Synthesis and Optical Spectroscopy of Borate Glasses, Doped with Terbium and Dysprosium

B.V. Padlyak^{1,2,*}, B. Pieprzyk², A. Drzewiecki², V.T. Adamiv¹, Ya.V. Burak¹ and I.M. Teslyuk¹

Abstract. The high optical quality glasses with CaB_4O_7 :Tb, LiCaBO₃:Tb, CaB_4O_7 :Dy, and LiCaBO₃:Dy compositions containing 0.5 and 1.0 mol. % Tb₂O₃ and Dy₂O₃ have been obtained. By electron paramagnetic resonance (EPR) and optical spectroscopy it was shown that the Tb and Dy impurities are incorporated in the CaB₄O₇ and LiCaBO₃ glass network as Tb³⁺ (4f⁸, ⁷F₆) and Dy³⁺ (4f⁹, ⁶H_{15/2}) ions, exclusively. All observed f - f transitions of Tb³⁺ and Dy³⁺ centres in optical absorption, luminescence excitation and emission spectra have been identified. Luminescence kinetic shows single exponential decay for Tb³⁺ and Dy³⁺ centres in the CaB₄O₇ and LiCaBO₃ glasses. Lifetimes for main emitting levels of Tb³⁺ and Dy³⁺ centres in all investigated glasses were determined at T = 300 K. Spectroscopy shows that obtained glasses are promising luminescent materials.

Key words: borate glass synthesis, Tb^{3+} centre, Dy^{3+} centre, luminescence, decay kinetics.

I. INTRODUCTION

Rare-earth ions show high luminescence efficiency in a variety host compounds including borates and widely used as activator centres in laser and luminescent materials [1]. In particular, borate crystals and glasses activated with Tb^{3+} and Dy^{3+} are considered as effective luminescent materials in green and yellow-blue spectral ranges, respectively. The borate glasses are most perspective in comparison with their crystalline analogies, because the borate single crystals growth is difficult, expensive and long-term. Beside this, low velocity of crystals growth and high viscosity of melt leads to problems with rare-earth doping of borate crystals.

The luminescence properties of Tb- and Dy-doped borate compounds and their potential applications are described in number papers [2-5]. Particularly, in [3] it was reported about synthesis, luminescence properties and scintillation characteristics at registration of neutrons ($E_n \leq 10$ MeV) and ⁶⁰Co γ -radiation of the un-doped and Tb, Cu, Ce, Sm, Eu, Tm, and Yb doped lithium tetraborate (Li₂B₄O₇) glasses. In [4] it was shown that the LiCaBO₃:M³⁺ (M = Eu, Sm, Tb, Ce, Dy) polycrystalline compounds are promising phosphors for white light emitted diodes (LED). In [5] by optical and EPR spectroscopy it was shown that Tb and Dy impurities are incorporated in the Li₂B₄O₇ glass structure as Tb³⁺ (4 f^8 , ⁷F₆) and Dy³⁺ (4 f^9 , ⁶H_{15/2}) ions. The luminescence kinetic shows single exponential decay for both Tb³⁺ and Dy³⁺ centres in the Li₂B₄O₇ glass network [5].

In this work the luminescence excitation, emission and luminescence kinetic of the CaB_4O_7 and $LiCaBO_3$ glasses doped with Tb and Dy are investigated.

¹Institute of Physical Optics, Lviv, Ukraine

II. EXPERIMENTAL

The glasses with CaB₄O₇:Tb, LiCaBO₃:Tb, CaB₄O₇:Dy, and LiCaBO₃:Dy compositions were obtained in the air from corresponding polycrystalline compounds using corundum crucibles and standard glass technology. For synthesis of the CaB₄O₇:Tb, LiCaBO₃:Tb, CaB₄O₇:Dy, and LiCaBO₃:Dy polycrystalline compounds were used carbonates (CaCO₃, Li₂CO₃) and boric acid (H₃BO₃) of high chemical purity. The Tb and Dy were added to raw materials as Tb₂O₃ and Dy₂O₃ in amounts 0.5 and 1.0 mol. %. Solid-state synthesis of CaB₄O₇:Tb, LiCaBO₃:Tb, CaB₄O₇:Dy, and LiCaBO₃:Dy compounds were carried out using multi-step heating process. Large samples of the Tb- and Dy-doped CaB₄O₇ and LiCaBO₃ glasses of high optical quality were obtained by fast cooling of melts, heated more than 100 K higher that the melting temperature for exceeding glass transition points.

The luminescence excitation and emission spectra as well as luminescence kinetic were registered at room temperature using a HORIBA spectrofluorometer (model FluoroMax-4). The EPR spectra were registered using radiospectrometers RADIOPAN (SE/X-2013 and SE/X-2013 models).

III. RESULTS AND DISCUSSION

A. Spectroscopy of LiCaBO₃: Tb and CaB₄O₇: Tb Glasses

The Tb impurity can be incorporated in the structure of oxide crystals and glasses as paramagnetic Tb^{4+} ($4f^7$, ${}^8S_{7/2}$) and non-paramagnetic Tb^{3+} ($4f^8$, 7F_6) ions. In all investigated glasses the EPR spectra of Tb^{4+} ions were not observed.

Emission and luminescence excitation spectra of the LiCaBO₃:Tb and CaB₄O₇:Tb glasses are similar. Emission spectra of all Tb-doped glasses exhibit bands belonging to the ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$ (J = 0 ÷ 6) and ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 0 ÷ 6) transitions of Tb³⁺ showed for LiCaBO₃:Tb glasses in Fig. 1.

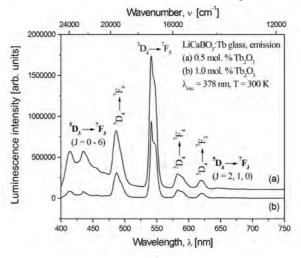


Fig. 1. Emission spectra of the Tb³⁺ centres in LiCaBO₃:Tb glasses.

International Conference on Oxide Materials for Electronic Engineering OMEE-2012

²University of Zielona Góra, Zielona Góra, Poland

^{* &}lt;u>B.Padlyak@proton.if.uz.zgora.pl</u>

In the luminescence excitation spectra of all obtained glasses doped with Tb are observed several weakly-resolved and unresolved bands belonging to the Tb³⁺ f - f transitions, which are shown for CaB₄O₇:Tb glasses in Fig. 2.

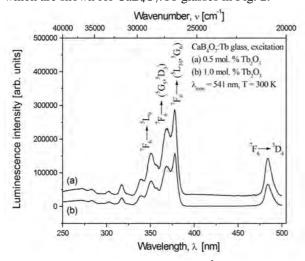


Fig. 2. Luminescence excitation spectra of Tb³⁺ in CaB₄O₇:Tb glasses.

Luminescence kinetics for most intense green emission band (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition) of the Tb³⁺ centres in both investigated glasses show single exponential decay with lifetimes $\tau = 2.4$ ms and $\tau = 2.35$ ms for samples containing 0.5 and 1.0 mol. % Tb₂O₃, respectively. The lowering of lifetime with increasing Tb₂O₃ content in the investigated glasses is related to influence of Tb³⁺ – Tb³⁺ interaction [6].

B. Spectroscopy of CaB₄O₇:Dy and LiCaBO₃:Dy Glasses

The Dy impurity can be incorporated in the structure of oxide compounds as non-paramagnetic Dy^{2+} ($4f^8$, 7F_6) and paramagnetic Dy^{3+} ($4f^9$, $^6H_{15/2}$). In all investigated Dy-doped glasses at liquid helium temperatures were observed EPR spectra of Dy^{3+} centres. The emission and luminescence excitation spectra of the LiCaBO₃:Dy and CaB₄O₇:Dy glasses are closely similar. Emission spectra of all Dy-doped glasses exhibit exclusively f - f transitions of Dy^{3+} centres, which are identified for CaB₄O₇:Dy glasses in Fig. 3.

In the luminescence excitation spectra of obtained glasses doped with Dy were observed 7 well-resolved characteristic bands belonging to the $Dy^{3+} f - f$ transitions, which are identified for LiCaBO₃:Tb glasses in Fig. 4.

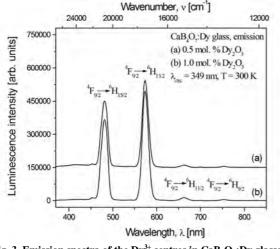


Fig. 3. Emission spectra of the Dy³⁺ centres in CaB₄O₇:Dy glasses.

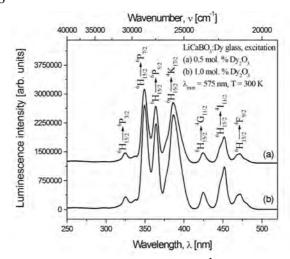


Fig. 4. Luminescence excitation spectra of Dy³⁺ in LiCaBO₃:Dy glasses.

Luminescence kinetics for most intense yellow emission band (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transition) of the Dy³⁺ centres in both glasses show single exponential decay with the following lifetimes: $\tau = 680 \ \mu s$ and 649 μs (LiCaBO₃:Dy), $\tau = 706 \ \mu s$ and 702 μs (CaB₄O₇:Dy) for samples containing 0.5 and 1.0 mol. % Dy₂O₃, respectively. In both glasses the Dy³⁺ – Dy³⁺ interaction also reveals with increasing Dy concentration.

IV. CONCLUSIONS

The observed luminescence spectra and single exponential decay curves in the investigated glasses correspond to one type of the Tb^{3+} and Dy^{3+} centres in the glass network with slightly different crystal field parameters that reveals as inhomogeneous broadening of the spectral lines. Presented results show that CaB_4O_7 and $LiCaBO_3$ glasses activated with Tb^{3+} and Dy^{3+} ions are perspective luminescent materials for green and yellow-blue regions, respectively.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education, Science, Youth and Sport of Ukraine (project No. 0111U001627) and the University of Zielona Góra (Poland).

REFERENCES

- [1] G. Blasse and B.C. Grabmaier, *Luminescent Materials*, Springer-Verlag, Berlin, 1994, pp. 232.
- [2] G. Yong, S. Chunshan and W. Ying, "Luminescence properties of SrB₄O₇:Eu, Tb phosphors", *Mater. Res. Bull.*, vol. 31, no. 5, pp. 439-444, 1996.
- [3] B.I. Zadneprovski, N.V. Eremin and A.A. Paskhalov, "New inorganic scintillators on the basis of LBO glass for neutron registration", *Funct. Mater.*, vol. 12, no. 2, pp. 261-268, 2005.
- [4] L. Panlai, W. Zhijun, Y. Zhiping, G. Qinglin and L. Xu, "Luminescent characteristics of LiCaBO₃:M (M = Eu³⁺, Sm³⁺, Tb³⁺, Ce³⁺, Dy³⁺) phosphor for white LED", *J. Lumin.*, vol. 130, no. 2, pp. 222-225, 2010.
- [5] B. Padlyak, W. Ryba-Romanowski, R. Lisiecki, B. Pieprzyk, V. Adamiv, Ya. Burak and I. Teslyuk, "Synthesis and optical spectroscopy of the lithium tetraborate glasses, doped with terbium and dysprosium", *Opt. Appl.*, vol. 42, no. 2, 2012.
- [6] P. Nachimuthu and R. Jagannthan, "Tb³⁺ fluorescence as a probe of cluster formation in lead oxyfluoride glasses", J. Non-Cryst. Sol. vol. 183, no. 1-2, pp. 208-211, 1995.

International Conference on Oxide Materials for Electronic Engineering OMEE-2012