see from (10) and (11), the left and right 
ends of the interval of values of the coefficient K , are 
displaced to the left (from ( 1− ) to ( 05125,1− ) – for 
the left end, and from 0  to ( 1025,0− ) – for the right 

end) with increasing rc  from value 83 +=rc  to the 
value 4/25=rc . That is, common to all values rc  

from the interval 
4

2583 ≤≤+ rc  are values of K  

from the interval: 
1025,01 −<<− K .                     (12) 

Cournot equilibrium at selected values of the 
parameter rc , according to (2), has the values that are 
presented in the Table 1. 

 

Table 1. The equilibrium point ( )*
2

*
1 , qq  at different 

values rc  

rc  
*q  

 
3 8+  

 
25 / 4  

*
1q  1 0,125

8
=  100 0,118906

841
≈  

*
2q  1 0,021447

8(3 8)
≈

+
 16 0,019025

841
≈  

 
We have conducted numerous studies to model (6) 

with control functions (7) for value 83 +=rc  and 
initial conditions ( ) ( ) 01,000 21 == qq , selecting the 
coefficient K  from the allowable range (10). We 
received a number of time steps (intervals) needed the 
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each of the firms 1F  and 2F  with output 1q  and 2q  to 

come to the Cournot equilibrium ( )*
2

*
1 , qq , for each 

selected value K  (DFC-law ( )tu  acts since time 
50=t ). Graphically this dependence is shown in Fig. 4. 
 

 
Fig. 4. Dependence of the number of time steps t  on the 
selection of the coefficient K  ( rc 3 8= + ) 
 

 
Fig. 5. Dependence of the number of time steps t  on the 
selection of the coefficient K  ( rc 25 / 4= ) 

 
The more we are moving away from the optimal 

value in the direction of the right end of the range of K , 
the system needs more time to come to the equilibrium 
point. 

As it is shown in Fig. 4, both firms (with the same 
value of K ) need almost the same number of steps to 
come to the equilibrium point. Also we see that the 
fastest system stabilizes at 8,0−=K  ( 65,63 21 == tt , 
that is, by 13 steps to the first firm and 15 steps for the 
second, control law stabilizes the chaotic situation). 
Therefore, in order to stabilize the system as quickly as 
possible, it is better to choose K  that close to this 
optimal value. 

 

Similarly, we have conducted numerous studies for 
values 4/25=rc  and initial conditions 

( ) ( ) 01,000 21 == qq , selecting the coefficient K  from 
the allowable range (11). Graphically the results of 
research are presented in Fig. 5. 

As it is shown in Fig. 5, both firms (with the same 
value of K ) need almost the same number of steps to 
come to the equilibrium point. Also we see that the 
fastest system stabilizes at 9,0−=K  and 8,0−=K  
(the second value 8,0−=K  is optimal for the previous 
case too) ( 68,68 21 == tt  for both values 9,0−=K  
and 8,0−=K ). So, in order to stabilize the system as 
soon as possible, it is better to choose those values K  
that are between the above optimal value and close to 
them. As in the previous case, the more we are moving 
away the optimal values to the right end of the range of 
values K , the system needs more time to come into 
equilibrium. 

Application of the DFC-method to duopoly model 
with parameter value 4/25=rc , initial conditions 

( ) ( ) 01,000 21 == qq  and the value of the coefficient 
9,0−=K  is shown graphically in Fig. 6. 

Control law begins to act from the moment of time 
50=t  and stabilizes the system to the equilibrium 

point. 
 

 
Fig. 6. Application of the DFC-method to duopoly model 

 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



SOME FEATURES OF APPLICATION THE DELAYED FEEDBACK CONTROL METHOD TO COURNOT-PUU  33 

DEPENDENCE OF THE RATE SETTING SYSTEM 
AT COURNOT EQUILIBRIUM ON THE VALUE  

OF THE rc   

In the study of duopoly model with applying DFC-
method to it, the question arises: how will be change the 
number of time steps required the system to come to the 
Cournot equilibrium (increase or decrease) for different 
values of the ratio of marginal costs rc ? 

We have conducted two numerical study for the 
model (6), with the control function (7), for two values 
of the coefficient K  from the interval (12) with the 
initial conditions ( ) ( )1 20 0 0,01= =q q . In the first case 
we have the optimal value of the coefficient 0,8= −K , 
and in the second case, for comparison, value 0,5= −K . 
Choosing the values of rc  in the interval of unstability 

253 8
4

+ ≤ ≤rc , we got a number of time steps 

necessary to each of the firms 1F  and 2F  with the pro-
duction 1q  and 2q , to come to the Cournot equilibrium. 
Graphically this dependence is shown in Fig. 7. 

As it is shown in Fig. 7, in the first case (at 
0,8= −K ) the system requires significantly less steps to 

come to the equilibrium point (Fig.7, left) than in the 
second case, i.e., at 0,5= −K  (Fig. 7, right). Therefore, 
the results obtained in the preceding section are 
confirmed. 

At the beginning of the interval of unstability (at 
3 8= +rc ) the system needs less time to come to 

equilibrium. However, with the increasing rc  the 
number of steps also increases, but at the end of the 
interval (at 25 / 4=rc ) the number of steps decreases. If 
you look at the bifurcation diagram (Fig. 2), it is 
possible to explain this result. At the beginning of the 
unstable interval the equilibrium point oscillates 
between two values (beginning of period doubling tree) 
that are close to one another. With increasing rc , two 

branches of the period doubling tree divergent more (the 
difference between the values, between which 
equilibrium point oscillates, increases) and the number 
of steps increases. Decreasing the number of time steps, 
for some values rc , may indicate to a smaller difference 
of values between which equilibrium point oscillates. 

APPLICATION of the DFC-METHOD  
WITH TWO control LAWS 

In this section we’ll consider application of the 
two control laws to the state of the duopoly model (1).  

Consider the system: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2 1

1

1
2 1 2

2

1 ,

1 .


 + = − +




+ = − +


q t
q t q t u t

c

q t
q t q t u t

c

           (13) 

1 2( ), ( )u t u t  are the DFC-laws: 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1 1

2 2 2 2

1 , 1,

1 , 1,

= − − ≥

= − − ≥

u t K q t q t t

u t K q t q t t
         (14) 

where: 1 2,K K  are the feedback coefficients. 
According to the generalized DFC-method [16, 

20], for 2=n  and 2=k  ( k  is the number of the 
control laws), the Jacobi matrix of the linearized system 
of model (13) looks as follows: 

1 1

2 2

1 1

2 2

0 0
0 0

1 0
1 0

 
 
 =
 −
 

− 

p K
p K

J
p K

p K

,                 (15) 

where: 
2 1 1 2

1 2
1 2

,
2 2
− −

= =
c c c c

p p
c c

.           (16) 

Next, define the conditions imposed on the choice 
of coefficients 1K  and 2K  to control laws (14) stabilize 
the system to the Cournot equilibrium. We apply the 
Routh-Hurwitz procedure for 4+ =n k  [28]. 

 
 

 
 

Fig. 7. Dependence the number of time steps t  on the parameter rc  
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Stability of the linearized system of model (13) is 
determined by the characteristic equation: 

1 1

2 2

1 1

2 2

0 0
0 0

det 0
1 0

1 0

 
 
  =
 −
 

− 

p K
p K

p K
p K

,

 

or                4 3 2
1 2 3 4 0λ λ λ λ+ + + + =a a a a .             (17) 

The coefficients of equation (17) look as follows: 
( )1 1 2

2 1 2 1 2 1 2

3 1 2

4 1 2

,
,

2 ,
.

= − +

= + + −
= −
=

a K K
a K K K K p p
a K K
a K K

            (18) 

Equilibrium point ( )* *
1 2,q q  is locally asymptotically 

stable if for all eigenvalues λ  of the Jacobi matrix J  
condition holds [28]: 

1λ < .                             (19) 
According to the classical Routh-Hurwitz pro-

cedure, all eigenvalues satisfy condition (19) if the 
conditions hold: 

( )
0 1 2 3 4

2
1 2 0 3 3 1 2 0 3 1 4

0, 0, 0, 0, 0,

0, 0,

> > > > >

− > − − >

b b b b b

b b b b b b b b b b b
       (20) 

where: 
0 1 2 3 4

1 1 3 4

2 2 4

3 1 3 4

4 1 2 3 4

1 ,
2 2 ,
3 3 ,
2 2 ,
1 .

= + + + +

= + − −
= − +
= − + −

= − + − +

b a a a a
b a a a
b a a
b a a a
b a a a a

                   (21) 

According to the parameters , 0,4=ib i  (21), the 

coefficients , 1, 4=ia i  (18) and the elements , 1,2=ip i  
(16), conditions (20) can be rewritten as: 

( )

( )

( ) ( )
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( ) ( )

( )( ) ( ) ( )
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where:  2

1

=r
c

c
c

. 

Obviously, the first condition 
( )21

1 0
4
−

+ >r

r

c
c

 is 

always satisfied, since 0>rc . You must choose the 
following coefficient 1K  and 2K  that satisfy the 
remaining six inequalities. This region is graphically 
represented in Fig. 8 (in the plane { }1 2 1 2,+K K K K ), 
which satisfies the inequalities (22.1)-(22.6) at the value 
of the parameter 3 8= +rc . This region is bounded by 
curves constructed using the inequalities (22) by 
replacing the sign of inequality to equality, i.e.,

 

( )

( ) ( )

( )

( ) ( )

( )( ) ( ) ( )

( ) ( )( )

( )( )

( )( ) ( )

1 2

2

1 2 1 2

1 2 1 2

2

1 2 1 2

2

1 2 1 2 1 2

2

1 2 1 2

1 2 1 2

1 2 1 2

(1) 2 0,

1
(2) 3 2 0,

4
(3) 2 4 0,

1
(4) 1 2 4 0,

4

1
(5) 2 3 2

4

1
1 2 4 0,

4

(6) 2 4

2 3 2

− + =

−
− + + − =

+ + − =

−
+ + + + =

 −
 − + − + + − −
  

 −
 − + + + − =
  

+ + − ⋅

⋅ − + − + +

r

r

r

r

r

r

r

r

K K

c
K K K K

c
K K K K

c
K K K K

c

c
K K K K K K

c

c
K K K K

c

K K K K

K K K K K
( )

( ) ( )( )

( )( ) ( ( ) ( )

2

1 2

2

1 2 1 2

2
2

1 2 1 2 1 2

1
4

1
1 2 4

4

1
2 1 2 4 0.

4

  −
  − −

   
 −  − + + + − −

    
−
− − + + + + + =



r

r

r

r

r

r

c
K

c

c
K K K K

c

c
K K K K K K

c

 

As it is shown on the right of Fig. 8, the range of 
permissible values of the coefficients 1K  and 2K  is 
determined by the fourth and sixth equalities. 

We have conducted numerous studies that answer 
the question: whether is it appropriate to use two control 
laws in the duopoly model? Choosing values 1 2+K K  
and 1 2K K  from the permissible region, we have the 
number of steps required for the system to come to 
equilibrium point. The result of the study is shown 
graphically in Fig. 9. 

(23) 
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Fig. 8. The region of admissible values of the coefficients 1K  and 2K  ( 3 8= +rc ) 
 

 
Fig. 9. Dependence the number of time steps t  on 1 2K K  ( 3 8= +rc ) 
 

 
Fig. 10. The region of admissible values of coefficients 1K  and 2K  ( 25 / 4=rc ) 

 

 
Fig. 11. Dependence the number of time steps t  on 1 2K K  ( 25 / 4=rc ) 
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As seen in Fig. 9 (left) at the value 1 2 0,8+ = −K K  
and 1 2 0=K K  it needs the least time for the system to 
come to the Cournot equilibrium. The product 1 2 0=K K  
means that either 1 0=K  or 2 0=K . Without loss of 
generality suppose that 2 0=K . Then we have a 
situation when only one control law is applied to the 
model with the value of the coefficient 1 0,8= −K . This 
situation we have described in the preceding section 
when the value of coefficient 0,8= −K  is the best value 
for DFC-method with the one control law. But the more 
we move to the left and to the right of the value 

1 2 0=K K , the more time it takes to stabilize the system. 
The same situation we have for 1 2 0,7+ = −K K  (Fig. 9, 
on right). 

Similar studies we have done for the right end of the 
unstability interval, that is for 25 / 4=rc . This region is 
graphically represented in Fig. 10 (in the plane 
{ }1 2 1 2,+K K K K ), which satisfies the inequalities 
(22.1)–(22.6) at the value of the parameter 25 / 4=rc . 

As in the previous case, the range of permissible 
values of the coefficients 1K  and 2K  is determined by 
the fourth and sixth equalities. Similarly, we have 
conducted numerous studies, choosing values 1 2+K K  
and 1 2K K  from the permissible region. We received a 
number of steps necessary for the system to come to 
equilibrium point. The result of the study is shown 
graphically in Fig. 11. 

As seen in Fig. 11 on left, at the value 
1 2 0,9+ = −K K  and 1 2 0=K K  it needs the least time for 

the system to come to the Cournot equilibrium. But the 
more we move to the left or right of the value 1 2 0=K K , 
the more time it takes to stabilize the system. Similar 
conclusions we can do for 1 2 0,8+ = −K K  and 

1 2 0=K K  (Fig. 11, right). But the product 1 2 0=K K  
means that one of the coefficients is zero, i.e., we use 
DFC-method with only one control law for the model. 
And in this case, the values 0,9= −K  and 0,8= −K  are 
optimal. 

So, summing up the results of research of this 
section, we have shown that the use of DFC-method 
with the two control laws to duopoly model is not 
effective. 

Application of DFC-method to the state of the 
model is the method of individual control on a chaotic 
market when one of the firms can examine the market 
situation and change their course of action, observing 
the volume of production in the current and past periods. 
According to our research, controlling of unstable 
fluctuations by only one firm of the oligopolistic 
industry is more effective. If the two firms 
simultaneously will wish to do this, it’ll need more time 

to stabilize the market situation (so that both firms have 
come to an equilibrium value of output). 

CONCLUSIONS 

Oligopoly is the predominant form of the market 
structure. Automobile industry, steelmaking industry, 
petrochemical industry, electrical industry, energy 
industry, computer industry and others are the 
oligopolistic industries. That is why it is important to 
study the processes occurring in such organizations of 
market relations. 

In the paper we considered Cournot-Puu duopoly 
model (two firms in oligopolistic industries). Chaotic 
behavior at certain values of the ratio of marginal costs 
of firms rc  ( 3 8 25 / 4+ ≤ ≤rc ) is observed in the 
model. We studied some features of the application of 
the DFC-method to controlling the chaos that arises in 
this model. 

First, we have shown that there is such value of 
feedback coefficient K  at which firms come to the 
Cournot equilibrium fastest, namely 0,8= −K . This 
value is optimal for almost all values of parameter rc  
from the unstability interval. 

We also examined how the value of parameter rc  
influences on the rate of the system setting at the 
equilibrium point. At the beginning of the unstability 
interval (at 3 8= +rc ) the system needs less time to 
come to equilibrium. However, with the increasing rc  
the number of steps also increases, but at the end of the 
interval (at 25 / 4=rc ) the number of steps decreases. 
This can be explained by the fact that at the beginning of 
the instability interval the equilibrium point oscillates 
between two values that are close to one another. With 
increasing of rc , two branches of the period doubling 
tree divergent more (the difference between the values, 
between which equilibrium point oscillates, increases) 
and the number of steps increases too.  

In this paper we have shown that the use of DFC-
method with the two control laws (the ability of the two 
firms to control unstable fluctuations) is ineffective. We 
have shown that there is a certain range of values of the 
coefficients 1K  and 2K  at which firms come to Cournot 
equilibrium, but these values are not optimal. Because 
for any 1K  or 2K  from permissible range of values it 
needs more time to stabilize the system than with one 
control law.  

Conducting such studies for the triopoly model is 
an alternative for further study. 
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