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Abstract. The Cournot-Puu duopoly model is
considered. Delayed feedback control method (DFC-method)
is applied to this model. The dependence of rate coming of the
system at Cournot equilibrium on the feedback coefficient K
choice is shown. The optima value of this coefficient is
defined. The dependence of rate coming of the system at
Cournot equilibrium on parameter C, (the ratio of marginal
cost firms) is set. The application of DFC-method with two
control laws to duopoly model is considered.
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INTRODUCTION

Review of the literature of recent years (see review
in [15, 27]) shows the great interest of researchers to
study of the oligopoly models and nonlinear dynamics,
which is typical for them. The simplest but at the same
time the most investigated among them is the Cournot
oligopoly model [12]. One of the modifications of the
model was proposed by T. Puu. He introduced the
assumption that demand in oligopoly must be isoelastic
and competitors must have constant, but different
marginal costs [24].

Recent studies aso indicate the existence of the
chaotic dynamics in oligopoly models [1-3, 5, 6, 8-11,
13, 19, 21-23, 25, 26, 29, 30]. Among them, much
attention is paid to the duopoly model, including the
model of Cournot-Puu.

Our recent papers have been devoted to the
construction of the generalized Cournot-Puu oligopoly
model and dudy the stability of its equilibrium point
[14, 17, 18, 20]. And in [18, 20] we described in detail

duopoly modd and defined such parameters of the
system (the marginal cost of the firms), at which
equilibrium point is stable, and there is chaos in the
system (more precisely, there is a cascade of period
doubling, which leadsto chaos).

In this regard, there is a need to control this chaotic
dynamic because unstable oscillations are undesirable
for any economic system or process. Some methods for
chaos control, such as OGY chaos control method [4,7],
the adaptive control method and pole placement method
[21] were applied to the Cournot-Puu duopoly model. In
particular, in [11], the authors proposed the delayed
feedback control method (DFC-method) to contral the
chaos that occurs in the Cournot-Puu duopoly modd.
This method is based on a feedback of the difference
between the current state and the delayed state of the
system. It requires relatively little information about the
system and, therefore, is easy to use We have
implemented a generalization of this method for the case
of presence n firms in the market (situation of
oligopoly) for the generalized Cournot-Puu model, with
the possibility of the application k (1£ k £ n) control
laws to stabilize the system [16].

However, there are several important aspects that
require detailed consideration and study. The first
guestion is. what should be the optima value of the
feedback coefficient K at which the system will come
to the Cournot equilibrium on the minimum number of
steps (minimum time)? The second question is: far as
will increase or decrease the number of time steps which
must be executed to reach a state of equilibrium,
depending on admissible values of the system

parameters (margina costs of the firms ¢j). And the
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third, how effective the use of more than one control law
to control the chaos is effective? Let us consider these
questionsin detail, for example for duopoly.

INFLUENCE OF CHOICE OF THE FEEDBACK

COEFFICIENT K TO SPEED OF SETTING THE
SYSTEM AT COURNOT EQUILIBRIUM

In the case of duopoly there are only two firms F,
and F, on the market in the same industry, with output
ql and q2
different marginal costs ¢, and c, , respectively.

According to the generalized mode [18], Cournot-
Puu duopoly mode! isas follows (see also [11]):

qzT(t)-qz(t),

respectively. Firms have constant but

q(t+1) =
1)

Q2(t+1): - ql(t)

(1)

2
Functions q,(t+1) and q,(t+1) with parameter

values ¢ =1c¢,=6,25 and initia conditions

¢, (0)=0,(0)=0,01 have the form as it is shown in
Fig. 1.

Fig. 1. Thereaction functions of the firms F, and F,

Nontrivial equilibrium point of the system (1) —
Cournot equilibrium (Nash equilibrium) —isa point of
intersection the reaction curves and hasavaue:

X C X
G=— 2 =t )
(c+c,) (a+c,)

Profit of the duopolists at the Cournot equilibrium is

respectively:
2 2
& U, = _ &G A3)

U* =2
' (q+c2)2 (q+c2)2

Stahility of the equilibrium point (2) of system (1)
isinvestigated in detail in [18,20], and in [24].

G

Denote the ratio of marginal costs —= = and
G

without loss of generality we will assume that c, 3 ¢

(i.e, ¢ 31). The equilibrium point (2) is stable if the
ratio of marginal costsisin therange:

1£c <3++/8. (4)
Then equilibrium point is unstabl e if:
3+/8E£c £25/4. (5)

Limit cycles and chaos exist in the system at these
values c,. Bifurcation diagram for firms F, with
output g, with respect to theratio ¢, of margina costs
ispresented in Fig. 2.
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Fig. 2. Bifurcation diagram of thefirm F with the
production g

Consider the following control form of the duopoly
model (1):
] _ |92t
iyt +1) = - a(t) + u(t),
i il
|

faale )= (900 )

u(t) represents such DFC-law:

u(t)=K(a(t)- alt- 1) t=1, W)
where: K isfeedback coefficient.

(6)
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In this paper DFC-law is applied to the structure
(state) (output of the firm) of duopoly model. We can
consider the application of DFC-law to the parameters
(the marginal cost of firm) of the model.

As it is shown in [11], and also in detail in [20],

Cournot equilibrium (qiq;) (2) is locally asympto-
tically stable if and only if:

(Cr - 1)2 <K <1- (CI' - 1)2 )

(L
2 r 4c,

)

A graphical depiction of the region of asymptotic
stability of the equilibrium point (qI , q;) in the space of
parameters {cr , K} isshown in Fig. 3.

2
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Fig. 3. The region of asymptotic stability of the
equilibrium point (qi,q;) when DFC-method is applied to
the state of duopoly model

Thisregion is determined by the conditions (8) and
is bounded by thelines:

K=->- , ©

25

¢, =1 c=—.
4

Numerical experiments with using DFC-method to
the state of Cournot-Puu duopoly mode are carried out
in [11]. The parametersarefixedas ¢; =1,, ¢, = 6,25
initial conditions oy (0) = q,(0)=0,01, and the feed-
back coefficient K =-05. Chactic trajectory is
stabilized at Cournot equilibrium and control DFC-law
u(t), acting since time t = 50, tends to zero. But some
guestion arises here: how effective is the choice of such
coefficient K ? Maybe, there is some value of this

coefficient from the allowable interval (8), for a given
value of the ratio of marginal costs, which faster leads

the unstable system to equilibrium point. The answer to
this question we'll get in this section.

Let us consider the range of the parameter c, at
which  Cournot equilibrium is undtable, i.e,

3+48Ec¢ £% . Consider the Ieft end of this inter-

va, ie, € =3+48 (¢ =1c,=3++8). (We
consider the ends of the interval of unstability, as they
are the most interesting to study). Then, coefficient K,
according to the system of inequalities (8), can be
selected from the interval:
-1<K <0. (20)
For the right end of the interval, i.e, values
¢, =25/4 (g =1cy,=25/4), coefficient K,
according to the system of inequalities (8), can be
selected from the interval:
841 82
<K<

800 - 800

namely:
- 1,05125< K <-0,1025. (1)
As we can see from (10) and (11), the left and right

ends of the interval of values of the coefficientK , are
displaced to the Ieft (from (- 1) to (- 1,05125) — for

the left end, and from O to (- 0,1025) — for the right
end) with increasing ¢, from value c, =3+4/8 tothe
value ¢, =25/4. That is, common to al values c,

from the interval 3+\/§£Cr E% are values of K

from theinterval:
-1<K <-01025. (12
Cournot equilibrium at selected values of the
parameter ¢, , according to (2), has the values that are
presented in the Table 1.

Table 1. The equilibrium point (qi , q;) at different

values ¢,
Cr
k - 25/4
q

q 1 o125 100 0,118906

8 8a1
a _ 1 0001447 16, 0,019005

8(3++/8) 841

We have conducted numerous studies to model (6)
with control functions (7) for value c, =3+4/8 and
initial conditions ¢ (0) = g,(0)=0,01, selecting the

coefficient K from the alowable range (10). We
received a number of time steps (intervals) needed the
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each of thefirms F; and F, with output ¢ and g, to

come to the Cournot equilibrium (qiq;) for each
selected value K (DFC-law u(t) acts since time
t =50). Graphically this dependence is shown in Fig. 4.

——firm FZ
250

f~fﬁrmF1
200
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Nt+——v—v—F"—T—7—T"—FT—T"7—

Fig. 4. Dependence of the number of time steps t on the
selection of the coefficient K (c, =3++/8)
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Fig. 5. Dependence of the number of time steps t on the

selection of the coefficient K (c, =25/4)

The more we are moving away from the optimal
value in the direction of theright end of therange of K ,
the system needs more time to come to the equilibrium
point.

Asit is shown in Fig. 4, both firms (with the same
value of K') need amost the same number of steps to
come to the equilibrium point. Also we see that the
fastest system stabilizesat K =-0,8 (t; =63,t, =65,
that is, by 13 steps to the first firm and 15 steps for the
second, control law stabilizes the chaotic situation).
Therefore, in order to stabilize the system as quickly as
possible, it is better to choose K that close to this
optimal value.

Similarly, we have conducted numerous studies for
values ¢ =25/4  and  initiad  conditions
®(0) = ,(0) = 0,01, selecting the coefficient K from
the alowable range (11). Graphicadly the results of
research are presented in Fig. 5.

Asit is shown in Fig. 5, both firms (with the same
value of K') need amost the same number of steps to
come to the equilibrium point. Also we see that the
fastest system stabilizes at K=-0,9 and K =-08
(the second value K =-0,8 is optimal for the previous
case too) (t; = 68,t, =68 for both values K =-0,9
and K =-08). So, in order to stabilize the system as

soon as possible, it is better to choose those values K
that are between the above optimal value and close to
them. Asin the previous case, the more we are moving
away the optimal values to the right end of the range of
values K, the system needs more time to come into
equilibrium.

Application of the DFC-method to duopoly model
with parameter value ¢, =25/4, initiad conditions
®(0)=0,(0)=0,01 and the value of the coefficient
K =-0,9 isshown graphicaly in Fig. 6.

Control law begins to act from the moment of time

t =50 and stahilizes the system to the eqguilibrium
point.
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Fig. 6. Applicetion of the DFC-method to duopoly model
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DEPENDENCE OF THE RATE SETTING SYSTEM
AT COURNOT EQUILIBRIUM ON THE VALUE

OF THE C,

In the study of duopoly model with applying DFC-
method to it, the question arises; how will be change the
number of time steps required the system to cometo the
Cournot equilibrium (increase or decrease) for different
values of theratio of marginal costs ¢, ?

We have conducted two numerical study for the
moddl (6), with the control function (7), for two values
of the coefficient K from the interval (12) with the
initial conditions g, (0) =q,(0) =0,01. In the first case
we have the optimal value of the coefficient K =-0,8,
and in the second case, for comparison, value K =-0,5.

Choosing the values of ¢, in the interval of unstability
3+\/§£cr£?, we got a number of time steps

necessary to each of the firms F, and F, with the pro-
duction g, and g, , to come to the Cournot equilibrium.
Graphically this dependenceis shown in Fig. 7.

As it is shown in Fig. 7, in the first case (at
K =-0,8) the system requires significantly less stepsto
come to the equilibrium point (Fig.7, left) than in the
second case, i.e, a K =-0,5 (Fig. 7, right). Therefore,
the results obtained in the preceding section are
confirmed.

At the beginning of the interval of unstability (at
C. :3+\/§) the system needs less time to come to
equilibrium. However, with the increasing c the

number of steps also increases, but at the end of the
interval (at ¢ =25/4) the number of steps decreases. If
you look at the bifurcation diagram (Fig. 2), it is
possible to explain this result. At the beginning of the
ungable interval the equilibrium point oscillates
between two values (beginning of period doubling tree)
that are close to one another. With increasing c, , two

branches of the period doubling tree divergent more (the
difference between the values, between which
equilibrium point oscillates, increases) and the number
of steps increases. Decreasing the number of time steps,
for some values c, , may indicate to a smaller difference

of values between which equilibrium point oscillates.

APPLICATION of the DFC-METHOD
WITH TWO control LAWS

In this section we'll consider application of the
two control laws to the state of the duopoly modd (1).
Consider the system:

o= 20 0 ()

i t (13)
o, (4= 20 g (1) ru, )
1 2

w(t), u,(t) arethe DFC-laws:
4=k (@0 a0, e1

u, (t) = KZ(QZ(t)' O (t- 1)) ]

where: K, K, arethe feedback coefficients.
According to the generdized DFC-method [16,
20], for n=2 and k=2 (k is the number of the

control laws), the Jacobi matrix of the linearized system
of model (13) looks as follows:

a0 p K 06
¢ K.*
=g 20 K (15)
¢-1 p K 0~
€p, -1 0 K,,
where:
C,-C _G-G
St Bl SN Bl A 16
o) 2, P, 2, (16)

Next, define the conditions imposed on the choice
of coefficients K, and K, to control laws (14) stabilize
the system to the Cournot equilibrium. We apply the
Routh-Hurwitz procedure for n+k =4 [28].

71 J - - -

w06d . -

58 59 6,0 6.1 62 63

Fig. 7. Dependence the number of time steps t on the parameter C;
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Stability of the linearized system of modd (13) is
determined by the characteristic equation:

geo p K, 09
g 0 0 Kooy

g-l p K, O:

ép, -1 0 K,y

or | *+al *+al ?+al +a,=0. (17)
The coefficients of equation (17) look as follows:

31:'(K1+K2)!
32:K1+K2+K1K2' PP, (18)
83:-2K1K2,

a, = K/K,.

Equilibrium point (qqz) is locally asymptotically

stable if for al eigenvalues | of the Jacobi matrix J
condition holds[28]:
II'|<1. (19)
According to the classical Routh-Hurwitz pro-
cedure, al eigenvalues satisfy condition (19) if the
conditions hold:

b,>0, b >0 b,>0, b,>0, b, >0,

2
bb,- bb, >0, by(bb,- bb,)- bib, >0,
where:
by =1+a +a,+a +a,
b =2+a- a- 2a,,
b, =3- a,+3a,, (21)
b3:2' a *a,- 2a4'

b4:1' ta, - ta,.
According to the parameters b, i =0,4 (21), the

coefficients a,i =1,4 (18) and the elements p,,i =1,2
(16), conditions (20) can be rewritten as:

(c -1’
0) 1+T >0,

T

@ 2- (K, +K,)>0,
(c- 2
4c,

(2 3-(K.+

@ 2+(K+

K,)+2K K, - >0,

K,)- 4K,K, >0,

. 1)2

(4) 1+2(K,+K,)+4K K, +(C'4— >0,
C,

e
(5) (2- (K, + Kz))§3- (K, + K, )+ 2K,K, -

e e
] §1+(C'4 L) H{2+(K, +K,)- 4KK,) >0,
¢ =

(6) (2+(K1+ Kz)' 4K1K2)><

o (o (o 620

Q-

2

& 0 0
‘Cé —(2+ K, +K,)- 4K K, )*-
“ g 2} (22)
- (2- (K1+K2))
126
>(1+2(K1+K2)+4K1K2+(Cr ) %>01
4c, =
T g
where: ¢, =—=
. . g (c-2)°_ .
Obvioudy, the first condition 1+ 2 >0 is
CI'
always satisfied, since ¢, >0. You must choose the
following coefficient K, and K, that satisfy the

remaining six inequalities. This region is graphically
represented in Fig. 8 (in the plane {K, +K,,K,K,} ),
which satisfies the inequalities (22.1)-(22.6) at the value
of the parameter c, =3++/8 . Thisregion is bounded by

curves constructed using the inequalities (22) by
replacing the sign of inequality to equality, i.e.,
@ 2- (K, +K,)=0,

] (c-1 _
(2 3- (K, *+K,)+2KK, x =0,
(3 2+(K,+K,)- 4KK, =0,
(e -1 _
(4 1+2(K,+K,)+4KK, + . =0,
e -1)%6
® (2' (K1+K2))§3' (K1+K2)+2K1K2' (Cr4cr) g
e 1)?0 (23)
(é (K, +K,)- 4K ,K,) =0,
® (2+(K, ) 4KK)
e (-1
oY K, *+K,))e3- (K, +K,)+2KK, - -
g( - ( ))g (Ki+K,) o
g ( -1) 9(2 (K +K) 4K1K2)§'
o
: 1)
- (2- (K, +Ky)) (1+2(K1+K2)+4K1K2+(C4cr) g:O.

As it is shown on the right of Fig. 8, the range of
permissible values of the coefficients K, and K, is
determined by the fourth and sixth equalities.

We have conducted numerous studies that answer
the question: whether isit appropriate to use two control
laws in the duopoly model? Choosing values K, +K,

and KK, from the permissible region, we have the

number of steps required for the system to come to
equilibrium point. The result of the study is shown
graphically in Fig. 9.
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Fig. 8. The region of admissible values of the coefficients K, and K, (¢, =3++/8)
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Fig. 9. Dependence the number of timesteps t on K K, (C, = 3+4/8)
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Fig. 10. Theregion of admissible values of coefficients K, and K, (¢, =25/4)
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Fig. 11. Dependence the number of timesteps t on K, K, (¢, =25/4)
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As seen in Fig. 9 (I€ft) at the value K, +K, =-0,8
and KK, =0 it needs the least time for the system to
come to the Cournot equilibrium. The product K;K, =0
means that either K, =0 or K, =0. Without loss of
generality suppose that K,=0. Then we have a

situation when only one control law is applied to the
model with the value of the coefficient K, =-0,8. This
Situation we have described in the preceding section
when the value of coefficient K =-0,8 isthe best value
for DFC-method with the one control law. But the more
we move to the left and to the right of the value
K,K, =0, themore timeit takes to stabilize the system.
The same situation we have for K, +K, =-0,7 (Fig. 9,
on right).

Similar studies we have done for theright end of the
ungtability interval, thet is for ¢, =25/4. Thisregion is

graphically represented in Fig. 10 (in the plane
{K, +K,,K\K,}), which sttisfies the inequalities
(22.1)22.6) at the value of the parameter ¢, =25/4.

As in the previous case, the range of permissible
values of the coefficients K, and K, is determined by

the fourth and sixth egualities. Similarly, we have
conducted numerous studies, choosing values K, +K,

and K K, from the permissible region. We received a

number of steps necessary for the system to come to
equilibrium point. The result of the study is shown
graphicaly in Fig. 11.

As seen in Fig. 11 on left, a the value
K,+K, =-0,9 and K,K, =0 it needsthe least time for

the system to come to the Cournot equilibrium. But the
more we move to theleft or right of the value K K, =0,

the more time it takes to stabilize the system. Similar
conclusons we can do for K, +K,=-08 and
K,K, =0 (Fig. 11, right). But the product KK, =0
means that one of the coefficients is zero, i.e, we use
DFC-method with only one control law for the modd.
Andin thiscase, thevalues K =-0,9 and K =-0,8 are
optimal.

So, summing up the results of research of this
section, we have shown that the use of DFC-method
with the two control laws to duopoly modd is not
effective.

Application of DFC-method to the date of the
moded is the method of individual control on a chaotic
market when one of the firms can examine the market
Situation and change their course of action, observing
the volume of production in the current and past periods.
According to our research, controlling of unstable
fluctuations by only one firm of the oligopolistic
industry is more effective. If the two firms
simultaneoudly will wish to do this, it’'ll need more time

to stahilize the market situation (so that both firms have
come to an equilibrium value of output).

CONCLUSIONS

Oligopaly is the predominant form of the market
structure. Automobile industry, steelmaking industry,
petrochemical industry, electrical industry, energy
industry, computer industry and others are the
oligopalistic industries. That is why it is important to
study the processes occurring in such organizations of
market relations.

In the paper we considered Cournot-Puu duopoly
modd (two firms in oligopolistic industries). Chaotic
behavior at certain values of the ratio of margina costs
of firms ¢ (3++/8£c £25/4) is observed in the
modedl. We studied some features of the application of
the DFC-method to controlling the chaos that arises in
this modd.

First, we have shown that there is such value of
feedback coefficient K at which firms come to the
Cournot equilibrium fastest, namely K =-0,8. This
value is optimal for almost all values of parameter c,

from the ungtability interval.
We also examined how the value of parameter c,

influences on the rate of the system setting at the
equilibrium point. At the beginning of the unstability

interval (at c :3+\/§) the system needs less time to
come to equilibrium. However, with the increasing c,

the number of steps also increases, but at the end of the
interval (at ¢ =25/4) the number of steps decreases.

This can be explained by the fact that at the beginning of
the instability interval the equilibrium point oscillates
between two values that are close to one another. With
increasing of ¢, , two branches of the period doubling

tree divergent more (the difference between the values,
between which equilibrium point oscillates, increases)
and the number of stepsincreases too.

In this paper we have shown that the use of DFC-
method with the two control laws (the ability of the two
firms to control unstable fluctuations) is ineffective. We
have shown that there is a certain range of values of the
coefficients K, and K, at which firms come to Cournot

equilibrium, but these values are not optimal. Because
for any K, or K, from permissible range of values it

needs more time to stahilize the system than with one
control law.

Conducting such studies for the triopoly modd is
an alternative for further study.
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